Thematic Strategy on Sustainable Use of Plant Protection Products --- Prospects and Requirements for Transferring Proposals for Plant Protection Products to Biocides

Total Page:16

File Type:pdf, Size:1020Kb

Thematic Strategy on Sustainable Use of Plant Protection Products --- Prospects and Requirements for Transferring Proposals for Plant Protection Products to Biocides | TEXTE | 06/2012 Thematic Strategy on Sustainable Use of Plant Protection Products --- Prospects and Requirements for Transferring Proposals for Plant Protection Products to Biocides | TEXTE | 06 /20 12 ENVIRONMENTAL RESEARCH OF THE FEDERAL MINISTRY OF THE ENVIRONMENT, NATURE CONSERVATION AND NUCLEAR SAFETY Project No. (FKZ) 3708 63 400 Report No. ( UBA -FB ) 00 1587 Thematic Strategy on Sustainable Use of Plant Protection Products --- Prospects and Requirements for Transferring Proposals for Plant Protection Products to Biocides by Stefan Gartiser Hydrotox GmbH, Freiburg Heike Lüskow Ökopol GmbH, Hamburg Rita Groß Öko-Institut e.V., Freiburg On behalf of the Federal Environment Agency (Germany) UMWELTBUNDESAMT This publication is only available online. It can be downloaded from http://www.uba.de/uba-info-medien-e/4261.html . The contents of this publication do not necessarily reflect the official opinions. ISSN 1862-4804 Study performed by: Hydrotox Labor für Ökotoxikologie Ökopol GmbH und Gewässerschutz GmbH Institut für Ökologie und Politik Bötzinger Str. 29 Nernstweg 32-34 79111 Freiburg 22765 Hamburg Öko-Institut e. V. Merzhauser Str. 173 79100 Freiburg Study completed in: August 2011 Publisher: Federal Environment Agency (Umweltbundesamt) Wörlitzer Platz 1 06844 Dessau-Roßlau Germany Phone: +49-340-2103-0 Fax: +49-340-2103 2285 Email: [email protected] Internet: http://www.umweltbundesamt.de http://fuer-mensch-und-umwelt.de/ Edited by: Section IV 1.2 Biocides Dr. Barbara Jahn Dessau-Roßlau, March 2012 Foreword Biocides are highly active substances used in a broad pattern as it is reflected by the 23 different product types (PT). Biocides are able to kill, to destroy or to deter living organisms. Due to these inherent hazardous properties biocides pose potential risks to human health and the environment. If such products are applied near to humans or introduced into the environment, there is a high probability that they cause damage to people and/or wildlife. Biocides share this capability with pesticides used as plant protection products. With regard to plant protection products a dual approach has been established: - an authorisation procedure as given in the Regulation 1107/2009/EC concerning the placing of plant protection products on the market as a prerequisite for the marketing of individual substances and products - and in parallel - an approach which does not address individuell products but aspects of the overall use of plant protection products in general as given in the Directive 2009/128/EC establishing a framework for Community action to achieve the sustainable use of pesticides. It seems to be sensible that such an approach is appropriate for biocides as well, as authorised biocides are still biocides - which means that they keep their ability in killing living organisms. The lesser the amount to which biocides are used, the lesser should be the possible damage to humans and the environments. Therefore also for biocides an approach which aims at reducing their use seems to be reasonable. Concerning the emission of biocides to the environment only limited reliable information is available to date and biocides are rarely considered in monitoring programs. Notwithstanding, several studies from research projects clearly demonstrate that biocides are regularly found in environmental samples. The first experiences in biocidal product authorization raised many important aspects about the use of biocides like - the use of biocides (e.g. insecticides, repellents or antifoulings) in sensible areas (e.g. in protected areas as described in Art. 12 of Directive 2009/128/EC establishing a framework for Community action to achieve the sustainable use of pesticides or water supply areas), - the obligation to minimize the use of biocides, for instance by taking into account of preventive and/or non-biocidal measures, - so called good practice of biocide application, - so called integrated pest management, - resistance management , - the need for