Molecular (Sub)Grouping of Endosymbiont Wolbachia Infection Among Mosquitoes of Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

Molecular (Sub)Grouping of Endosymbiont Wolbachia Infection Among Mosquitoes of Taiwan MOLECULAR BIOLOGY/GENOMICS Molecular (Sub)Grouping of Endosymbiont Wolbachia Infection Among Mosquitoes of Taiwan 1 2 1 1 3 KUN-HSIEN TSAI, JIH-CHING LIEN, CHIN-GI HUANG, WEN-JER WU, AND WEI-JUNE CHEN J. Med. Entomol. 41(4): 677Ð683 (2004) ABSTRACT Wolbachia are maternally inherited bacteria that infect a wide range of arthropods as well as Þlarial worms. The infection usually results in reproductive distortions of the host, primarily cytoplasmic incompatibility, parthenogenesis, and feminization. This study showed that Wolbachia infection (15/29; 51.72%) was prevalent among Þeld-caught mosquitoes in Taiwan. Three mosquito species were identiÞed as having Wolbachia A infection, eight species as having Wolbachia B, and four other species were dually infected by both groups. Each Wolbachia isolate from different mosquitoes was further divided into a speciÞc subgroup. However, there were still some isolates that did not belong to any known subgroup, suggesting that more subgroups remain to be identiÞed. Investigation of tissue tropism in either Aedes albopictus (Skuse) or Armigeres subalbatus (Coquillett) revealed that Wol- bachia were extensively distributed within the host, although the ovary was most susceptible to infection. This report provides preliminary features of molecular relationships among Wolbachia groups of mosquitoes from Taiwan. KEY WORDS endosymbiont, mosquito, tissue tropism, Wolbachia THE ENDOSYMBIONT Wolbachia are intracellular rickett- 1995b, Zhou et al. 1998). The type species, Wolbachia sia-like bacteria that are maternally inherited and nor- pipientis, was Þrst identiÞed in the mosquito Culex mally harbored in a number of arthropods (Rigaud pipiens (L.) complex (Hertig and Wolbach 1924). It and Juchault 1993, 1995; Breeuwer and Jacobs 1996; has been found that Wolbachia infects almost 100% of OÕNeill et al. 1997; Werren 1997; Bourtzis and OÕNeill wild-caught mosquitoes of the Cx. pipiens complex 1998). According to previous reports, 16.9% of Neo- (Sinkins et al. 1995). Wolbachia is normally main- tropical insects (Werren et al. 1995a), 35.7% of dipter- tained in nature through vertical transmission (Wer- ans (Werren et al. 1995a, Bourtzis et al. 1996), 35%Ð ren 1997). However, horizontal transmission of Wol- 40% of mites (Breeuwer and Jacobs 1996), and up to bachia has been mentioned; this apparently sheds light 46.3% of terrestrial isopods (Bouchon et al. 1998) are on mosquito control because Wolbachia is expected to infected with Wolbachia. Moreover, it was recently drive a deleterious gene into and to reduce the density found that Wolbachia could infect various nematode of natural populations of mosquitoes (Beard et al. Þlarial worms (Sironi et al. 1995). Undoubtedly, Wol- 1993, Sinkins et al. 1997, Beard et al. 1998, Curtis and bachia is one of the most ubiquitous endosymbionts Sinkins 1998). described to date (Werren et al. 1995a). Wolbachia IdentiÞcation of Wolbachia has been convention- causes reproductive distortions, primarily cytoplasmic ally dependent on electron microscopy because of incompatibility (CI), feminization of genetic males, difÞculties with in vitro culture (Wright and Barr 1980, and induction