The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile

Total Page:16

File Type:pdf, Size:1020Kb

The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C 1 mm ^^ 5 -fc;- Jj. -f->^ -J^' ' _." ^P^-Arvx^B^ »""*- 'S y^'ir'*'*'/?' trK* ^-7 A5*^v;'VvVr*'^**s! ^^^^V'^"^"''"X^^i^^?l^"%^ - ! ^ Pecoraite, Wolf Creek meteorite of Australia. Upper, Pecoraite grains separated by hand picking from crack fillings in the meteorite (X 25). Lower, Pecoraite grains lining the walls of some cracks in the meteorite. The extent of disintegration of the original metal­ lic phases into new phases, chiefly goethite and maghemite, is apparent (X 2.3). THE DISINTEGRATION OF THE WOLF CREEK METEORITE AND THE FORMATION OF PECORAITE, THE NICKEL ANALOG OF CLINOCHRYSOTILE The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile By GEORGE T. FAUST, JOSEPH J. FAHEY, BRIAN H. MASON and EDWARD J. DWORNIK STUDIES OF THE NATURAL PHASES IN THE SYSTEM MgO-SiO2 -H2O AND THE SYSTEMS CONTAINING THE CONGENERS OF MAGNESIUM GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C Origin of pecoraite elucidated through its properties and in terms of the geochemical balance in its desert environment UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600160 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.30 Stock Number 2401-02392 CONTENTS Page Page Abstract- - - - 107 Thermal-analysis studies 1 19 Introduction 107 Static (dehydration) method 119 Acknowledgments 107 Dynamic (differential-thermal-analysis) method - 119 Pecoraite 107 Disintegration of the Wolf Creek meteorite and the forma­ Preparation of sample 107 tion of pecoraite 119 Physical and optical properties 108 Time, temperature, and pressure relations of the nat­ Crystallographic studies 108 ural system - 1 19 Electron-microscopic examination 108 Behavior of a model meteorite body in a desert region- 121 X-ray powder diffraction studies 108 Distribution of temperature and thermal stress- 121 Geometrical relations of the curved sheets of pec­ Stress corrosion (corrosion fatigue) 123 oraite to the cylindrical structure of clino- Natural process of disintegration - - - 125 chry sotile 112 Composition and geochemical balance 125 Calculation of tube radii 112 Stress relations resulting from impact 125 Interpretation of diffraction effects 112 Physical and chemical characteristics and rela- Interpretation of tube morphology 116 Chemical properties - i ig Suggested path of the oxidation process 129 Pyrognostics i ig Interpretation of the disintegration 131 Chemical analysis and composition 117 Nomenclature 132 Microprobe analysis us Literature cited ~ - - 1 33 Studies on pecoraite and related synthetic phases in the system H2O-NiO-SiO2- -- -- 118 ILLUSTRATIONS Page FRONTISPIECE. Pecoraite from the Wolf Creek meteorite of Australia. FIGURES 47, 48. Electron micrograph of pecoraite, showing morphology 109, 110 49, 50. Electron micrographs of the synthetic clinochrysotile of Bowen and Tuttle (1949)- 114, 115 51. Thermal-analysis curve of pecoraite obtained by the static method 119 52. Differential-thermal-analysis curves of a partly purified sample of pecoraite from the Wolf Creek mete- oritp of Australia 120 53. Graph showing daily and nightly temperature extremes of the air above the soil and of the soil in 54. Photograph showing crack development in the Wolf Creek meteorite 127 TABLES TABLE X-ray powder diffraction data for pecoraite obtained from powder photographs 111 Calculated values of the thickness of the curved plates of pecoraite, based on measurements derived from powder Dfittpirm_______________________________________ -_ - * 11 j. Calculated values of the thickness of the curved plates of pecoraite, based on half width measurements of line breadth derived from X-ray powder diffractometer patterns 111 X-ray powder diffraction data for synthetic nickel serpentine group minerals - - 112 Half-width measurements of line breadths for clinochrysotile synthesized by Bowen and Tuttle (1949) and for clinochrysotile from the Currant Creek magnesite deposit, White