education and training - expert knowledge with regard to high risk product types (e.g. rodenticides), - handling, storage, disposal, - public awareness raising. These aspects are very similar to those regulated for the use of plant protection products. The Thematic Strategy on sustainable use of pesticides has been implemented in the Framework Directive 2009/128/EC on sustainable use of pesticides only for plant protection products so far. Until now there exists no harmonised approach to minimise hazards and risks of biocides to human health and the environment during the use phase. While the Biocide Product Directive 98/08/EC and the new Biocide Regulation focus on the procedure for including active substances in the Annexes of the Directive and the authorisation of biocidal products, there are no concrete requirements for the use phase of biocidal products. The new Regulation addresses the sustainable use of biocides under Art. 18 by obliging the Commission to present to the Council and the European Parliament a report on sustainable use of biocidal products. That report shall, inter alia, examine: (a) the promotion of best practices as a means of reducing the use of biocidal products to the minimum; (b) the most effective approaches for monitoring the use of biocidal products; (c) the development and application of integrated pest management principles with respect to the use of biocidal products; (d) the risks posed by the use of biocidal products in specific areas such as schools, workplaces, kindergartens, public spaces, geriatric care centres or in the vicinity of surface or groundwater and whether additional measures are needed to address them; (e) the role that the improved performance of the equipment used for the application of biocidal products could make to sustainable use. On basis of that report, the Commission shall, if appropriate, present a legislative proposal. The main objectives of sustainable use of biocides are the protection of the environment especially of water bodies and soil, the preservation of biodiversity, the minimisation of hazards to human health, and the avoidance of resistance development. The Federal Environment Agency of Germany (UBA) conducted from 2008 to 2011 a project with the title “Thematic Strategy on Sustainable Use of Plant Protection Products – Prospects and Requirements for Transferring Proposals for Plant Protection Products to Biocides” (UFOPLAN-Ref. No. FKZ 3708 63 400). Within the project the possibilities and requirements for adapting measures as prescribed in the Framework Directive 2009/128/EC on sustainable use of pesticides to the biocide area have been systematically analysed, with specific focus on wood preservatives, insecticides, and antifouling agents. This analysis of the instruments for improving sustainable use of pesticides described in Directive 2009/128/EC revealed that the structure of certain instruments can be transferred to the biocide area, but some biocide specific adaptations are required, not only for biocides in general, but also for the several PTs or specific applications. The UBA project analyses relevant aspects of the sustainable use of biocides specific for the product types wood preservatives, insecticides and antifouling agents and provides suggestions and recommendations which could be useful to stipulate the EU discussion on sustainable use of biocides. Federal Environment Agency, the 14.February 2012 Report Cover Sheet 1. Report No. 2. 3. IV 1.2 Biocides FB 001587 4. Report Title Thematic Strategy on Sustainable Use of Plant Protection Products – Prospects and Requirements for Transferring Proposals for Plant Protection Products to Biocides 5. Author(s), Family Name(s), First Name(s) 8. Report Date Dr. Stefan Gartiser (Projektleitung) 1) 30.08.2011 Heike Lüskow 2) Rita Groß 3) 9. Publication Date 6. Performing Organisation (Name, Address) 16.03.2012 1) Hydrotox GmbH, D-79111 Freiburg, Bötzinger Str. 29 10. UFOPLAN-Ref. No. 2) Ökopol GmbH, D-22765 Hamburg, Nernstweg 32 - 34 FKZ 3708 63 400 3) Öko-Institut e.V., D- 79100 Freiburg, Merzhauser Straße 173 11. No. of Pages 108 + 190 in 4 Annexes 7. Funding Agency (Name, Address) Umweltbundesamt (Federal Environmental Agency) 12. No. of Reference Postfach 14 06, 06813 Dessau-Roßlau 47 13. No. of Tables, Diagrams 5 14. No. of Figures 5 15. Supplementary Notes 16. Abstract The sustainable use of