of parthenogenesis in infected arthro- Hayes and Burgdorfer 1981, Louis and Nigro 1989). pods (Werren 1997). Of these, CI is the most common Polymerase chain reaction (PCR) ampliÞcation and feature occurring in the mosquito. The reproductive sequencing are routine techniques used in the iden- distortions caused by Wolbachia infection are known tiÞcation of Wolbachia. At present, various genes, in- to result in embryonic death and subsequent failure of cluding wsp (Wolbachia outer surface protein) (Zhou egg hatch due to disruptions during early events of et al. 1998), 16S rDNA (Breeuwer et al. 1992, OÕNeill fertilization (Hoffmann and Turelli 1997). et al. 1992, Rousset et al. 1992, Bensaadi-Merchermek It is believed that Wolbachia is a monophyletic as- et al. 1995, Clark et al. 2001), ftsZ (Holden et al. 1993, semblage belonging to the alpha-subdivision of the Clark et al. 2001), and dnaA protein sequence Proteobacteria (OÕNeill et al. 1992, Werren et al. (Bourtzis et al. 1994) are extensively used for the purpose of Wolbachia detection and have shown tre- 1 Department of Entomology, National Taiwan University, Taipei mendous advantages in its phylogenic analysis. 106, Taiwan. Wolbachia occurs commonly in natural mosquito 2 Institute of Preventive Medicine, National Defense Medical Cen- ter, San-Hsia, Taipei 237, Taiwan. populations (Sinkins et al. 1995, Kittayapong et al. 3 Department of Public Health and Parasitology, College of Med- 2000). As mentioned, Wolbachia may play a role in the icine, Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan. control of disease vectors, especially the mosquito, 0022-2585/04/0677Ð0683$04.00/0 ᭧ 2004 Entomological Society of America 678 JOURNAL OF MEDICAL ENTOMOLOGY Vol. 41, no. 4 due to its potential role in reducing the Þtness of the 3Ј; reverse, 5Ј-CCACTTAACTCTTTCGTTTG-3Ј) for host population (Beard et al. 1993, 1998). Thus, it is group B. Another primer pair was wsp81 F/691R worthwhile to extensively investigate the occurrence (wsp 81F, 5Ј-TGGTCCAATAAGTGATGAAGAAAC- and distribution of Wolbachia in mosquitoes in nature. 3Ј; wsp691R, 5Ј-AAAAATTAAACGCTACTCCA-3Ј) Herein, we describe the status of Wolbachia infection from which 590Ð632 bp of cDNA was synthesized among mosquitoes in Taiwan based on molecular data (Zhou et al. 1998). derived from PCR-based techniques, including DNA Subgrouping of Wolbachia. The wsp gene fragment sequencing. was used as the target for further division of each group of Wolbachia. In this experiment, all PCR prod- Materials and Methods ucts obtained from the wsp 81F/691R primer pair were used as the template to amplify a shorter gene frag- Mosquitoes. Larvae of 29 mosquito species belong- ment that served as the gene marker speciÞc to sub- ing to nine genera were collected in the Þeld from groups, including AlbA, Aus, Haw, Mel, Mors, Pap, Riv, various parts of Taiwan and then reared in the labo- and Uni for group A and CauB, Con, Dei, and Pip for ratory as described previously (Chen et al. 2000). group B. The PCR products ampliÞed from secondary Mosquito identiÞcation was carried out on the basis of PCR ranged from 379 to 556 bp in length (Zhou et al. morphological characteristics illustrated by Lien 1998). (1978). To cure mosquitoes of the Wolbachia infec- Visualization of PCR Products. PCR products of the tion, newly eclosed larvae were reared in water con- wsp gene fragment derived