Toxicity of Sediment-Bound Lufenuron to Benthic Arthropods in Laboratory Bioassays
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomanalyse Von Prodiamesa Olivacea
Genomanalyse von Prodiamesa olivacea Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Biologie der Johannes Gutenberg-Universität in Mainz Sarah Brunck geb. 08.08.1987 in Mainz Mainz, 2016 Dekan: 1. Berichterstatter: 2. Berichterstatter: Tag der mündlichen Prüfung: ii Inhaltsverzeichnis Inhaltsverzeichnis ................................................................................................................................ iii 1 Einleitung ........................................................................................................................................... 1 1.1 Die Familie der Chironomiden ................................................................................................. 1 1.1.1 Die Gattung Chironomus ..................................................................................................... 3 1.1.2 Die Gattung Prodiamesa ....................................................................................................... 6 1.2 Die Struktur von Insekten-Genomen am Beispiel der Chironomiden ............................... 9 1.2.1 Hochrepetitive DNA-Sequenzen ..................................................................................... 11 1.2.2 Mittelrepetitive DNA-Sequenzen bzw. Gen-Familien ................................................. 13 1.2.3 Gene und genregulatorische Sequenzen ........................................................................ 17 1.3 Zielsetzung ............................................................................................................................... -
Mogren Etal 2012.Pdf
Science of the Total Environment 425 (2012) 60–65 Contents lists available at SciVerse ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Survival, reproduction, and arsenic body burdens in Chironomus riparius exposed to arsenate and phosphate Christina L. Mogren a,⁎, Guntram R. von Kiparski b, David R. Parker b, John T. Trumble a a Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States b Department of Environmental Science, University of California, Riverside, 900 University Ave, Riverside, CA 92521, United States article info abstract Article history: Despite the increasing awareness of arsenic (As) contamination in surface waters worldwide, little is Received 12 January 2012 known about how As alone and in the presence of other chemicals affects aquatic insects. Larvae of Received in revised form 5 March 2012 Chironomus riparius were exposed in a laboratory investigation to factorial combinations of 0, 0.13, 2.0, 5.3, Accepted 6 March 2012 − − and 13 μmol As l 1 and 0, 0.15, and 15 μmol PO l 1 throughout development from first instar to pupal Available online 29 March 2012 4 emergence. The time between male and female emergence increased from 1.8±0.17 days to 2.9± 0.34 days with exposure at higher As levels. The highest As exposure also decreased the number of eggs Keywords: Aquatic per egg mass, which may affect population maintenance. For these parameters, there was no effect from Arsenic PO4, and no interaction between As and PO4. Total As determination of larval and adult tissues was conducted Bioaccumulation using Hydride Generated Atomic Absorption Spectroscopy (HGAAS) and revealed concentrations ranging Metalloid from 2.48±0.363 to 30.5±0.473 μg/g and 1.03±0.286 to 8.97±0.662 μg/g, respectively, indicating elimina- Sublethal toxicity tion of approximately 72% of total As body burdens between the fourth instar and adult stages. -
Assessment of Organochlorine Pesticides and Metals in Ring-Tailed Lemurs (Lemur Catta) at Beza Mahafaly Special Reserve, Madagascar