pesticides pursues, independent of the authorisation of single products, the aim to minimise existing environmental risks of pesticide use and therefore contribute to the reduction of its impact on the environmental protection goals. The Thematic Strategy (TS) and the Framework Directive 2009/128/EC (FWD) on sustainable use of pesticides have so far only been implemented for plant protection products (PPP). For biocides there exists no harmonised approach. Within the project the possibilities and requirements for transferring measures of the FWD to the biocide area have been analysed, with specific focus on wood preservatives, insecticides, and antifouling products. Several biocidal active substances are found in the outlets of sewage treatment plants and in surface water, but an inventory of the present environmental impact as well as reliable data on biocide consumption and use patterns, which could be used to identify key action areas, are generally missing. These data are urgently needed for the development of suitable indicators and the definition of the objectives. Sustainable use of biocides addresses the three issues; social, environmental
Recommended publications
  • Restricted Use Product Summary Report
    Page 1 of 17 Restricted Use Product Summary Report (January 19, 2016) Percent Active Registration # Name Company # Company Name Active Ingredient(s) Ingredient 4‐152 BONIDE ORCHARD MOUSE BAIT 4 BONIDE PRODUCTS, INC. 2 Zinc phosphide (Zn3P2) 70‐223 RIGO EXOTHERM TERMIL 70 VALUE GARDENS SUPPLY, LLC 20 Chlorothalonil 100‐497 AATREX 4L HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 42.6 Atrazine 100‐585 AATREX NINE‐O HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 88.2 Atrazine 100‐669 CURACRON 8E INSECTICIDE‐MITICIDE 100 SYNGENTA CROP PROTECTION, LLC 73 Profenofos 100‐817 BICEP II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 33; 26.1 Atrazine; S‐Metolachlor 100‐827 BICEP LITE II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 28.1; 35.8 Atrazine; S‐Metolachlor 100‐886 BICEP MAGNUM 100 SYNGENTA CROP PROTECTION, LLC 33.7; 26.1 Atrazine; S‐Metolachlor 100‐898 AGRI‐MEK 0.15 EC MITICIDE/INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2 Abamectin 100‐903 DENIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2.15 Emamectin benzoate 100‐904 PROCLAIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 5 Emamectin benzoate 100‐998 KARATE 1EC 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1075 FORCE 3G INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 3 Tefluthrin Acetochlor; Carbamothioic acid, dipropyl‐ 100‐1083 DOUBLEPLAY SELECTIVE HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 16.9; 67.8 , S‐ethyl ester 100‐1086 KARATE EC‐W INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1088 SCIMITAR GC INSECTICIDE 100 SYNGENTA CROP PROTECTION,
    [Show full text]
  • EMPENTHRIN Product-Type 18 (Insecticide)
    Regulation (EU) n°528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report EMPENTHRIN Product-Type 18 (Insecticide) March 2019 (revised version) RMS = Belgium Competent EMPENTHRIN Assessment Authority Report: Report Belgium March 2018 Table of Contents 1 STATEMENT OF SUBJECT MATTER AND PURPOSE ..................................................................... 3 1.1 PRINCIPLE OF EVALUATION ....................................................................................................................... 3 1.2 PURPOSE OF THE ASSESSMENT ................................................................................................................... 3 1.3 PROCEDURE FOLLOWED ............................................................................................................................ 3 2 OVERALL SUMMARY AND CONCLUSIONS ..................................................................................... 5 2.1 PRESENTATION OF THE ACTIVE SUBSTANCE ............................................................................................. 5 2.1.1 Identity, Physico-Chemical Properties & Methods of Analysis ...................................................... 5 2.1.2 Intended Uses and Efficacy ............................................................................................................. 7 2.1.3 Classification and Labelling ..........................................................................................................