from 81F/691R primers taining diluted tetracycline as described by Yen and were separated on a 2% (wt:vol) agarose gel and then Barr (1973). stained with ethidium bromide. Banding patterns on DNA Extraction and PCR. DNA was extracted from the gel were photographed with a Polaroid camera. A tissues dissected from at least Þve mosquitoes of each recheck was carried out with higher concentrations of test, except for Mansonia uniformis (Theobald) and the DNA template of negative cases. All results, except Uranotaenia novobscura Barraud, by using a DNA ex- those for which the 12S insect-speciÞc gene was not traction kit (Viogene, Sunnyvale, CA). Twenty mi- successfully detected, were subjected to further anal- croliters of reaction mix contained 1 ␮l of extracted ysis. The band of the target cDNA fragment was sub- DNA, 12.5 ␮l of double distilled H O, 2 ␮lof10ϫ 2 sequently excised from the gel and puriÞed using a gel buffer (Klen Tag), 2 ␮l of 25 mM MgCl , 0.5 ␮lof 2 extraction kit (Viogene). The puriÞed cDNA derived dNTPs (10 mM each), 1 ␮l each of 2 pM forward and three individuals of each species were directly se- reverse primers, and1UofTag DNA polymerase quenced using a Prism automated DNA sequencing kit (Klen Tag). All reactions in this study were run in an ERICOMP thermocycler (PowerBlock System, San from the Applied Biosystems (Foster City, CA). Diego, CA) under the following settings: one cycle Wolbachia Detection from Mosquito Tissues. Tis- (1 min at 94ЊC, 1 min at 55ЊC, and 3 min at 72ЊC), 35 sues, including muscles, guts, testes, salivary glands, cycles (15 s at 94ЊC, 1 min at 55ЊC, and 3 min at 72ЊC), and ovaries were dissected from Þve mosquito larvae and one cycle (15 s at 94ЊC, 1 min at 55ЊC, and 10 min or 2-d-old adults (unfed males and females) of either at 72ЊC). The universal primers (12SAI-forward, 5Ј- Ae. albopictus or Ar. subalbatus. Individual tissues AAACTAGGATTAGATACCCTATTAT-3Ј; 12SBI-re- were Þrst rinsed with phosphate-buffered saline (pH verse, 5Ј-AAGAGCGACGGGCGATGTGT-3Ј) were 7.4) to avoid contamination between tissues and were used to amplify a cDNA fragment of insect mtDNA (of then processed for DNA extraction as described Ϸ400 bp) (Simon et al. 1991). This primer pair served above. The presence of Wolbachia in tissues was dem- as a control to assess the quality of the template DNA onstrated by ampliÞcation of a speciÞc gene fragment extracted from mosquito tissues. In each test, tissues by using the primer pair of wsp 81F/691R (Zhou et al. from Wolbachia-infected and tetracycline-treated 1998). Three replicates have been applied in the de- Armigeres subalbatus (Coquillett) were used as the tection of this study. positive and negative controls, respectively. Primer Pairs Used to Amplify Wolbachia-Specific Genes. Three primer pairs were used to amplify Wol- Results bachia-speciÞc genes in this study. The 99 F/994R primers (99 F, 5Ј-TTG TAG CCT GCT ATG GTA TAA Identification of Wolbachia Infection in Ae. albop- CT-3Ј; 994R, 5Ј-GAA TAG GTA TGA TTT TCA TGT- ictus. Wolbachia infection was deÞnitively demon- 3Ј) were designed from the hypervariable V1 and V6 strated in Ae. albopictus by checking ovaries through regions of the 16S rRNA gene of Wolbachia pipiens; a series of gene ampliÞcations with various primer from which we anticipated to obtain a 900-bp cDNA pairs, including the universal Wolbachia-speciÞc 16S fragment (OÕNeill et al.
