Okavango) Catchment, Angola

Total Page:16

File Type:pdf, Size:1020Kb

Okavango) Catchment, Angola Southern African Regional Environmental Program (SAREP) First Biodiversity Field Survey Upper Cubango (Okavango) catchment, Angola May 2012 Dragonflies & Damselflies (Insecta: Odonata) Expert Report December 2012 Dipl.-Ing. (FH) Jens Kipping BioCart Assessments Albrecht-Dürer-Weg 8 D-04425 Taucha/Leipzig Germany ++49 34298 209414 [email protected] wwwbiocart.de Survey supported by Disclaimer This work is not issued for purposes of zoological nomenclature and is not published within the meaning of the International Code of Zoological Nomenclature (1999). Index 1 Introduction ...................................................................................................................3 1.1 Odonata as indicators of freshwater health ..............................................................3 1.2 African Odonata .......................................................................................................5 1.2 Odonata research in Angola - past and present .......................................................8 1.3 Aims of the project from Odonata experts perspective ...........................................13 2 Methods .......................................................................................................................14 3 Results .........................................................................................................................18 3.1 Overall Odonata species inventory .........................................................................18 3.2 Odonata species per field site ................................................................................24 3.3 Species assemblages and potential indicator value ...............................................71 3.4 Observed and potential threats to Odonata and their habitats ................................73 3.5 Updated checklist of the Odonata of the Okavango River catchment ..................... 74 3.6 Updated checklist of the Odonata of Angola ...........................................................82 5 Conclusion and outlook ..............................................................................................90 6 Acknowledgements .....................................................................................................91 7 References ...................................................................................................................92 8 Photographs ................................................................................................................98 2 1 Introduction 1.1 Odonata as indicators of freshwater health Indicators on the state of global biodiversity show continued decline at a rapid rate, while pressure on biodiversity keeps rising (BUTCHART et al. 2010). Threats to biodiversity include, among others, resource consumption, invasive alien species, pollution, overexploitation, and climate change (TYLIANAKIS et al. 2008). Freshwater habitats represent one of the most threatened ecosystems in the world (DUDGEON et al. 2006) and, despite occupying less than 1% of the Earth's surface, they contain 10% of all known species (STRAYER & DUDGEON 2006). The living planet index for tropical freshwater species has declined by 69% between 1970 and 2007 (WWF 2010). Additionally freshwater habitats and species are poorly protected as most protected areas target terrestrial ecosystems (DUDGEON et al. 2006). Similar to the challenges for general biodiversity, freshwater biodiversity specifically faces loss of hydrologic connectivity (PRINGLE 2001), nitrogen pollution, resource over-exploitation, flow alteration and water over- extraction, invasion by alien species, and climate change impacts such as temperature warming and shifts in precipitation and runoff patterns (ABELL et al. 2007). Africa’s rich freshwater biodiversity is critical to the wellbeing of the continent’s human population (DARWALL et al. 2011). However, with increasing development and population growth water resources are under increasing pressure. Conservation actions are needed to ensure that the provided benefits are maintained, as is the biodiversity. Planning such actions, e.g. establishing protected areas and conducting inventories (GASTON et al. 2008), requires good spatial knowledge of patterns of biodiversity and threat. Unfortunately, prioritization has been largely directed at terrestrial habitats, focusing on vertebrates as target species (e.g. BROOKS et al. 2004, RODRIGUES et al. 2004). Nonetheless, patterns of richness and threat for freshwater species differ from those of terrestrial animals and surrogacy values are low between taxa from different realms (RODRIGUES & BROOKS 2007). Moreover, it is generally unknown whether the global biodiversity hotspots (MYERS et al. 2000) apply to invertebrates, which make up over 95% of the Earth’s known animal species diversity (GASTON & HUDSON 