    [Show full text]
  • Carpenter Ants and Control in Homes Page 1 of 6
    Carpenter Ants and Control in Homes Page 1 of 6 Carpenter Ants and Control in Homes Fact Sheet No. 31 Revised May 2000 Dr. Jay B Karren, Extension Entomologist Alan H. Roe, Insect Diagnostician Introduction Carpenter ants are members of the insect order Hymenoptera, which includes bees, wasps, sawflies, and other ants. Carpenter ants can be occasional pests in the home and are noted particularly for the damage they can cause when nesting in wood. In Utah they are more of a nuisance rather than a major structural pest. Carpenter ants, along with a number of other ant species, utilize cavities in wood, particularly stumps and logs in decayed condition, as nesting sites. They are most abundant in forests and can be easily found under loose bark of dead trees, stumps, or fallen logs. Homeowners may bring them into their homes when they transport infested logs from forests to use as firewood. Description Carpenter ants include species that are among the largest ants found in the United States. They are social insects with a complex and well-defined caste system. The worker ants are sterile females and may occur in different sizes (majors and minors). Members of the reproductive caste (fertile males and females) are usually winged prior to mating. All ants develop from eggs deposited by a fertilized female (queen). The eggs hatch into grub-like larvae (immatures) which are fed and cared for by the workers. When fully grown, the larvae spin a cocoon and enter the pupal stage. The pupal stage is a period of transformation from the larva to adult.
    [Show full text]
  • Chemicals Implicated in Colony Collapse Disorder
    Chemicals Implicated While research is underway to determine the cause of Colony Collapse Disorder (CCD), pesticides have emerged as one of the prime suspects. Recent bans in Europe attest to the growing concerns surrounding pesticide use and honeybee decline. Neonicotinoids Neonicotinoids are a relatively new class of insecticides that share a common mode of action that affect the central nervous system of insects, resulting in paralysis and death. They include imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam. According to the EPA, uncertainties have been identified since their initial registration regarding the potential environmental fate and effects of neonicotinoid pesticides, particularly as they relate to pollinators. Studies conducted in the late 1990s suggest that neonicotinic residues can accumulate in pollen and nectar of treated plants and represent a potential risk to pollinators. There is major concern that neonicotinoid pesticides may play a role in recent pollinator declines. Neonicotinoids can also be persistent in the environment, and when used as seed treatments, translocate to residues in pollen and nectar of treated plants. The potential for these residues to affect bees and other pollinators remain uncertain. Despite these uncertainties, neonicotinoids are beginning to dominate the market place, putting pollinators at risk. The case of the neonicotinoids exemplifies two critical problems with current registration procedures and risk assessment methods for pesticides: the reliance on industry-funded science that contradicts peer-reviewed studies and the insufficiency of current risk assessment procedures to account for sublethal effects of pesticides. • Imidacloprid Used in agriculture as foliar and seed treatments, for indoor and outdoor insect control, home gardening and pet products, imidacloprid is the most popular neonicotinoid, first registered in 1994 under the trade names Merit®, Admire®, Advantage TM.
    [Show full text]
  • Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
    Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq.