Recommended publications
  • Cezzial ...Of Anophezes
    Mosquito Systematics Vol. 18(l) 1986 THE MOSQUITO FAUNA OF THE RYUKYU ARCHIPELAGO WITH IDENTIFICATION KEYS, PUPAL DESCRIPTIONS AND NOTES ON BIOLOGY, MEDICAL IMPORTANCE AND DISTRIBUTION* TAKAKO TOMA AND ICHIRO MIYAGI** CONTENTS Abstract. ...................................................... Introduction. ................................................... Place and method. .............................................. Morphology and terminology. .................................... Keys to genera of Culicidae in the Ryukyu Archipelago. ......... Keys to subgenera of AnopheZes. ............................. ..l 1 Keys to species of AnopheZes (CeZZiaL ........................ 11 Keys to species of AnopheZes (AnopheZesl. ................... ..ll Keys to species of Toxorhynchites. .......................... ..lZ Keys to subgenera of Uranotaenia. ........................... ..13 Keys to species of Uranotaenia Wranotaenial. ............... ..13 Keys to species of Uranotaenia (PseudoficaZbial. ............ ..13 Keys to species of CoquCZZettidia. .......................... ..I 4 Keys to species of Mmomyia (BtorZeptiomyiaL ............... ..15 Keys to subgenera of Aedes. ................................. ..15 Keys to species of Aedes (FinZayaL ......................... ..I 7 Keys to species of Aedes (VerraZZinaL ...................... ..18 Keys to species of Aedes (StegomyiaL ....................... ..18 2 Keys to subgenera of CuZex. .................................. .1g Key to species of CuZex hhtziaL ............................. 21 Keys to
    [Show full text]
  • A Checklist of Mosquitoes (Diptera: Pondicherrx India with Notes On
    Journal of the American Mosquito Control Association, ZO(3):22g_232,2004 Copyright @ 20M by the American Mosquito Control Association, Inc. A CHECKLIST OF MOSQUITOES (DIPTERA: CULICIDAE) OF PONDICHERRX INDIA WITH NOTES ON NEW AREA RECORDS A. R. RAJAVEL, R. NATARAJAN AND K. VAIDYANATHAN Vector Control Research Centre (ICMR), pondicherry 6O5 0O6, India ABSTRACT A checklist of mosquito species for Pondicherry, India, is presented based on collections made from November 1995 to September 1997. Mosquitoes of 64 species were found belonging to 23 subgenera and 14 genera, Aedeomyia, Aedes, Anopheles, Armigeres, Coquitlettidia, Culex, Ficalbia,- Malaya, Maisonia, Mi- momyia, Ochlerotatus, Toxorhynchites, {lranotaenia, and Verrallina. We report 25 new speciLs for pondicherry. KEY WORDS Mosquitoes, check list, new area records, pondicherry, India INTRODUCTION season. The period from December to February is Documentation of species is a critically impor- relatively cool. tant component of biodiversity studies and has great significance in conservation of genetic re- MATERIALS AND METHODS sources as well as control of pests and vectors. In India, mosquito fauna of several states has been Mosquito surveys were made from November documented, but comprehensive information on 1995 to September 1997 . Each of the 6 communes, species diversity is not available for Pondicherry. Ariankuppam, Bahour, Mannadipet, Nettapakkam, A recent update on the distribution of Aedini mos- Ozhukarai, and Villianur, were considered as dis- quitoes in India by Kaur (2003) included all the tinct units to ensure complete coverage of the re- states except Pondicheny. The 14 species of mos- gion, and collections were made in a total of 97 quitoes collected by Nair (1960) during the filarial villages among these and in the old town of Pon- survey in Pondicherry settlement is the earliest dicherry.
    [Show full text]
  • Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart, Didier Fontenille, Nil Rahola, Sony Yean, Sébastien Boyer
    Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart, Didier Fontenille, Nil Rahola, Sony Yean, Sébastien Boyer To cite this version: Pierre-Olivier Maquart, Didier Fontenille, Nil Rahola, Sony Yean, Sébastien Boyer. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite, EDP Sciences, 2021, 28, pp.60. 10.1051/parasite/2021056. hal-03318784 HAL Id: hal-03318784 https://hal.archives-ouvertes.fr/hal-03318784 Submitted on 10 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Parasite 28, 60 (2021) Ó P.-O. Maquart et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021056 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart1,* , Didier Fontenille1,2, Nil Rahola2, Sony Yean1, and Sébastien Boyer1 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia 2 MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France Received 25 January 2021, Accepted 4 July 2021, Published online 10 August 2021 Abstract – Between 2016 and 2020, the Medical and Veterinary Entomology unit of the Institut Pasteur du Cambodge collected over 230,000 mosquitoes.