American Journal of Primatology 71:998–1010 (2009) RESEARCH ARTICLE Assessment of Organochlorine Pesticides and Metals in Ring-Tailed Lemurs (Lemur catta) at Beza Mahafaly Special Reserve, Madagascar THOMAS R. RAINWATER1Ã, MICHELLE L. SAUTHER2, KATHERINE A.E. RAINWATER3, RACHEL E. MILLS3, FRANK P. CUOZZO4, BAOHONG ZHANG1, LES N. MCDANIEL1, MICHAEL T. ABEL1, ERIC J. MARSLAND1, 5 6 7 1 MARTHA A. WEBER , IBRAHIM ANTHO YOUSSOUF JACKY , STEVEN G. PLATT , GEORGE P. COBB , AND TODD A. ANDERSON1 1Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 2Department of Anthropology, University of Colorado, Boulder, Colorado 3School of Veterinary Medicine, University of California, Davis, California 4Department of Anthropology, University of North Dakota, Grand Forks, North Dakota 5Department of Animal Health and Nutrition, St. Louis Zoo, St. Louis, Missouri 6De´partement de Sciences Biologie, Universite´ de Toliara, Toliara, Madagascar 7Department of Biology, Sul Ross State University, Alpine, Texas Like most of Madagascar’s endemic primates, ring-tailed lemurs (Lemur catta) face a number of threats to their survival. Although habitat loss is of greatest concern, other anthropogenic factors including environmental contamination may also affect lemur health and survival. In this study, we examined ring-tailed lemurs from the Beza Mahafaly Special Reserve (BMSR), southern Madagascar for exposure to organochlorine (OC) pesticides and metals and examined differences in contaminant concentrations between sexes and among age groups, troops, and habitats. A total of 14 pesticides and 13 metals was detected in lemur blood (24 individuals) and hair (65 individuals) samples, respectively. p,p0-DDT, heptachlor, aldrin, heptachlor epoxide, endrin aldehyde, and endrin were among the most prevalent pesticides detected. -
Ep 0154508 A2
Europaisches Patentamt European Patent Office © Publication number: 0 154 508 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 85301334.0 © Int. CI.4: C 07 C 149/437 A 01 N 47/34 ^ © Date of filing: 27.02.85 © Priority: 27.02.84 JP 36882/84 © Applicant: Takeda Chemical Industries, Ltd. 27, Doshomachi 2-chome Higashi-ku Osaka-shi Osaka, 541(JP) @ Date of publication of application: 11.09.85 Bulletin 85/37 @ Inventor: Nagase, Hiroshi 19-6, Daiwahigashi 1-chome © Designated Contracting States: Kawanishi Hyogo 666-OKJP) AT BE CH DE FR GB IT LI LU NL SE © Inventor: Sato, Yasuo 16-5, Ichijojihayama-cho Sakyo-ku Kyoto 606IJP) © Representative: Laredo, Jack Joseph et al, Elkington and Fife High Holborn House 52/54 High Holborn London, WC1V6SH(GB) © Thiophenylureas, their production and use. New insecticidal oriand ovicidal benzoylurea derivatives of the formula: wherein X1 is hydrogen or halogen; X2 is halogen; Y1. Y2 and Y3 are independently hydrogen, halogen or alkyl, whereby at least one of Y1, Y2 and Y3 is other than hydrogen; and R is hydrogen or a group represented by the formula -CFaZbH(3-a-d) wherein a and b are independently 0, 1, or 3, with a + b @ 3 and Z is halogen, their production and use. The present invention relates to benzoylurea derivatives of the formula: wherein X1 is hydrogen or halocgen; X2 is halogen; Y1, Y2 and Y3 are independently hydroaen, halogen or alkyl, whereby at least one of Y1, Y2 and Y3 is other than hydrogen; and R is hydrogen or a group represented by the formula -CFaZbH(3-a-b) wherein a and b are independently 0, 1, 2 or 3, with a + b < 3 and Z is halogen,which are novel compounds processina excellent insecticidal activities, to processes for producing the same, and to insecticides containing the same. -
UNITED NATIONS Stockholm Convention on Persistent Organic
UNITED NATIONS SC UNEP/POPS/POPRC.8/INF/12 Distr.: General 14 August 2012 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Eighth meeting Geneva, 15–19 October 2012 Item 5 (e) and (f) of the provisional agenda* Technical work: assessment of alternatives to endosulfan; assessment of alternatives to DDT Report on the assessment of chemical alternatives to endosulfan and DDT Note by the Secretariat As referred to in documents UNEP/POPS/POPRC.8/8 and UNEP/POPS/POPRC.8/9, the report on the assessment of chemical alternatives to endosulfan and DDT is set out in the annex to the present note; it has not been formally edited. * UNEP/POPS/POPRC.8/1. K1282318 040912 UNEP/POPS/POPRC.8/INF/12 Annex Report on the assessment of chemical alternatives to endosulfan and DDT Draft prepared by the ad hoc working group on assessment of alternatives to endosulfan and DDT under the POPs Review Committee of the Stockholm Convention July 2012 2 UNEP/POPS/POPRC.8/INF/12 Table of Content 1. Disclaimer 2. Background and proposed results 3. Prioritization of Chemical Alternatives for Endosulfan with respect to the Persistent Organic Pollutant (POP) Characteristics (Annex D) 3.1. Introduction 3.2. Endpoint and data selection for prioritisation 3.3. Experimental information 3.4. QSAR information 3.5. Description of the data sources 3.6. Uncertainties 3.7. Data analysis 3.8. Results 3.9. Comments on selected alternative substances 4. Methodology for the assessment of persistent organic pollutant characteristics and identification of other hazard indicators for the assessment of chemical alternatives to Endosulfan and DDT 4.1. -