    [Show full text]
  • US EPA, Pesticide Product Label, EVERCIDE ESFENVALERATE 6.4
    II UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION DEC 1 6 2011 Mr. Thomas A. Lennan McLaughlin Gormley King Company 8810 Tenth Avenue North Minneapolis, MN 55427-4319 Subject: Notification per PRN 98-10 EPA Registration No.: 1021 -1815 Evercide® Esfenvalerate 6.4% CS Date of Submission: November 14, 2011 Dear Mr. Lennan: The Agency is in receipt of your Application for Pesticide Notification under Pesticide Registration Notice (PRN) 98-10 for the abovementioned product. The Registration Division (RD) has conducted a review of this request and finds that the action(s) requested fall within the scope of PRN 98-10. The label submitted with the application has been stamped "Notification" and will be placed in our records. If you have any questions regarding this action, please contact Olga Odiott at (703)308-9369. Sincerely, Mark Stfarez Product Manager 13 Insecticide Branch Registration Division (7505P) f Please read instructions before completing form Form /ed. OMB No. 2070-0060. Approval expires 05-31-98 United States Reregistration OPP Identifier Number Environmental Protection Agency Amendment Washington, DC 20460 Other Application for Pesticide Reregistration - Section I 1. Company/Product Number 2. EPA Product Manager 3. Proposed Classification 1021-1815 Richard Gebken 4. Company/Product (Name) PM# I None D Restricted EVERCIDE® Esfenvalerate 6.4% CS 10 5. Name and Address of Applicant (Include Zip Code) 6. Expedited Review. In accordance with FIFRA Section 3(c)(3)(b)(i), my MCLAUGHLIN GORMLEY KING COMPANY product is similar or identical in composition and labeling to: 8810 TENTH AVENUE NORTH MINNEAPOLIS, MN 55427 EPA Reg.
    [Show full text]
  • Society Responds to Contamination …</Italic>: Changes in Pest
    Society responds to contamination . Changes in pest control practices reduce toll on wildlife Daniel W. Anderson ... All this beauty of life is fading year by year, ...fa ding like the glow of a sunset, ...fo undering in the grossness of modern refinement. - John Muir, 1868 While biocides, or pesticides, are designed to kill agricultural pests, many of these toxicants have the unintended effect of depleting natural biodiversity. Determining the specific effect of a biocide on biodiversity is com- plicated because other factors, such as direct habitat loss, also decrease biodiversity. Both in California and nationwide, farmers The agricultural spraying of toxaphene pesticide near wildlife habitat in 1971. Tox- have been among the first bio- aphene has been replaced with more effective and safer pest-control agents. cide-users to respond to the chal- lenge of reducing unintentional contamination of the environment. As a result, today agriculture faces fter direct habitat loss and degra- Twenty years ago, it looked as if many fewer biocide-diversity con- dation, toxic environmental con- biocide use, mostly from agricultural flicts than it did even a decade taminants pose the greatest challenges and public health pest control opera- ago. Changes in use of biocides for conservation. Toxicants, whether tions, was going to be a major continu- have led to recoveries of many antibiotics or biocides, dry-cleaning ing cause of wildlife extirpations at in- previously affected populations solvents or naturally occurring ex- creasing and unprecedented rates. But of birds, which are perhaps the cesses of selenium, are any substances today the picture is brighter due to ex- most studied aspects of bio- capable of destroying living organ- tensive research on how biocides affect diversity in these situations.
    [Show full text]
  • An Independent Contract Research Organisation Specialising in Agrochemical, Biocide, Bio-Pesticide and Seed Product Evaluation
    Expert services delivering competitive advantage An independent Contract Research Organisation specialising in agrochemical, biocide, bio-pesticide and seed product evaluation SynTech Research UK range of services include: As part of the EU/Global organisation Program design, planning and project management Laboratory and field ecotoxicology trials Development, evaluation and enhanced target Analytical studies research trials (GEP) Preparation and delivery of biological assess- Environmental fate studies (GLP) ment dossiers and regulatory submissions Crop variety, bio-stimulant and trait evaluation Provision of data summaries and recommendations HQ and Lab services Main sites Associations Contact: Mr Jerry Calloway, UK Managing Director UK HQ +44 (0) 1359 231 732 [email protected] www.syntechresearch.com Program Design and