    [Show full text]
  • Wolbachia Infection in Wild Mosquitoes (Diptera: Culicidae
    Ding et al. Parasites Vectors (2020) 13:612 https://doi.org/10.1186/s13071-020-04466-8 Parasites & Vectors RESEARCH Open Access Wolbachia infection in wild mosquitoes (Diptera: Culicidae): implications for transmission modes and host-endosymbiont associations in Singapore Huicong Ding†, Huiqing Yeo† and Nalini Puniamoorthy* Abstract Background: Wolbachia are intracellular bacterial endosymbionts found in most insect lineages. In mosquitoes, the infuence of these endosymbionts on host reproduction and arboviral transmission has spurred numerous stud- ies aimed at using Wolbachia infection as a vector control technique. However, there are several knowledge gaps in the literature and little is known about natural Wolbachia infection across species, their transmission modes, or associations between various Wolbachia lineages and their hosts. This study aims to address these gaps by exploring mosquito-Wolbachia associations and their evolutionary implications. Methods: We conducted tissue-specifc polymerase chain reaction screening for Wolbachia infection in the leg, gut and reproductive tissues of wild mosquitoes from Singapore using the Wolbachia surface protein gene (wsp) molecu- lar marker. Mosquito-Wolbachia associations were explored using three methods—tanglegram, distance-based, and event-based methods—and by inferred instances of vertical transmission and host shifts. Results: Adult mosquitoes (271 specimens) representing 14 genera and 40 species were screened for Wolbachia. Overall, 21 species (51.2%) were found positive for Wolbachia, including fve in the genus Aedes and fve in the genus Culex. To our knowledge, Wolbachia infections have not been previously reported in seven of these 21 species: Aedes nr. fumidus, Aedes annandalei, Uranotaenia obscura, Uranotaenia trilineata, Verrallina butleri, Verrallina sp. and Zeugno- myia gracilis.
    [Show full text]
  • Research Article
    z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 9, Issue, 02, pp.47060-47072, February, 2017 ISSN: 0975-833X RESEARCH ARTICLE MOLECULAR PHYLOGENETICS OF GLOBAL AND INDIAN MOSQUITO SPECIES IN TERMS OF BIOINFORMATICS AND BIOSTATISTICS *,1Divya Damodaran, 1Dr. Sudarsanam, D., 1Maria Infanshia Sajini, 1Vasantha Suppriya, 1Joel Singh, D. and 2Siddhardha Solosan 1Department of Advanced Zoology and Biotechnology, Loyola College, University of Madras, Chennai 2Govt .PHC, Medavakkam, Chennai-600100 ARTICLE INFO ABSTRACT Article History: Recent studies on DNA-based approaches show a promising trend in the rapid description of Received 20th November, 2016 biodiversity. Traditional morphology-based assessments are timeconsuming and require specialists Received in revised form whose numbers are insufficient and dwindling. A DNA-based method called DNA barcoding has 14th December, 2016 been proposed as a rapid means of cataloguing species. Hebert et al., (2003) specifically suggest the Accepted 16th January, 2017 employment of DNA sequences as taxon ‘barcode’s and propose that the mitochondrial gene Published online 28th February, 2017 cytochrome oxidase I (COI) serves as the core of a global bio identification system for animals. The unique contribution of DNA barcoding to mosquito taxonomy and systematic is a compressed Key words: timeline for the exploration and analysis of biodiversity. According to Knowlton and Weigt (1998) among the mitochondrial genes, cytochrome oxidase subunit 1 (COI) is to be the most conserved gene DNA barcoding, in the amino acid sequences and hence has distinct advantage for taxonomic studies. The Bioinformatics, morphological identification keys used currently for identification of mosquitoes are mainly related to Phylogenetic analysis, imaginal and fourth instars only.