1994). Consequently, the biodiversity hotspots website of CONSERVATION INTERNATIONAL (2007) does not even attempt to consider endemic insect species when reporting the vital signs of the respective hotspots. In a more recent study about fine-scale prioritization of areas of conservation concern using dragonflies on the African continent it could be clearly shown that areas of high Odonata diversity and endemism only partly fall together with the defined biodiversity hotspots, and especially southern central Africa as an outstanding and rich area is not adequately covered by those (SIMAIKA et al. 2013). Because conservation priorities based on terrestrial vertebrates may not adequately represent freshwater species, separate bioindicators are needed for freshwater habitats. Dragonflies (Insecta: Odonata) are excellent model organisms and flagship species in freshwater conservation because they are: (i) a key component of species assemblages in freshwater ecosystems; (ii) sensitive to changes in both the aquatic and terrestrial environments, because their larval phase is completed in water, while adults are mobile predators in the air and on land; 3 (iii) abundant in all continents except Antarctica, with tropical forests being especially species-rich (KALKMAN et al. 2008), and; (iv) taxonomically well-resolved in comparison to other invertebrate groups (e.g. DIJKSTRA 2003, 2007c). They are employed successfully as indicators of ecosystem health in environmental impact assessments, in particular because of their amphibious nature (e.g. CLARK & SAMWAYS 1996, OERTLI 2008, SAHLÉN & EKESTUBBE 2001, SIMAIKA & SAMWAYS 2011). Although their conservation status is well-documented (CLAUSNITZER & JÖDICKE 2004), little was known until recently about overall levels of threat to the world’s dragonflies. An assessment of 1500 randomly sampled species indicated that 9% of all 5680 known species is threatened with extinction (CLAUSNITZER et al. 2009), highlighting that a compre- hensive assessment is required if we are to effectively identify priority conservation actions and sites for this group. Indeed, in their study on the effectiveness of surrogate species and their representativeness of freshwater species on the African continent, DARWALL et al. (2011a, b) found that dragonflies are effective surrogates for birds, mammals, and amphibians, but that the inverse of this relationship does not hold. Furthermore, the Freshwater Biodiversity Assessment of Africa (DARWALL et al. 2011b) confirms that patterns of richness and threat are remarkably similar among dragonflies, fishes, molluscs and crabs at the continental scale, particularly in Mediterranean North Africa, the Cape region of South Africa, equatorial West Africa, and of the afro-montane regions of East Africa. 4 1.2 African Odonata The African continent is in comparison to other tropical continents relatively poor in Odonata species. Whereas more than 2500 species can be found in South-East Asia and South America respectively the African continent holds about 730 valid species (DIJKSTRA 2003, 2007c). A database with point locality records was created during the last 12 or more years, based on literature, collections and field notes. Material was checked by various experts, often resulting in revisions and taxonomic changes (DIJKSTRA et al. 2011 and references therein). The Odonata Database of Africa (ODA) is the first continent-wide, expert-reviewed database of freshwater insects (KIPPING et al. 2009). The database is updated continually, and now contains over 95.000 records, representing 710 species from over 10.000 localities. Figure 1 shows the spatial distribution of the records that are currently in ODA. First studies to analyze this dataset resulted in two papers recently published and that deal with patterns of diversity and conservation concern (CLAUSNITZER et al. 2012, SIMAIKA et al. 2013). Methods of both used either GIS or spatial modeling to predict species diversity. Base is a set of inferred range maps that were created during the Freshwater Biodiversity Assessments of Africa (DARWALL et al. 2011) that combine point locality records from ODA and expert knowledge. The smallest units on the maps are sub-basins of an edited version of the Hydro1k layer (ESRI, Redlands, CA). In general the areas of highest diversity on the continent (over 100 species in each sub- basin), extending from Guinea and Angola on the Atlantic to Kenya and KwaZulu-Natal on the Indian Ocean, is flanked by two vast impoverished areas (less than 25 species locally) to the north (Sahara) and south (Namib-Kalahari), with rather abrupt diversity gradients in- between. In four core areas
Recommended publications
  • Dragonflies and Damselflies of the Western Cape