Pine County, Nev. - 113 Fiber dimensions and wall thickness of chrysotile, synthetic chrysotile, and synthetic pecoraite derived from X-ray studies and electron microscopy ~ - - - - 117 Chemical analysis of pecoraite from the Wolf Creek meteorite, Wolf Creek, Australia 118 V VI CONTENTS Page TABLE 8. Chemical analysis of some synthetic products related to or containing pecoraite » » - «- » - -- 118 9. Thermal-analysis data obtained by the static method on pecoraite from the Wolf Creek meteorite, Western Aus­ tralia__________________________________________________________________ 120 10. Calculated temperature and thermal stress in model meteorite bodies in the shape of a sphere, a cylinder, and a slab___________________________________________________________ 124 11. Distribution of the elements in the disintegration products of the Wolf Creek meteorite and in the source ma­ terials a study of geochemical balance - .. 126 STUDIES OF THE NATURAL PHASES IN THE SYSTEM MgO-SiO 2 -H2O AND THE SYSTEMS CONTAINING THE CONGENERS OF MAGNESIUM THE DISINTEGRATION OF THE WOLF CREEK METEORITE AND THE FORMATION OF PECORAITE, THE NICKEL ANALOG OF CLINOCHRYSOTILE By GEORGE T. FAUST, JOSEPH J. FAHEY, BRIAN H. MASON, 1 and EDWARD J. DWORNIK ABSTRACT It is the purpose of this paper first to document, in The Wolf Creek meteorite fell in Western Australia (lat 19°11' S., detail, the mineral pecoraite and to add some further long 127°48' E.) during Pliocene or, at the latest, Pliocene-Pleis­ data on the Wolf Creek meteorite; secondly, to con­ tocene time and produced an impact crater. Original metallic com­ tribute to the knowledge of the natural phases in the pounds in the meteor became mechanically unstable in the desert system H2O-MgO-NiO-SiQ2; and thirdly, to present environment because of the constant alternation in thermal con­ ditions over a long period of time. The meteorite was heated by the a coherent theory for the probable course of the dis­ sun to over 100°C (212°F) in the daytime, and its temperature integration of the Wolf Creek meteorite in its crater dropped to about 15°C (59.0°F) at night. This cycle ultimately and for the development of the phase assemblage reduced the mechanical strength of parts of the meteorite and now observed. caused it to rupture and form thin cracks. During the rainy season, moisture entered the cracks, and stress corrosion became ACKNOWLEDGMENTS operative, which further reduced the mechanical strength of the meteorite and brought about chemical corrosion. The moisture We thank David B. Stewart, J. Stephen Huebner, also widened the cracks. Sand particles blown by the wind entered and Mary E. Woodruff, all of the U.S. Geological the cracks, where they were crushed during the cooling cycle. Survey, for preparing the diffractometer traces, and Repeated dropping and crushing of the sand further widened the we thank John W. White, of the U.S. National cracks. During the heating cycle, these cracks, which contained Museum, for an X-ray pattern and other aid. Michael finely crushed silica, nickel ions in solution, and other inactive solid phases, behaved like tiny hydrothermal bombs and in­ Fleischer translated parts of Russian scientific troduced i their load of nickel ions, by overflow, into the papers and offered advice. hydrothermal solutions in larger cracks, where pecoraite, Discussions with our colleagues Paul B. Barton, Ni6Si4O10(OH) 8 , was formed in very small amounts over long Jr., John L. Haas, Malcolm Ross, and Motoaki Sato periods of time. are greatly appreciated. The phase pecoraite was described by Faust, Fahey, Mason, and Dwornik in 1969, and a detailed description of it is presented here PECORAITE to document the species and to provide background for the inves­ PREPARATION OF SAMPLE tigation of the process of disintegration of the meteorite. The mineral pecoraite occurs in an aggregate of INTRODUCTION medium- to fine-grained particles in cracks in the White, Henderson, and Mason (1967) studied the Wolf Creek meteorite. Pecoraite is present in this secondary