    [Show full text]
  • TRIP REPORT Richard F. Darsie, Jr., Ph.D. and Shreedhar P. Pradhan
    Vector Biology & Control Proiect Telex 248812 (MSCi UR) 1611 North Kent Street, Suite 503 Cable MSCI Washington, D.C. Arlington, Virginia 22209 (703) 527-6500 & VECTOR BIOLOGY & CONTROL TRIP REPORT A VISIT TZ- USAID/NEPAL TO STUDY AND IDENTIFY CULICINE FAUNA NOVEMBER 1'i - DECEMBER 27, 1987 by Richard F. Darsie, Jr., Ph.D. and Shreedhar P. Pradhan, H.F.P. AR-061 Managed by Medical Service Corporation International under contract to the US. Ager.cy for International Development Authors Richard F. Darsie, Jr., Ph.D., is a Research Entomologist at The International Center for Public Health Research, University of South Carolina, McClellanville, South Carolina. Shreedhar P. Pradhan, H.F.P., is a Long-Term Malaria Advisor for USAID/Kathmandu. Acknowledgements Preparation of this document was sponsored by the Vector Biology & Control Project under Contract No. DPE-5948-C-00-5044­ 00 to Medical Service Corporation International, Arlington, Virginia, U.S.A., for the Agency for International Development, Office of Health, Bureau of Science and Technology. The authors are indebted to Dr. David Calder for his foresight in fostering the study and his encouragement, to Dr. K.M. Dixit, Chief, NMEO, and R.G. Baidya, Chief, Entomology Section, NMEO, for assigning the entomological team, K. Kadaka, H.P. Poudyal and N.P. Shrestha, for their assistance and diligence in searching for mosquitoes; to P. Xarna and A. Singh for providing accommodations for the study; to N.K. Gurung for assistance in the use of the piggeries, and to M. Chamlin for logistical support. TABLE OF CONTENTS I. INTRODUCTION 1 A.
    [Show full text]
  • Contributions to the Mosquito Fauna of Southeast Asia II
    ILLUSTRATED KEYS TO THE GENERA OF MOSQUITOES1 BY Peter F. Mattingly 2 INTRODUCTION The suprageneric and generic classification adopted here follow closely the Synoptic Catalog of the Mosquitoes of the World (Stone et al. , 1959) and the various supplements (Stone, 1961, 1963, 1967,’ 1970). Changes in generic no- menclature arising from the publication of the Catalog include the substitution of Mansonia for Taeniorhynchus and Culiseta for Theobaldiu, bringing New and Old World practice into line, the substitution of Toxorhynchites for Megarhinus and MaZaya for Harpagomyia, the suppression of the diaeresis in Aties, A&deomyia (formerly Atiomyia) and Paraties (Christophers, 1960b) and the inclusion of the last named as a subgenus of Aedes (Mattingly, 1958). The only new generic name to appear since the publication of the Catalog is Galindomyiu (Stone & Barreto, 1969). Mimomyia, previously treated as a subgenus of Ficalbia, is here treated, in combination with subgenera Etorleptiomyia and Rauenulites, as a separate genus. Ronderos & Bachmann (1963a) proposed to treat Mansonia and Coquillettidia as separate genera and they have been fol- lowed by Stone (1967, 1970) and others. I cannot accept this and they are here retained in the single genus Mansonia. It will be seen that the treatment adopted here, as always with mosquitoes since the early days, is conservative. Inevitably, therefore, dif- fictiIties arise in connection with occasional aberrant species. In order to avoid split, or unduly prolix, couplets I have preferred, in nearly every case, to deal with these in the Notes to the Keys. The latter are consequently to be regarded as very much a part of the keys themselves and should be constantly borne in mind.