    BIODIVERSITY OBSERVATIONS RESEARCH PAPER (CITIZEN SCIENCE) Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018 Author(s): Journal editor: Underhill LG, Loftie-Eaton M and Pete Laver Navarro R Manuscript editor: Pete Laver Received: August 30, 2018; Accepted: September 6, 2018; Published: September 06, 2018 Citation: Underhill LG, Loftie-Eaton M and Navarro R. 2018. Dragonflies and damselflies of the Western Cape - OdonataMAP report, August 2018. Biodiversity Observations 9.7:1-21 Journal: https://journals.uct.ac.za/index.php/BO/ Manuscript: https://journals.uct.ac.za/index.php/BO/article/view/643 PDF: https://journals.uct.ac.za/index.php/BO/article/view/643/554 HTML: http://thebdi.org/blog/2018/09/06/odonata-of-the-western-cape Biodiversity Observations is an open access electronic journal published by the Animal Demography Unit at the University of Cape Town, available at https://journals.uct.ac.za/index.php/BO/ The scope of Biodiversity Observations includes papers describing observations about biodiversity in general, including animals, plants, algae and fungi. This includes observations of behaviour, breeding and flowering patterns, distributions and range extensions, foraging, food, movement, measurements, habitat and colouration/plumage variations. Biotic interactions such as pollination, fruit dispersal, herbivory and predation fall within the scope, as well as the use of indigenous and exotic species by humans. Observations of naturalised plants and animals will also be considered. Biodiversity Observations will also publish a variety of other interesting or relevant biodiversity material: reports of projects and conferences, annotated checklists for a site or region, specialist bibliographies, book reviews and any other appropriate material.
    [Show full text]
  • The Superfamily Calopterygoidea in South China: Taxonomy and Distribution. Progress Report for 2009 Surveys Zhang Haomiao* *PH D
    International Dragonfly Fund - Report 26 (2010): 1-36 1 The Superfamily Calopterygoidea in South China: taxonomy and distribution. Progress Report for 2009 surveys Zhang Haomiao* *PH D student at the Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Email: [email protected] Introduction Three families in the superfamily Calopterygoidea occur in China, viz. the Calo- pterygidae, Chlorocyphidae and Euphaeidae. They include numerous species that are distributed widely across South China, mainly in streams and upland running waters at moderate altitudes. To date, our knowledge of Chinese spe- cies has remained inadequate: the taxonomy of some genera is unresolved and no attempt has been made to map the distribution of the various species and genera. This project is therefore aimed at providing taxonomic (including on larval morphology), biological, and distributional information on the super- family in South China. In 2009, two series of surveys were conducted to Southwest China-Guizhou and Yunnan Provinces. The two provinces are characterized by karst limestone arranged in steep hills and intermontane basins. The climate is warm and the weather is frequently cloudy and rainy all year. This area is usually regarded as one of biodiversity “hotspot” in China (Xu & Wilkes, 2004). Many interesting species are recorded, the checklist and photos of these sur- veys are reported here. And the progress of the research on the superfamily Calopterygoidea is appended. Methods Odonata were recorded by the specimens collected and identified from pho- tographs. The working team includes only four people, the surveys to South- west China were completed by the author and the photographer, Mr.
    [Show full text]
  • 2.3 Angola Road Network
    2.3 Angola Road Network Distance Matrix Travel Time Matrix Road Security Weighbridges and Axle Load Limits For more information on government contact details, please see the following link: 4.1 Government Contact List. Page 1 Page 2 Distance Matrix Uige – River Nzadi bridge 18 m-long and 4 m-wide near the locality of Kitela, north of Songo municipality destroyed during civil war and currently under rehabilitation (news 7/10/2016). Road Details Luanda The Government/MPLA is committed to build 1,100 km of roads in addition to 2,834 km of roads built in 2016 and planned rehabilitation of 7,083 km of roads in addition to 10,219 km rehabilitated in 2016. The Government goals will have also the support from the credit line of the R. of China which will benefit inter-municipality links in Luanda, Uige, Malanje, Cuanza Norte, Cuanza Sul, Benguela, Huambo and Bié provinces. For more information please vitsit the Website of the Ministry of Construction. Zaire Luvo bridge reopened to trucks as of 15/11/2017, this bridge links the municipality of Mbanza Congo with RDC and was closed for 30 days after rehabilitation. Three of the 60 km between MCongo/Luvo require repairs as of 17/11/2017. For more information please visit the Website of Agencia Angola Press. Works of rehabilitation on the road nr, 120 between Mbanza Congo (province Zaire) and the locality of Lukunga (province of Uige) of a distance of 111 km are 60% completed as of 29/9/2017. For more information please visit the Website of Agencia Angola Press.
