WO 2016/054079 Al 7 April 2016 (07.04.2016) P O P C T
Total Page:16
File Type:pdf, Size:1020Kb
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/054079 Al 7 April 2016 (07.04.2016) P O P C T (51) International Patent Classification: (74) Agents: WADEKAR, Suhrid et al; Goodwin Procter G01N 21/359 (2014.01) A61B 5/1495 (2006.01) LLP, Exchange Place, Boston, MA 02109 (US). A61B 5/145 (2006.01) A61B 5/024 (2006.01) (81) Designated States (unless otherwise indicated, for every A61B 5/00 (2006.01) A61B 5/1455 (2006.01) kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, PCT/US20 15/052999 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 29 September 2015 (29.09.201 5) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (25) Filing Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (30) Priority Data: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 62/057,103 29 September 2014 (29.09.2014) US (84) Designated States (unless otherwise indicated, for every 62/057,496 30 September 2014 (30.09.2014) US kind of regional protection available): ARIPO (BW, GH, (71) Applicant: ZYOMED CORP. [US/US]; Business Tech GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, nology Center, 2400 Lincoln Avenue, Suite 156, Altadena, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, CA 91001 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors: GULATI, Sandeep; 5467 La Forest Drive, La LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Canada, CA 9101 1 (US). RUCHTI, Tomothy, L.; 543 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Old Walnut Circle, Gurnee, IL 6003 1 (US). ANTWERP, GW, KM, ML, MR, NE, SN, TD, TG). William, Van; 26833 Pinehurst Drive, Valencia, CA 91355 (US). SMITH, John, L.; 9042 Nw Murdock Street, Published: Portland, OR 97229 (US). — with international search report (Art. 21(3)) [Continued on next page] (54) Title: SYSTEMS AND METHODS FOR BLOOD GLUCOSE AND OTHER ANALYTE DETECTION AND MEASURE MENT USING COLLISION COMPUTING (57) Abstract: In a non-invasive system for detection/measurement of gluc ose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain fre quency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The con ditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amp lify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector I curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without need ing personalized calibration. j © , © v o o w o 2016/054079 A llll II II 11III III III I II II III I III II I II before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) SYSTEMS AND METHODS FOR BLOOD GLUCOSE AND OTHER ANALYTE DETECTION AND MEASUREMENT USING COLLISION COMPUTING Cross-Reference to Related Applications [0001] This application claims benefit of priority to U.S. Provisional Patent Application Ser. No. 62/057,103 entitled “A System and Method for Generating Feature Sets Using Tomographic Spectroscopy, for Analyte Detection,” filed on September 29, 2014; and to U.S. Provisional Patent Application Ser. No. 62/057,496 entitled “Non-Invasive Glucose Monitoring,” filed on September 30, 2014, the contents of each of which are incorporated herein by reference in their entirety. Field of the Invention [0002] In general, this disclosure relates to a system for detecting and/or quantifying the presence of very small amounts of material, the property or concentration of a material, or changes in the amount or properties of the material, or an event or anomaly of interest and, in one example, specifically to a system that performs measurement of biochemical analytes using diffuse reflectance tomographic spectroscopy in conjunction with collision computing. Background [0003] The measurement of substances at extremely low concentrations in complex samples has absorbed the efforts of chemists for centuries. Modern spectroscopic techniques, which allow measurement of substances at parts-per-million (ppm) or even parts-per-billion (ppb) concentrations, have revolutionized this field and allowed the detection and measurement of naturally-occurring materials such as hormones, contaminating substances such as mercury, and pollutants such as atmospheric sulfur dioxide at levels far below those achieved using earlier methods of analysis. The direct measurement of many important substances in human tissue, however, has not been as successfully accomplished, and many other measurements where the substance to be measured is at a low concentration cannot be made accurately in a high noise and/or high clutter environment. One particularly challenging problem concerns the management of diabetes. [0004] Diabetes is a condition in which the body s natural control of blood sugar (glucose) has been lost. Insulin is a hormone that is secreted by the pancreas that works with the body to process blood sugar. Typically, diabetes is caused by some problem with the body’s ability to create or use insulin. Diabetes occurs in different medical conditions: type 1 diabetes (previously known as “juvenile diabetes”), type 2 (“adult onset”) diabetes, and gestational diabetes (a complication of pregnancy). In type 1 diabetes, the patient’s pancreas is no longer able to produce insulin at normal rates, while in type 2 and gestational diabetes, a patient’s cells are not able to properly utilize insulin. Some patients with type 2 or gestational diabetes can treat their conditions using diet, exercise, or a variety of pharmaceutical preparations. All patients with type 1 diabetes (and many with type 2, especially of longer duration) typically must control the disease with injections or infusions of insulin. [0005] A body’s normal creation and processing of insulin generally varies over the course of the day depending on a variety of factors, including when and what a person eats, whether that person is exercising, and the time of day. This variation in normal insulin production usually serves to maintain safe glucose levels in the body. If diabetes is left untreated, the complications that can arise can be extremely serious. In the absence of insulin, glucose in the blood can reach dangerously high levels. Extended periods of high blood glucose levels (“hyperglycemia”) can lead to a condition known as ketoacidosis, which, if untreated, can be fatal. Chronic poor control of glucose levels can also cause serious long-term complications, which include eye damage (resulting in blindness), kidney damage, cardiovascular disease, loss of feeling in the extremities, and slow healing of wounds. Frequently, diabetes may require amputations of toes, feet or legs. If blood glucose levels are allowed to drop below a threshold value (generally 50-60 milligrams per deciliter), the person can be in acute danger from this “hypoglycemia,” which can cause confusion, difficulty speaking, unconsciousness, and coma. [0006] To allow better information and control, blood glucose measurement systems that can be used by individual users have been developed. These blood glucose measurement systems typically require the use of an electronic meter and disposable test strips. A test strip is inserted into the meter, and the user pricks himself or herself (usually on a finger) with a lancet to draw a small amount of blood which is applied to the test strip. The blood glucose meter, using one of a variety of analysis techniques, determines the amount of glucose in the small blood sample drawn from the user. However, because of the pain involved in lancing a body part to draw blood, the need to dispose of materials contaminated with blood, and the visibility and potential embarrassment of testing using conventional blood glucose monitoring systems, many investigators have tried to develop technologies that allow measurement of blood glucose without drawing blood or causing discomfort. These technologies have been termed “noninvasive” blood glucose measurement systems, or simply “noninvasive glucose.” [0007] For example, U.S. Patent No. 4,655,225, issued to Dähne et al., with a filing date of April 18, 1985, appears to describe a relatively simple approach to measuring glucose in tissue. This patent states at column 1, lines 8 through 18: “This determination is carried out by measuring the optical near infrared absorption of glucose in regions of the spectrum where typical glucose absorption bands exist and computing the measured values with reference values obtained from regions of the spectrum where glucose has no or little absorption and where the errors due to background absorptions by the constituents of the surrounding tissues or blood containing the glucose are of reduced significance or can be quantitatively compensated.” When investigators eventually determined that no regions of the near-infrared NIR spectrum meeting these criteria could be found, they employed advanced techniques, augmented with sophisticated modifications to the instrumentation and complicated mathematical treatments.