Acute Oral Toxicity and Repellency of 933 Chemicals to House and Deer Mice
U.S. Department of Agriculture U.S. Government Publication Animal and Plant Health Inspection Service Wildlife Services Archiv-of Arch. Environ. Contam. Toxicol. 14, 111-129 (1985) Environmental ontamination C ... ■ nd I oxicolagy © 1985 Springer-Verlag New York Inc. Acute Oral Toxicity and Repellency of 933 Chemicals to House and Deer Mice E. W. Schafer, Jr. and W. A. Bowles, Jr. U.S. Department of Interior - Fish and Wildlife Service, Denver Wildlife Research Center, Building 16 - Denver Federal Center, Denver, Colorado 80225 Abstract. Five individual bioassay repellency or deer mice and white (house) mice. Our purpose is toxicity variables were estimated or determined for to make available these generally unpublished test deer .mice (Peromyscus maniculatus) and house results so that they can be referenced or used by mice (Mus musculus) under laboratory conditions. the various public, private, and governmental ALD's (Approximate Lethal Doses) or LD50's of groups that may require this information. 230 chemicals to deer mice are presented, as are food reduction (FR) values (3-day feeding test as a 2.0% treatment rate) for white wheat seeds (Tri Methods ticum aestivum) for 696 chemicals and Douglas fir seeds (Pseudotsuga menziesii) for 81 chemicals. A The chemicals included in the tests were technical or analytical similar repellency evaluation (REP) using a 5-day grade pesticides and other commercially available or experi mental chemicals. They were purchased from various commer test with white wheat seeds at a 2.0% treatment rate cial sources or contributed by cooperating chemical companies. was conducted with house mice and the results for For presentation purposes, they have been arranged by Chemical 347 chemicals are presented. -
A Retrospective Analysis of the Immunotoxicity Study (OCSPP Test Guideline No
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION MEMORANDUM Date: February, 2013 SUBJECT: A Retrospective Analysis of the Immunotoxicity Study (OCSPP Test Guideline No. 870. 7800) PC Code: NA DP Barcode: NA Decision No.: NA Registration No.: NA Petition No.: NA Regulatory Action: NA Risk Assessment Type: NA Case No.: NA TXRNo.: NA CAS No.: NA MRIDNo.: NA 40CFR: NA Ver.Apr. 20 l 0 FROM: Jess Rowland le..s.s. (C .... u.. ~""'-"- Associate Director Health Effects Division TO: Jack Housenger, Director Health Effects Division In 2011, CropLife America (CLA) conducted a retrospective evaluation of 82 irnmunotoxicity studies to determine the potential regulatory impact of this study. The assessment concluded that the large majority of studies demonstrated no treatment-related effects at the high dose level for the given study and in no case was the irnmunotoxicity finding the most sensitive endpoint when compared to other existing toxicity endpoints in the data base, indicating the lack of impact ofthese studies on human health risk assessments. Based on their findings, the CLA requested that the Agency begin granting waivers for the irnmunotoxicity guideline study based on its authority under 40 CFR § 15 8.45 to grant waivers for studies for which "the data would not be useful in the Agency's evaluation of the risks or benefits of the product." In 2012, the Office of Pesticide Programs (OPP) similarly conducted a retrospective analysis of over 170 irnmunotoxicity studies (including the 82 chemicals evaluated by CLA) for the purpose of 1) assessing if the results of the guideline immunotoxicity study impact human health risk assessment; 2) determining whether there is sufficient justification for granting waivers for this immunotoxicity study; and 3) proposing a path forward. -
MONITORING of BIOLOGICAL VARIABLES in Chironomus Sancticaroli CULTURING AS TEST ORGANISM