minerals produced in the disintegration of aggregate as grains approximately 0.1-0.5 mm the Wolf Creek meteorite in the Wolf Creek crater in (millimeter) in diameter. All the phases in the Western Australia (lat 19° 11' S., long 127°48' E.) and aggregate are intergrown or are coated by associated found a green nickel mineral, tentatively identified phases so that preliminary separations were very dif­ as belonging to the serpentine group, occurring as a ficult. Extensive handpicking was required to pre­ filling in cracks transecting the meteorite. This green pare a pure sample. phase, the nickel analog of clinochrysotile, was The material in the cracks is composed chiefly of briefly described by Faust, Fahey, Mason, and intergrown maghemite and goethite with minor Dwornik (1969) and was named "pecoraite"2 (PE quantities of adventitious quartz sand and clay-size KAWR'E AIT). material and a very small amount of the green nickel 1U.S. National Museum of Natural History, Smithsonian Institution, Washington, 2Approved by the International Mineralogical Association Commission on New B.C. 20560. Minerals and Mineral Names. 108 STUDIES OF THE NATURAL PHASES IN THE SYSTEM MgO-SiO2-H2O silicate, pecoraite, About
Recommended publications
  • A Wunda-Full World? Carbon Dioxide Ice Deposits on Umbriel and Other Uranian Moons
    Icarus 290 (2017) 1–13 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian moons ∗ Michael M. Sori , Jonathan Bapst, Ali M. Bramson, Shane Byrne, Margaret E. Landis Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA a r t i c l e i n f o a b s t r a c t Article history: Carbon dioxide has been detected on the trailing hemispheres of several Uranian satellites, but the exact Received 22 June 2016 nature and distribution of the molecules remain unknown. One such satellite, Umbriel, has a prominent Revised 28 January 2017 high albedo annulus-shaped feature within the 131-km-diameter impact crater Wunda. We hypothesize Accepted 28 February 2017 that this feature is a solid deposit of CO ice. We combine thermal and ballistic transport modeling to Available online 2 March 2017 2 study the evolution of CO 2 molecules on the surface of Umbriel, a high-obliquity ( ∼98 °) body. Consid- ering processes such as sublimation and Jeans escape, we find that CO 2 ice migrates to low latitudes on geologically short (100s–1000 s of years) timescales. Crater morphology and location create a local cold trap inside Wunda, and the slopes of crater walls and a central peak explain the deposit’s annular shape. The high albedo and thermal inertia of CO 2 ice relative to regolith allows deposits 15-m-thick or greater to be stable over the age of the solar system.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Syntectonic Mobility of Supergene Nickel Ores of New Caledonia (Southwest Pacific)
    Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins. Dominique Cluzel, Benoit Vigier To cite this version: Dominique Cluzel, Benoit Vigier. Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins.. Resource Geology, Wiley- Blackwell publishing, 2008, 58 (2), pp.161 - 170. 10.1111/j.1751-3928.2008.00053.x. hal-00161201 HAL Id: hal-00161201 https://hal.archives-ouvertes.fr/hal-00161201 Submitted on 10 Jul 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Syntectonic mobility of supergene nickel ores of New Caledonia (Southwest Pacific). Evidence from faulted regolith and garnierite veins. Dominique CLUZEL and Benoit VIGIER Institut des Sciences de la Terre d'Orléans, ISTO, UMR 6113, University of Orleans, BP 6759, 45067 Orléans Cedex 2, France. [email protected] Running title: Syntectonic mobility of supergene nickel ores Abstract Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted ultramafic rocks are tightly controlled by fracture development. The relationship of tropical weathering and tectonic structures, faults and tension gashes, have been investigated in order to determine whether fractures have play a passive role only, as previously thought; or alternatively, if brittle tectonics was acting together with alteration.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia
    Indonesian Journal of Geology, Vol. 7 No. 2 June 2012: 77-85 Thermal and Infrared Studies of Garnierite from the Soroako Nickeliferous Laterite Deposit, Sulawesi, Indonesia Analisis Termal dan Inframerah Garnierit dari Endapan Laterit Nikel Saroako, Sulawesi, Indonesia SUFRIADIN1,3*, A. IDRUS1, S. PRAMUMIJOYO1, I W. WARMADA1, I. NUR1,3, A. IMAI2, A.M. IMRAN3, and KAHARUDDIN3 1Department of Geological Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia 2Department of Earth Science and Technology, Akita University, Akita 010-8512, Japan 3Department of Geological Engineering, Hasanuddin University, Makassar 90245, Indonesia ABSTRACT Mineralogical characterization of some garnierite samples from Soroako have been conducted using X-ray diffraction, thermal analysis, and infrared spectroscopy methods. XRD patterns reveal the samples mainly containing the mixture of kerolite (talc-like phase) and serpentine with minor smectite, sepiolite, and silica. Thermal analyses of garnierite samples indicated by DTA curves are in good agreement with patterns that have been reported in literature. Three endothermic peaks normally occur in the ranges between 58º C and <800º C illustrating three steps of weight losses: adsorbed, bound, and hydroxyl/crystal water. One additional weight loss in low temperature region of sepiolite is corresponding to the lost of zeolitic water. Infrared spectra appeared in 3800 - 3200 cm-1 region generally exhibit broad absorption bands, indicating low crystallinities of studied samples and can be assigned to the presence of hydroxyl group bonded to octahedral coordina- tion mainly Mg atom. The bands observed at 1660 cm-1, 1639 cm-1, 1637 cm-1, and 1633 cm-1 in all samples indicate water molecules. FTIR spectra displaying the strong bands at 1045 cm-1, 1038 cm-1, and 1036 cm-1 could be related to the presence of Si-O-Si bonds linking to tetrahedral coordination.
    [Show full text]
  • Analysis of Polarimetric Mini-SAR and Mini-RF Datasets for Surface Characterization and Crater Delineation on Moon †
    Proceeding Paper Analysis of Polarimetric Mini-SAR and Mini-RF Datasets for Surface Characterization and Crater Delineation on Moon † Himanshu Kumari and Ashutosh Bhardwaj * Photogrammetry and Remote Sensing Department, Indian Institute of Remote Sensing, Dehradun 248001, India; [email protected] * Correspondence: [email protected]; Tel.: +91-9410319433 † Presented at the 3rd International Electronic Conference on Atmospheric Sciences, 16–30 November 2020; Available online: https://ecas2020.sciforum.net/. Abstract: The hybrid polarimetric architecture of Mini-SAR and Mini-RF onboard Indian Chan- drayaan-1 and LRO missions were the first to acquire shadowed polar images of the Lunar surface. This study aimed to characterize the surface properties of Lunar polar and non-polar regions con- taining Haworth, Nobile, Gioja, an unnamed crater, Arago, and Moltke craters and delineate the crater boundaries using a newly emerged approach. The Terrain Mapping Camera (TMC) data of Chandrayaan-1 was found useful for the detection and extraction of precise boundaries of the cra- ters using the ArcGIS Crater tool. The Stokes child parameters estimated from radar backscatter like the degree of polarization (m), the relative phase (δ), Poincare ellipticity (χ) along with the Circular Polarization Ratio (CPR), and decomposition techniques, were used to study the surface attributes of craters. The Eigenvectors and Eigenvalues used to measure entropy and mean alpha showed distinct types of scattering, thus its comparison with m-δ, m-χ gave a profound conclusion to the lunar surface. The dominance of surface scattering confirmed the roughness of rugged material. The results showed the CPR associated with the presence of water ice as well as a dihedral reflection inside the polar craters.
    [Show full text]
  • DMAAC – February 1973
    LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base.