    [Show full text]
  • Final Report: Southern Africa Regional Environmental Program
    SOUTHERN AFRICA REGIONAL ENVIRONMENTAL PROGRAM FINAL REPORT DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. FINAL REPORT SOUTHERN AFRICA REGIONAL ENVIRONMENTAL PROGRAM Contract No. 674-C-00-10-00030-00 Cover illustration and all one-page illustrations: Credit: Fernando Hugo Fernandes DISCLAIMER The authors’ views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States government. CONTENTS Acronyms ................................................................................................................ ii Executive Summary ............................................................................................... 1 Project Context ...................................................................................................... 4 Strategic Approach and Program Management .............................................. 10 Strategic Thrust of the Program ...............................................................................................10 Project Implementation and Key Partners .............................................................................12 Major Program Elements: SAREP Highlights and Achievements .................. 14 Summary of Key Technical Results and Achievements .......................................................14 Improving the Cooperative Management of the River
    [Show full text]
  • Anax Ephippiger
    25. D ESCRIPTIVE C ATALOGUE : F AMILY AESHNIDAE Anax ephippiger Photo: Pablo Martínez-Darve Sanz Length: From 61 to 70 mm. Hindwing spam: From 43 to 48 mm. Male: 1. Two black bold lines on the frons. 2. The upper part of the eyes is brown and the lower green. 3. Brown thorax. 4. Only the upper part of the S2 is blue, and this colour spreads up to the middle of the sides. 5. Abdomen is light brown or yellowish with a black stripe that stretches across it. 6. Long pointed anal appendages. 7. There is a yellow spot on the hindwing. Female: They are similar to males in patterns, but S2 is normally duller and the blue colour on S2 is not as bright or it does not exist. There is a black stripe that goes across the abdomen. (8) Photo: Roberto Scherini 102 DRAGONFLIES • GR - 249 Great Málaga Path in Málaga and the Province D ESCRIPTIVE C ATALOGUE : F AMILY AESHNIDAE 25. HABITAT It can be found in all kinds of habitats, whether they are bodies of water or not, as this is a migratory species. It is unknown if there is a breeding spot this species has in the Province of Málaga, but they are likely to mate in standing water bodies with plenty of vegetation on the riverbank (above all rushes and bulrushes). These can be perennial or temporary, such as small reservoirs and dams, artificial ponds, deserted quarries and polls in rivers and streams. WAY OF LIFE This species migrates from Africa and the Mediterranean to a large part of Europe, where it reaches Iceland (only this Odonata from that country has been seen here).
    [Show full text]
  • Anisoptera: Libellulidae)
    Odonatologica 7 (3): 237-245 September I, 1978 Reproductive behaviourof Acisoma panorpoidesinflatum Selys (Anisoptera: Libellulidae) A.T. Hassan Entomology Research Laboratory, Department ofZoology, University of Ibadan, Ibadan, Nigeria Received December 21, 1977 / Accepted February 20, 1978 The observations were carried out at 2 localities in Nigeria. The dd defend territories, maintained on a temporary basis. The number of days on which individuals visited water varied from 1-14 (mean 5.33). The territory length in amounted to 1.5-2.0 m (between 09.00-10.30 hrs), and 0.50-0.75 m (later the day). The territories were defended for 842 min. Sperm transfer was not between 3.9-6.8 observed after a d had secured a 9. Copulation ranged sec. the Both sexes mated more than once daily. After copulation partners were resting either separately or, infrequently, in tandem (0.0-106.7 sec). Ovi- position is complex and lasted for 20.9-160.3 sec (mean 74.7). The perching plants provided suitable oviposition sites. INTRODUCTION Reproductive behaviour of libellulid dragonflies, particularly males, had been observed MOORE and experimented on by various workers, e.g. (1952, 1957, 1960), JACOBS (1955), 1TO (1060), KORMONDY (1961), PAJUNEN (1962), CAMPANELLA (1972), PARR & PARR (1974), and GREEN (1974), amongst others, revealed that libellulids hold and defend territories, and exhibit localiza- tion to varying degrees. of This investigation is an examination of the reproductive behaviour Acisoma panorpoides inflatum Selys with respect to the time of arrival at water, the size and maintenance of the territory, the degree of localization, and copulation and oviposition behaviour.