MONITORING OF BIOLOGICAL VARIABLES IN Chironomus sancticaroli CULTURING AS TEST ORGANISM William Viveiros 1, Afonso Rodrigues Aquino 2 1 Companhia Ambiental do Estado de São Paulo – CETESB Setor de Ecotoxicologia Aquática Av. Professor Frederico Hermann Jr, 345 05459-900 São Paulo, SP [email protected] 2 Instituto de Pesquisas Energéticas e Nucleares – IPEN/CNEM-SP Av. Preofessor Lineu Prestes 2242 05508-000 São Paulo, SP [email protected] ABSTRACT International protocols such as USEPA, ASTM, OECD describe procedures for ecotoxicity tests with sediment samples using benthic organisms such as insect larvae of the genus Chironomus sp . The criteria for acceptability of the test are based on variables observed in control. The same protocols adopt the sensibility to the reference toxicant to ensure the quality of the test organisms before their use in testing, but do not describe methods for monitoring biological variables in cultures of these organisms. This study aims to monitor the variables: survival, mentum deformity, fecundity, fertility and hatching rate of the species Chironomus sancticaroli cultivated in laboratory under specific conditions in order to prepare a database for the future establishment of acceptance criteria for these variables. The average percentage of survival obtained was 89.3%( σ = 12.8). The average mentum deformity found was 13% ( σ = 13.9), while the fecundity (530 eggs, σ = 116) and fertility (225 larvae, σ = 135) resulted in an average hatching rate of 42% ( σ = 21.1). The variation data found although consistent with data from other author suggesting the influence of external factors such as the presence of contaminants in culture water, in addition to genetic interference caused by the inbreeding. -
China Releases New Maximum Residue Limits for Pesticides In
GB 2763-2016 THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 3/31/2017 GAIN Report Number: CH17016 China - Peoples Republic of Post: Beijing China Releases New Maximum Residue Limits for Pesticides in Food Report Categories: FAIRS Subject Report Approved By: Lisa Anderson Prepared By: FAS Staff Report Highlights: On December 18, 2016, the Chinese National Health and Family Planning Commission, Ministry of Agriculture, China Food and Drug Administration released the National Food Safety Standard - Maximum Residue Limits for Pesticides in Foods (GB 2763-2016). The standard will replace the current MRL Standard (GB 2763-2014) and will be implemented on June 18, 2017. This report provides an unofficial translation of the standard. Editors’ Note: The asterisk appearing in the MRL column means that the limit is a temporary MRL. A temporary MRL is usually set under the following four conditions: 1. The dietary risk assessment data is incomplete; 2. The Acceptable Daily Intake (ADI) is temporary (ADI is used as the basis for MRL setting); 3. There is no surveillance or analysis method for the MRL that complies with the standard requirements; 4. In emergency situations, the pesticide is approved to be used on un-registered crops. I GB 2763-2016 General Information: BEGIN TRANSLATION ICS 65.100 G 25 GB National Standard of the People’s Republic of China GB 2763—2016 Replacing GB 2763 - 2014 National food safety standard Maximum Residue Limits for Pesticides in Food General Information: National Health and Family Planning Commission Issued by: Ministry of Agriculture China Food and Drug Administration Issued on: 2016-12-18 Implementation:2017-06-18 II GB 2763-2016 Table of Content Preface ............................................................................................................................................................... -
Reflection Paper on Resistance in Ectoparasites