Management Working closely with clients to plan & design the field program and protocols to their objectives and the needs of regulatory authorities Study Monitoring and Direction through experienced multi-disciplined Project Managers Efficacy and Environmental Fate trials Field and Glasshouse characterisation of product performance (GEP) and environmental fate (GLP) Cereal, OSR, potato, pulses, grass, vegetables and top fruit crop coverage (field and protected) Fungicide, herbicide, insecticide, nematicide, plant growth regulator, bio-stimulant, fertiliser & nutrient, adjuvant and safener product testing Early screening through to development and registration; routine efficacy testing and special
    [Show full text]
  • Assessment of Organochlorine Pesticides and Metals in Ring-Tailed Lemurs (Lemur Catta) at Beza Mahafaly Special Reserve, Madagascar
    American Journal of Primatology 71:998–1010 (2009) RESEARCH ARTICLE Assessment of Organochlorine Pesticides and Metals in Ring-Tailed Lemurs (Lemur catta) at Beza Mahafaly Special Reserve, Madagascar THOMAS R. RAINWATER1Ã, MICHELLE L. SAUTHER2, KATHERINE A.E. RAINWATER3, RACHEL E. MILLS3, FRANK P. CUOZZO4, BAOHONG ZHANG1, LES N. MCDANIEL1, MICHAEL T. ABEL1, ERIC J. MARSLAND1, 5 6 7 1 MARTHA A. WEBER , IBRAHIM ANTHO YOUSSOUF JACKY , STEVEN G. PLATT , GEORGE P. COBB , AND TODD A. ANDERSON1 1Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 2Department of Anthropology, University of Colorado, Boulder, Colorado 3School of Veterinary Medicine, University of California, Davis, California 4Department of Anthropology, University of North Dakota, Grand Forks, North Dakota 5Department of Animal Health and Nutrition, St. Louis Zoo, St. Louis, Missouri 6De´partement de Sciences Biologie, Universite´ de Toliara, Toliara, Madagascar 7Department of Biology, Sul Ross State University, Alpine, Texas Like most of Madagascar’s endemic primates, ring-tailed lemurs (Lemur catta) face a number of threats to their survival. Although habitat loss is of greatest concern, other anthropogenic factors including environmental contamination may also affect lemur health and survival. In this study, we examined ring-tailed lemurs from the Beza Mahafaly Special Reserve (BMSR), southern Madagascar for exposure to organochlorine (OC) pesticides and metals and examined differences in contaminant concentrations between sexes and among age groups, troops, and habitats. A total of 14 pesticides and 13 metals was detected in lemur blood (24 individuals) and hair (65 individuals) samples, respectively. p,p0-DDT, heptachlor, aldrin, heptachlor epoxide, endrin aldehyde, and endrin were among the most prevalent pesticides detected.
    [Show full text]
  • US EPA, Pesticide Product Label, ELECTRO-BIOCIDE,04/21/2020
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION April 21, 2020 David Swain Authorized Agent for Strategic Resource Optimization, Inc. Scientific & Regulatory Consultants, Inc. 201 W. Van Buren Street Columbia City, Indiana 46725 Subject: Label Amendment: Emerging Viral Pathogens Claim Product Name: ELECTRO-BIOCIDE EPA Registration Number: 87492-1 Application Date: March 20, 2020 Decision Number: 561528 Dear Mr. Swain: The amended label referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide and Rodenticide Act, as amended, is acceptable. This approval does not affect any conditions that were previously imposed on this registration. You continue to be subject to existing conditions on your registration and any deadlines connected with them. A stamped copy of your labeling is enclosed for your records. This labeling supersedes all previously accepted labeling. You must submit one copy of the final printed labeling before you release the product for shipment with the new labeling. In accordance with 40 CFR 152.130(c), you may distribute or sell this product under the previously approved labeling for 18 months from the date of this letter. After 18 months, you may only distribute or sell this product if it bears this new revised labeling or subsequently approved labeling. “To distribute or sell” is defined under FIFRA section 2(gg) and its implementing regulation at 40 CFR 152.3. Because you have opted to add statements pertaining to emerging viral pathogens to your label as described in the August 19, 2016, Guidance to Registrants: Process For Making Claims Against Emerging Viral Pathogens Not On EPA-Registered Disinfectant Labels (“Guidance”), https://www.epa.gov/sites/production/files/2016- 09/documents/emerging_viral_pathogen_program_guidance_final_8_19_16_001_0.pdf, you are subject to the following additional terms of registration: 1.