    [Show full text]
  • Redescription of the Immature Stages and Male Genitalia of Topomyia (Topomyia) Gracilis Leicester, 1908 (Diptera: Culicidae) from Malaysia and Indonesia
    〔Med. Entomol. Zool. Vol. 68 No. 1 p. 11‒18 2017〕 11 DOI: 10.7601/mez.68.11 Redescription of the immature stages and male genitalia of Topomyia (Topomyia) gracilis Leicester, 1908 (Diptera: Culicidae) from Malaysia and Indonesia Ichiro Miyagi*, 1), 2), Takako Toma1), 2), Takao Okazawa 3), Siew Fui Wong 4) and Moi Ung Leh4) * Corresponding author: [email protected] 1) University Museum (Fujukan), University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903‒0213, Japan 2) Laboratory of Mosquito Systematics of Southeast Asia and Pacic, c/o Ocean Health Corporation, 4‒21‒11 Iso, Urasoe, Okinawa 901‒2132, Japan 3) Department of Parasitology, Graduate School of Medical Science, Kanazawa University, Takaramachi, Kanazawa, Ishikawa 920‒8640, Japan 4) Sarawak Museum Department, 93566, Kuching, Sarawak, Malaysia (Received: 11 October 2016; Accepted: 27 December 2016) Abstract: The pupa and larva of Topomyia (Topomyia) gracilis Leicester are described and illustrated for the first time based on specimens collected from Sarawak and Selangor, Malaysia and Bali Is., Indonesia. The male genitalia was also illustrated. The larvae of this species usually breed in the water accumulation of leaf axils (or phytotelmata) of taro plants (Alocasia and Colocasia), wild and domestic bananas (Musa spp.) and Pandanus sp. in semi-domestic environments from coastal plains to mountain forests. Key words: Topomyia gracilis, redescription, male genitalia, immature stages, Malaysia, Indonesia University, Japan. Introduction Materials and Methods Topomyia (Topomyia) gracilis is one of the common mosquitoes in Malaysia and neighboring countries. Individual rearings are essential to establish The larva is found in the leaf axils (=phytotelmata) correlations between the immature and the adults and of many kinds of herbal and ornamental plants between the two sexes of the adults (Belkin, 1962).
    [Show full text]
  • Dynamics of Wolbachia on Malaysian Aedes Albopictus with Reference to Dengue Virus
    DYNAMICS OF WOLBACHIA ON MALAYSIAN AEDES ALBOPICTUS WITH REFERENCE TO DENGUE VIRUS SYLVIA JOANNE A/P LAURENCE Malaya of FACULTY OF MEDICINE UNIVERSITY OF MALAYA KUALA LUMPUR University 2016 DYNAMICS OF WOLBACHIA ON MALAYSIAN AEDES ALBOPICTUS WITH REFERENCE TO DENGUE VIRUS SYLVIA JOANNE A/P LAURENCE THESIS SUBMITTED IN FULLFILMENTMalaya OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHYof FACULTY OF MEDICINE UNIVERSITY OF MALAYA KUALA LUMPUR University 2016 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate : SYLVIA JOANNE A/P LAURENCE Registration / Matric No.: MHA 140009 Name of Degree : DOCTOR OF PHILOSOPHY Title of Project Paper / Research Report/Dissertation/Thesis (“this Work”): DYNAMICS OF WOLBACHIA ON MALAYSIAN AEDES ALBOPICTUS WITH REFERENCE TO DENGUE VIRUS Field of Study : MEDICAL ENTOMOLOGY I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in thisMalaya Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shallof be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • A Synopsis of the Philippine Mosquitoes
    A SYNOPSIS OF THE PHILIPPINE MOSQUITOES Richard M. Bohart, Lieutenant Cjg), H(S), USER U. S. NAVAL MEDICAL RESEARCH UNIT # 2 NAVMED 580 \ L : .; Page 7 “&~< Key to‘ tie genera of Phil ippirremosquitoes ..,.............................. 3 ,,:._q$y&_.q_&-,$++~g‘ * Genus Anophek-~.................................................................... 6 , *fl&‘ - -<+:_?s!; -6 cienu,sl$&2g~s . ..*...*......**.*.~..**..*._ 24 _, ,~-:5fz.ggj‘ ..~..+*t~*..~ir~~...****...*..~*~...*.~-*~~‘ ,Gepw Topomyia ....................... &_ _,+g&$y? Gelius Zeugnomyia ................................................................ - _*,:-r-* 2 .. y.,“yg-T??5 rt3agomvia............................................................... <*gf-:$*$ . ..*......*.......................................*.....*.. Genus Hodgesia. ..*..........................................**.*...