    [Show full text]
  • September 1948, in Banjul. in Day Trip British Dragonfly Society Applied
    98 Notul. Vol. 4, No, 6, odonatoi, pp. 93-108, December 1, 1995 Dragonflies recorded from The Gambia ¹ R.M. Gambles [deceased], N.W. Moore M. Hämäläinen² and E.D .V. Prendergast³ 1 The Farm House, 117 Boxworth End, Swavesey, Cambridge CB4 5RA, United Kingdom 2 Department ofApplied Zoology, P.O. Box 27, FIN-00014 University of Helsinki, Finland 3 Manor House, Bagber, Sturminster Newton, Dorset DT10 2EY, United Kingdom Abstract – - 64 recorded from The Gambia in all of the spp. ably by systematic collecting parts end 1989 and their known distri- and all times of it stands up to are listed, country at year; but, as bution shown. at present, it should put our knowledge of the Gambian Odonata at least on a par with that of Introduction most other West African Territories. The Gambia is a narrow strip ofterritory bounded on all sides, except for its Atlantic coastline,by Collecting Visits and Senegal, consists of little more than the river, NWM spent two months, from mid-July to mid- which somewhat pursues a meandering course September 1948, in The Gambia collecting it from east to west; and the land oneither side of mainly around Kuntaur, some 200 km up-river, 20 the to an average distance of km near mouth, but also around Banjul and Basse Santa Su. In narrowing to 10 km up-river. The groundis, for September 1958, RMG was able to land from the he for the most part, flat, and there are hardly any tribu- mail boat on which was travelling, about to It taries the river.
    [Show full text]
  • ESM-Table 1A/B. Species of the Suborders Anisoptera (A) and Zygoptera (B) Included in This Study; Ind
    ESM-Table 1a/b. Species of the suborders Anisoptera (a) and Zygoptera (b) included in this study; Ind. = number of individuals analysed; ID = abbreviation of species name; Loc. = number of sample sites (localities). (a) Suborder: Anisoptera (b) Suborder: Zygoptera Family: Aeshnidae Family: Calopterygidae Species Ind. Loc. ID Species Ind. Loc. ID Aeshna cyanea 1 1 Aecy Phaon iridipennis 39 19 Pi Aeshna ellioti ellioti 1 1 Aelel Calopteryx haemorrhoidales 21 5 ch Aeshna ellioti usambarica 1 1 Aelus Calopteryx splendens 20 6 cs Aeshna grandis 1 1 Aegr Calopteryx virgo 51cv Aeshna rileyi 1 1 Aerl Coryphaeschna adnexa 1 1 Corad Family: Clorocyphidae Coryphaeschna perrensi 1 1 Corpe Anaciaeschna isosceles 1 1 Anaiso Chlorocypha aphrodite 1 1 Cap Anaciaeschna triangulifera 1 1 Anatri Platycypha amboniensis 21PA Anax imperator 88 16 Ai Platycypha auripes 2 1 Pau Anax junius 11Aj Platycypha caligata 56 11 Pc Anax parthenope 11Ap Anax speratus 21 4 As Family: Megapodagrionidae Anax ephippiger 19 4 Ae Brachytron pratense 1 1 Brpr Amanipodagrion gilliesi 11Ag Gynacantha manderica 1 1 Gyma Heteagrion sp. 2 1 Hsp Gynacantha usambarica 10 4 Gu Gynacantha villosa 1 1 Gyvill Family: Pseudolestidae Family: Gomphidae Rhipidolestes hiraoi 1 1 Rhd Paragomphus geneii 32 9 Pg Family: Coenagrionidae Family: Libellulidae Pseudagrion acaciae 42Pa Pseudagrion bicoerulans 22 4 Pb Nesciothemis farinosum 92Nf Pseudagrion commoniae 2 1 Pco Orthetrum brachiale 92Ob Pseudagrion gamblesi 2 1 Pga Orthetrum chrysostigma 34 9 Oc Pseudagrion hageni 21Ph Orthetrum coerulescens
    [Show full text]
  • (1979A, During Copulation Calopteryx Reproductive Tract (E.G. MILLER