    [Show full text]
  • Ep 0154508 A2
    Europaisches Patentamt European Patent Office © Publication number: 0 154 508 Office europeen des brevets A2 © EUROPEAN PATENT APPLICATION © Application number: 85301334.0 © Int. CI.4: C 07 C 149/437 A 01 N 47/34 ^ © Date of filing: 27.02.85 © Priority: 27.02.84 JP 36882/84 © Applicant: Takeda Chemical Industries, Ltd. 27, Doshomachi 2-chome Higashi-ku Osaka-shi Osaka, 541(JP) @ Date of publication of application: 11.09.85 Bulletin 85/37 @ Inventor: Nagase, Hiroshi 19-6, Daiwahigashi 1-chome © Designated Contracting States: Kawanishi Hyogo 666-OKJP) AT BE CH DE FR GB IT LI LU NL SE © Inventor: Sato, Yasuo 16-5, Ichijojihayama-cho Sakyo-ku Kyoto 606IJP) © Representative: Laredo, Jack Joseph et al, Elkington and Fife High Holborn House 52/54 High Holborn London, WC1V6SH(GB) © Thiophenylureas, their production and use. New insecticidal oriand ovicidal benzoylurea derivatives of the formula: wherein X1 is hydrogen or halogen; X2 is halogen; Y1. Y2 and Y3 are independently hydrogen, halogen or alkyl, whereby at least one of Y1, Y2 and Y3 is other than hydrogen; and R is hydrogen or a group represented by the formula -CFaZbH(3-a-d) wherein a and b are independently 0, 1, or 3, with a + b @ 3 and Z is halogen, their production and use. The present invention relates to benzoylurea derivatives of the formula: wherein X1 is hydrogen or halocgen; X2 is halogen; Y1, Y2 and Y3 are independently hydroaen, halogen or alkyl, whereby at least one of Y1, Y2 and Y3 is other than hydrogen; and R is hydrogen or a group represented by the formula -CFaZbH(3-a-b) wherein a and b are independently 0, 1, 2 or 3, with a + b < 3 and Z is halogen,which are novel compounds processina excellent insecticidal activities, to processes for producing the same, and to insecticides containing the same.
    [Show full text]
  • Colony Collapse Disorder in Relation to Human-Produced Toxins: What's
    Colony Collapse Disorder in relation to human-produced toxins: What’s the buzz all about? Available at: http://www.sawyoo.com/postpic/2013/09/honey-bee-hives_77452.jpg Last accessed: 17/04/2017 Abstract: p2 Introduction: p3 Insecticides: p5 Herbicides & fungicides: p7 Miticides & other preventative measures: p9 “Inactive” ingredients: p10 Synergies between pesticides: p11 Conclusions: p12 Discussion: p12 References: p14 1 Abstract In recent years, the global population of pollinating animals has been in decline. The honey bee in particular is one of the most important and well known pollinators and is no exception.The Western honey bee Apis mellifera, the most globally spread honey bee species suffers from one problem in particular. Colony Collapse Disorder (CCD), which causes the almost all the worker bees to abandon a seemingly healthy and food rich hive during the winter. One possible explanation for this disorder is that it is because of the several human produced toxins, such as insecticides, herbicides, fungicides and miticides. So the main question is: Are human-produced toxins the primary cause of CCD? It seems that insecticides and, in particular, neonicotinoid insecticides caused increased mortality and even recreated CCD-like symptoms by feeding the bees with neonicotinoids. Herbicides seem relatively safe for bees, though they do indirectly reduce the pollen diversity, which can cause the hive to suffer from malnutrition. Fungicides are more dangerous, causing several sublethal effects, including a reduced immune response and changing the bacterial gut community. The levels of one fungicide in particular, chlorothalonil, tends to be high in hives. Miticides levels tend to be high in treated hives and can cause result in bees having a reduced lifespan.
    [Show full text]