    [Show full text]
  • The Moon Beyond 2002: Next Steps in Lunar Science and Exploration
    The Moon Beyond 2002: Next Steps in Lunar Science and Exploration September 12-14, 2002 Taos, New Mexico Sponsors Los Alamos National laboratory The University of California Institute of Geophysics and Planetary Physics (ICPP) Los Alamos Center for Space Science and Exploration Lunar and Planetary Institute Meeting Organizer David J. Lawrence (Los Alamos National Laboratory) Scientific Organizing Committee Mike Duke (Colorado School of Mines) Sarah Dunkin (Rutherford Appleton Laboratory) Rick Elphic (Los Alamos National Laboratory) Ray Hawke (University of Hawai’i) Lon Hood (University of Arizona) Brad Jolliff (Washington University) David Lawrence (Los Alamos National Laboratory) Chip Shearer (University of New Mexico) Harrison Schmitt (University of Wisconsin) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1128 Compiled in 2002 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2002) Title of abstract. In The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, P. XX. LPI Contribution No. 1128, Lunar and Planetary Institute, Houston. The volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • August 2017 Posidonius P & Luther
    A PUBLICATION OF THE LUNAR SECTION OF THE A.L.P.O. EDITED BY: Wayne Bailey [email protected] 17 Autumn Lane, Sewell, NJ 08080 RECENT BACK ISSUES: http://moon.scopesandscapes.com/tlo_back.html FEATURE OF THE MONTH – AUGUST 2017 POSIDONIUS P & LUTHER Sketch and text by Robert H. Hays, Jr. - Worth, Illinois, USA March 5, 2017 01:28-01:48; UT, 15 cm refl, 170x, seeing 7-8/10. I drew these craters on the evening of March 4/5, 2017 while the moon was hiding some Hyades stars. This area is in northeast Mare Serenitatis west of Posidonius itself. Posidonius P is the largest crater on this sketch. The smaller crater south of P is Posidonius F and Posidonius G is the tiny pit to the north. There is a halo around Posidonius G, but this crater is noticeably north of the halo's center. A very low round swelling is northeast of Posidonius G. Luther is the crater well to the west of Posidonius P. All four of these craters are crisp, symmetric features, differing only in size. There are an assortment of elevations near Luther. The peak Luther alpha is well to the west of Luther, and showed dark shadowing at this time. All of the other features near Luther are more subtle than Luther alpha. One mound is between Luther and Luther alpha. Two more mounds are north of Luther, and a low ridge is just east of this crater. A pair of very low mounds are south of Luther. These are the vaguest features depicted here, and may be too conspicuous on the sketch.
    [Show full text]
  • Esa Standard Document
    Technology Reference Study Final Report GRL The Gamma Ray Lens SCI-A/2005.058/GRL/CB Craig Brown July 2005 s Page 1 of 172 T ECHNOLOGY R EFERENCE S TUDIES The Science Payload and Advanced Concepts Office (SCI-A) at the European Space Agency (ESA) conducts Technology Reference Studies (TRSs), hypothetical science driven missions that are not currently part of the ESA science programme. Most science missions are in many ways very challenging from a technology point of view. It is critical that these technologies are identified as early as possible in order to ensure their development in a timely manner, as well as allowing the feasibility of a mission to be determined. Technology reference studies are used as a means to identify such technology developments. The Technology Reference Study begins by establishing a series of preliminary scientific requirements. From these requirements, a hypothetical mission is designed that is capable of achieving the scientific goals. Critical issues and mission drivers are identified from the new mission concept and, from these drivers, a series of technology development activities are recommended. One such TRS has been conducted on a Gamma Ray Lens (GRL) mission. The GRL is an ideal candidate for a TRS due to the challenging nature of the technologies involved with focusing gamma rays. Identifying the key areas requiring technology development in this field prepares for any future high-energy astrophysics mission that the science community may propose, as well as establishes common technology development requirements possibly shared by different science missions. s page 2 of 172 A BSTRACT This is the final report for the Gamma Ray Lens (GRL) technology reference study performed by SCI-AM.