* * us Uranotaenia . ..*.*................ rrr.....................*.*_ _ _ Genus &thopodomyia . ...*.... Genus Ficalbia, ..................................................................... Mansonia ................................................................... Geng Aedeomyia .................................................................. Genus Heizmannia ................................................................ Genus Armigeres ................................................................. Genus Aedes ........................................................................ Genus Culex . ...*.....*.. 82, _. 2 y-_:,*~ Literat6iZZted. ...*........................*....=.. I . i-I-I
    [Show full text]
  • Checklist of the Mosquito Fauna (Diptera, Culicidae) of Cambodia
    Parasite 28, 60 (2021) Ó P.-O. Maquart et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021056 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart1,* , Didier Fontenille1,2, Nil Rahola2, Sony Yean1, and Sébastien Boyer1 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia 2 MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France Received 25 January 2021, Accepted 4 July 2021, Published online 10 August 2021 Abstract – Between 2016 and 2020, the Medical and Veterinary Entomology unit of the Institut Pasteur du Cambodge collected over 230,000 mosquitoes. Based on this sampling effort, a checklist of 290 mosquito species in Cambodia is presented. This is the first attempt to list the Culicidae fauna of the country. We report 49 species for the first time in Cambodia. The 290 species belong to 20 genera: Aedeomyia (1 sp.), Aedes (55 spp.), Anopheles (53 spp.), Armigeres (26 spp.), Coquillettidia (3 spp.), Culex (57 spp.), Culiseta (1 sp.), Ficalbia (1 sp.), Heizmannia (10 spp.), Hodgesia (3 spp.), Lutzia (3 spp.), Malaya (2 spp.), Mansonia (5 spp.), Mimomyia (7 spp.), Orthopodomyia (3 spp.), Topomyia (4 spp.), Toxorhynchites (4 spp.), Tripteroides (6 spp.), Uranotaenia (27 spp.), and Verrallina (19 spp.). The Cambodian Culicidae fauna is discussed in its Southeast Asian context. Forty-three species are reported to be of medical importance, and are involved in the transmission of pathogens. Key words: Taxonomy, Mosquito, Biodiversity, Vectors, Medical entomology, Asia.
    [Show full text]
  • Non-Anopheline Mosquitoes of Taiwan: Annotated Catalog and Bibliography1
    Pacific Insects 4 (3) : 615-649 October 10, 1962 NON-ANOPHELINE MOSQUITOES OF TAIWAN: ANNOTATED CATALOG AND BIBLIOGRAPHY1 By J. C. Lien TAIWAN PROVINCIAL MALARIA RESEARCH INSTITUTE2 INTRODUCTION The studies of the mosquitoes of Taiwan were initiated as early as 1901 or even earlier by several pioneer workers, i. e. K. Kinoshita, J. Hatori, F. V. Theobald, J. Tsuzuki and so on, and have subsequently been carried out by them and many other workers. Most of the workers laid much more emphasis on anopheline than on non-anopheline mosquitoes, because the former had direct bearing on the transmission of the most dreaded disease, malaria, in Taiwan. Owing to their efforts, the taxonomic problems of the Anopheles mos­ quitoes of Taiwan are now well settled, and their local distribution and some aspects of their habits well understood. However, there still remains much work to be done on the non-anopheline mosquitoes of Taiwan. Nowadays, malaria is being so successfully brought down to near-eradication in Taiwan that public health workers as well as the general pub­ lic are starting to give their attention to the control of other mosquito-borne diseases such as filariasis and Japanese B encephalitis, and the elimination of mosquito nuisance. Ac­ cordingly extensive studies of the non-anopheline mosquitoes of Taiwan now become very necessary and important. Morishita and Okada (1955) published a reference catalogue of the local non-anophe­ line mosquitoes. However the catalog compiled by them in 1955 was based on informa­ tion obtained before 1945. They listed 34 species, but now it becomes clear that 4 of them are respectively synonyms of 4 species among the remaining 30.
    [Show full text]