1 13 September 2018 2 EMA/CVMP/EWP/310225/2014 3 Committee for Medicinal Products for Veterinary Use (CVMP) 4 Reflection paper on resistance in ectoparasites 5 Draft Draft agreed by Efficacy Working Party (EWP-V) May 2018 Adopted by CVMP for release for consultation September 2018 Start of public consultation 21 September 2018 End of consultation (deadline for comments) 31 August 2019 6 Comments should be provided using this template. The completed comments form should be sent to [email protected] 7 Keywords Ectoparasites, resistance to ectoparasiticides 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. 8 Reflection paper on resistance in ectoparasites 9 Table of contents 10 1. Introduction ....................................................................................................................... 4 11 2. Definition of resistance ...................................................................................................... 4 12 3. Current state of ectoparasite resistance ............................................................................ 4 13 3.1. Ticks .............................................................................................................................. 4 14 3.2. Mites ............................................................................................................................. -
Recent Strategies for Environmental Remediation of Organochlorine Pesticides
applied sciences Review Recent Strategies for Environmental Remediation of Organochlorine Pesticides Timothy O. Ajiboye 1,2 , Alex T. Kuvarega 3 and Damian C. Onwudiwe 1,2,* 1 Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa; [email protected] 2 Department of Chemistry, School of Physical and chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa 3 Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida 1709, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-18-389-2545; Fax: +27-18-389-2420 Received: 29 June 2020; Accepted: 27 July 2020; Published: 10 September 2020 Abstract: The amount of organochlorine pesticides in soil and water continues to increase; their presence has surpassed maximum acceptable concentrations. Thus, the development of different removal strategies has stimulated a new research drive in environmental remediation. Different techniques such as adsorption, bioremediation, phytoremediation and ozonation have been explored. These techniques aim at either degrading or removal of the organochlorine pesticides from the environment but have different drawbacks. Heterogeneous photocatalysis is a relatively new technique that has become popular due to its ability to completely degrade different toxic pollutants—instead of transferring them from one medium to another. The process is driven by a renewable energy source, and semiconductor nanomaterials are used to construct the light energy harvesting assemblies due to their rich surface states, large surface areas and different morphologies compared to their corresponding bulk materials. -
Minimizing Pesticide Risk to Bees in Fruit Crops
Extension Bulletin E3245 • New • May 2015 Minimizing Pesticide Risk to Bees in Fruit Crops Photos by Zachary Huang (first two, left) and Jason Gibbs (second two, right), MSU Entomology Emily May, Julianna Wilson and Rufus Isaacs. Department of Entomology, Michigan State University. INTRODUCTION SUMMARY Pollinating insects, of which bees are the most important, 1. Bees are essential for pollination of many fruit crops. contribute significantly to the yield and quality of fruit crops in the United States. Pollination services provided by bees 2. Bees and other pollinators can be harmed by some are worth billions of dollars annually to fruit crop industries pesticides used to manage insects, mites and diseases across the nation. Fruit crops vary in their need for bees to in fruit crops. deliver pollen for pollination, but most — including apples, 3. Growers can reduce pesticide risk to bees through blueberries, cherries, strawberries and raspberries — will these approaches: produce larger and more even fruit if their flowers are well - Develop and implement a pollination contract with visited by bees. For all these crops, having healthy bees your beekeeper. to provide pollination is essential for their production, so - Use integrated pest management (IPM) to reduce protecting bees from pesticide risk is an important part of the need for sprays. growing fruit crops. - Avoid pesticide sprays during crop bloom. This document provides information to help growers - Apply pesticides after sunset or before sunrise, or make informed decisions about how to minimize the risk when air temperature is below 50°F. of pesticides to bees. A list of insecticides and fungicides - Select the least toxic pesticides and formulations that are registered for use in the north central region of the when possible.