    [Show full text]
  • Swelling Capacity of Mixed Talc-Like/Stevensite Layers in White/Green Clay
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2020-6984 1 1 Plagcheck: no concerns 2 Tables?: 3 small 3 Word Count: ~9,100 4 Prod notes: make sure tables in file before RE 5 6 7 8 Swelling capacity of mixed talc-like/stevensite layers in white/green clay 9 infillings (‘deweylite’/‘garnierite’) from serpentine veins of faulted 10 peridotites, New Caledonia 11 REVISION 2 12 Lionel FONTENEAU 1, Laurent CANER 2*, Sabine PETIT 2, Farid JUILLOT 3, Florian 13 PLOQUIN 3, Emmanuel FRITSCH 3 14 15 1Corescan Pty Ltd, 1/127 Grandstand Road, 6104 Ascot, WA, Australia 16 2 Université de Poitiers, Institut de Chimie des Milieux et Matériaux de Poitiers, IC2MP UMR 17 7285 CNRS, 5 rue Albert Turpain, TSA51106, 86073 Poitiers cedex 9, France 18 * Corresponding author, e-mail: [email protected] 19 3 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne 20 Universités – Université Pierre et Marie Curie UPMC, UMR CNRS 7590, Museum National 21 d’Histoire Naturelle, UMR IRD 206, 101 Promenade Roger Laroque, Anse Vata, 98848, 22 Nouméa, New Caledonia 23 24 25 Abstract: White (Mg-rich) and green (Ni-rich) clay infillings (‘deweylite’/‘garnierite’) found 26 in serpentine veins of faulted peridotite formations from New Caledonia consist of an intimate 27 mixture of fine-grained and poorly ordered 1:1 and 2:1 layer silicates, commonly referred to 28 as non-expandable serpentine-like (SL) and talc-like (TL) minerals.
    [Show full text]
  • Flynn Creek Crater, Tennessee: Final Report, by David J
    1967010060 ASTROGEOLOGIC STUDIES / ANNUAL PROGRESS REPORT " July 1, 1965 to July 1, 1966 ° 'i t PART B - h . CRATERINVESTIGATIONS N 67_1_389 N 57-" .]9400 (ACCEC_ION [4U _" EiER! (THRU} .2_ / PP (PAGLS) (CO_ w ) _5 (NASA GR OR I"MX OR AD NUMBER) (_ATEGORY) DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOQICAL SURVEY • iri i i i i iiii i i 1967010060-002 ASTROGEOLOGIC STUDIES ANNUAL PROGRESS REPORT July i, 1965 to July I, 1966 PART B: CRATER INVESTIGATIONS November 1966 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It should not be quoted without permission. This report concerns work done on behalf of the National Aeronautics and Space Administration. DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY 1967010060-003 • #' C OING PAGE ,BLANK NO/" FILMED. CONTENTS PART B--CRATER INVESTIGATIONS Page Introduction ........................ vii History and origin of the Flynn Creek crater, Tennessee: final report, by David J. Roddy .............. 1 Introductien ..................... 1 Geologic history of the Flynn Creek crater ....... 5 Origin of the Flynn Creek crater ............ ii Conc lusions ...................... 32 References cited .................... 35 Geology of the Sierra Madera structure, Texas: progress report, by H. G. Wilshire ............ 41_ Introduction ...................... 41 Stratigraphy ...................... 41 Petrography and chemical composition .......... 49 S truc ture ....................... 62 References cited ............. ...... 69 Some aspects of the Manicouagan Lake structure in Quebec, Canada, by Stephen H. Wolfe ................ 71 f Craters produced by missile impacts, by H. J. Moore ..... 79 Introduction ...................... 79 Experimental procedure ................. 80 Experimental results .................. 81 Summary ........................ 103 References cited .................... 103 Hypervelocity impact craters in pumice, by H. J. Moore and / F.
    [Show full text]