    Adv. Odonatol. 1: 175-192 December 31, 1982 Genital structure, sperm competition and reproductive behaviour in some African libellulid dragonflies P.L. Miller Department of Zoology, University of Oxford, South Parks Road, Oxford 0X1 3PS, United Kingdom The structure of the penis (vesica spermalis) and of the female genital tract are described in two African libellulids. The 4th segment of the penis of and which Brachythemis lacustris possesses a flagellum paired cornua are retracted inside inflation a specialized chamber at rest. On they are shot of of abruptly out the chamber, and the flagellum is seen to possess a pair large barbs while the cornua have complex laterally- and proximally-direct- ed bristles. female The genital tract has an asymmetrically disposed sperm- athecal which the reach system may permit flagellum to only one sperm- atheca and withdraw from sperm it during copulation. In Nesciothemis farinosa the penis bears large inflatable sacs armed with numerous bristles of which serrated and dentate. In the female the some are spermathecae are inaccessible the but from males be to penis, sperm previous may packed down or removed from the bursa during copulation. B. lacustris copulates rapidly on the wing and the male guards the female closely during ovipos- ition. N. farinosa also copulates rapidly but on the ground and guarding during oviposition is weak and short-lived. The possible relationships be- of and tween copulation duration, intensity guarding sperm competition are discussed. INTRODUCTION WAAGE (1979a, 1982) has shown that during copulation males of Calopteryx maculata and C. dimidiata remove the sperm of pre- vious males from the female’s reproductive tract before they intro- their duce own, and similar behaviour may occur in many other dam- selflies (e.g.
    [Show full text]
  • Download Information on the New Species
    nature needs more explorers What sixty new dragonfly and damselfly species from Africa can say about the state of our most critical resource and the exploration of life. Klaas-Douwe B. Dijkstra, Jens Kipping & Nicolas Mézière (1 December 2015) Sixty new dragonfly and damselfly species from Africa (Odonata). Odonatologica 44: 447-678 By naming 60 new dragonflies at once, we want to show that a biologist’s greatest importance today is to provide the names and knowledge needed to add all life to the human conscience. We do so by challenging three common misconceptions about biodiversity: 1. that most of Earth’s species are known to us 2. that the remaining unknown species are hidden and detectable only by genetics 3. that enough effort is being made in the field to uncover the unknown in time We demonstrate this with some of the most sensitive and beautiful of all biodiversity: 1. freshwater — Earth’s most dense and threatened species richness 2. Africa — the continent that will change most in the 21st century 3. dragonflies — the insects that could The new Sarep Sprite Pseudagrion sarepi was named be the best gauge of global change after the SAREP expedition to eastern Angola. Mankind knows just 20% of the 9 million species of animal, plant, fungus and protist thought to inhabit our planet. With 6000 species named, dragonflies and damselflies were regarded as well-known. The 60 new dragonflies described now are the most to be named at once in a century, adding 1 species to every 12 known in Africa. Their beauty and sensitivity can raise awareness for freshwater biodiversity, the densest and most threatened on earth.
    [Show full text]
  • Dragonflies of the Soutpansberg
    DRAGONFLIES 43 DRAGONFLIES W. Tarboton Sourcesofinformation Family Lestidae Spreadwings Lestes plagiatus Highland Spreadwing To my knowledge there has been no comprehensive or systematic assessment of the dragonfly fauna of the Sout- Lestes virgatus Smoky Spreadwing pansberg. Van Son, Pinhey and others have done some Family Protoneuridae Pinflies collecting here, mostly in the 1940s and 1950s. From this, Elattoneura glauca Common Threadtail a total of 52 species from the Soutpansberg are repre- sented in South African museum collections and these are Family Platycnemididae Stream-Damsels listed below. Allocnemis leucosticta Goldtail Summarystatistics Family Coenagrionidae Sprites Ceriagrion glabrum CommonOrange This list of 52 species, comprising about a third of the known South African dragonfly fauna (which totals 159 Pseudagrion commoniae nigerrimum BlackSprite species), would undoubtedly be increased — perhaps by Pseudagrion hageni Hagen’sSprite another 30–40 species — if a dedicated dragonfly survey Pseudagrion hamoni Hamon’s Sprite of the area were to be undertaken. Given the area’s close Pseudagrion kersteni Kersten’s Sprite proximity to Zimbabwe, it is likely that one or more spe- Pseudagrion makabusiense Makabusi Sprite cies new for the South African list will be found here (e.g. Actoneura biordinata), and it is not inconceivable, given Pseudagrion massaicum MasaiSprite the mountain range’s relative isolation, that species new Pseudagrion salisburyense SalisburySprite to science could be discovered here as well. Pseudagrion spernatum NatalSprite Pseudagrion sublacteum Cherry-EyeSprite As it stands the list includes two species that are endemic Ischnura senegalensis Bluetail to South Africa (Aeshna subpupillata, Allocnemis leucosticta) and three that are listed in the recently pub- Africallagma glaucum Swamp Bluet lished dragonfly Red Data list (Aeshna ellioti — vulnera- Agriocnemis exilis Little Whisp ble; Chlorolestes elegans — vulnerable; Pseudagrion SuborderAnisoptera(Dragonflies) makabusiense — critical).
    [Show full text]
  • Odonata from Highlands in Niassa, with Two New Country Records
    72 Odonata from highlands in Niassa, Mozambique, with two new country records Merlijn Jocque1,2*, Lore Geeraert1,3 & Samuel E.I. Jones1,4 1 Biodiversity Inventory for Conservation NPO (BINCO), Walmersumstraat 44, 3380 Glab- beek, Belgium; [email protected] 2 Aquatic and Terrestrial Ecology (ATECO), Royal Belgian Institute of Natural Sciences (RBINS), Vautierstraat 29, 1000 Brussels, Belgium 3 Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium 4 Royal Holloway, University of London, Egham Surrey TW20 OEX, United Kingdom * Corresponding author Abstract. ‘Afromontane’ ecosystems in Eastern Africa are biologically highly valuable, but many remain poorly studied. We list dragonfly observations of a Biodiversity Express Survey to the highland areas in north-west Mozambique, exploring for the first time the Njesi Pla- teau (Serra Jecci/Lichinga plateau), Mt Chitagal and Mt Sanga, north of the provincial capital of Lichinga. A total of 13 species were collected. Allocnemis cf. abbotti and Gynacantha im­ maculifrons are new records for Mozambique. Further key words. Dragonfly, damselfly, Anisoptera, Zygoptera, biodiversity, survey Introduction The mountains of the East African Rift, stretching south from Ethiopia to Mozam- bique, are known to harbour a rich biological diversity owing to their unique habi- tats and long periods of isolation. Typically comprised of evergreen montane forests interspersed with high altitude grassland/moorland habitats, these montane archi- pelagos, often volcanic in origin, have been widely documented as supporting high levels of endemism across taxonomic groups and are of international conservation value (Myers et al. 2000). While certain mountain ranges within this region have been relatively well studied biologically e.g.
    [Show full text]