Dual-Specificity Phosphatase DUSP6 Has Tumor-Promoting Properties In

Total Page:16

File Type:pdf, Size:1020Kb

Dual-Specificity Phosphatase DUSP6 Has Tumor-Promoting Properties In Oncogene (2011) 30, 3813–3820 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc SHORT COMMUNICATION Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas S Messina1,2, L Frati1, C Leonetti3, C Zuchegna4,5, E Di Zazzo4, A Calogero6 and A Porcellini5 1Department of Pathology, IRCCS Neuromed, Pozzilli, Italy; 2Department of Health and Motor Sciences, University of Cassino, Cassino, Italy; 3Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Rome, Italy; 4Department of Health Sciences, University of Campobasso, Campobasso, Italy; 5Department of Structural and Functional Biology, Federico II University of Naples, Naples, Italy and 6Department of Medical and Surgical Sciences and Biotecnology, Sapienza University of Rome, Rome, Italy Dual-specificity phosphatase 6 (DUSP6, mitogen-acti- signaling by dephosphorylating components of the vated protein kinase (MAPK) phosphatase 3 or PYST1) MAPK cascade. DUSPs are typically negative feedback dephosphorylates phosphotyrosine and phosphothreonine regulators of MAPK activity that become transcription- residues on extracellular signal-regulated kinase (ERK1/ ally induced after stress or mitogenic stimulation; this 2; MAPK1/2) to inactivate the ERK1/2 kinase. DUSP6 is leads to early production of proteins that inactivate a critical regulator of the ERK signaling cascade and has MAPKs within 20–40 min (Owens and Keyse, 2007). been implicated as a tumor suppressor. We report here Importantly, some DUSPs may provide biomarkers of experimental evidences that DUSP6 is transcriptionally therapeutic responsiveness and patient outcome in upregulated in primary and long-term cultures of human specific cancers, as well as DUSP1 and DUSP2 in glioblastoma, as assayed by northern hybridization and different type of cancers (reviewed in Patterson et al., real-time quantitative PCR, producing constitutive high 2009). level of protein expression. Functional assays were performed DUSP6 is a cytoplasmic member of this family that with adenovirus-mediated expression of DUSP6 in glio- has been implicated in the development of cancer. blastoma cultures. Protein overexpression inhibits growth by Pancreatic cancer cells progress towards a more inducing G1-phase delay and increased mitogenic/anchorage aggressive and invasive phenotype, following loss of dependence and clonogenic potential in vitro. Changes in cell DUSP6 expression (Furukawa et al., 2003, 2005). morphology were associated with an increased tumor growth Overexpression of DUSP6 in estrogen receptor-positive in vivo. Chemoresistance is a major cause of treatment failure breast cancer cells confers resistance to the growth and poor outcome in human glioblastomas. Importantly, inhibitory effects of tamoxifen (Cui et al., 2006) and its DUSP6 overexpression increased resistance to cisplatin- expression is strongly upregulated in HER2-positive mediated cell death in vitro and in vivo.Antisense-mediated breast tumors (Lucci et al., 2010). Moreover, DUSP6 depletion of DUSP6 acted in lowering the threshold to is part of a high-risk signature gene for non-small cell anticancer DNA-damaging drugs. We conclude that upregu- lung cancer (Chen et al., 2007), and its expression is lation of DUSP6 exerts a tumor-promoting role in human significantly correlated with high extracellular signal- glioblastomas exacerbating the malignant phenotype. regulated kinase (ERK) 1/2 activity in primary human Oncogene (2011) 30, 3813–3820; doi:10.1038/onc.2011.99; ovarian cancer cells (Chan et al.,2008).Remarkably,in published online 18 April 2011 human glioblastoma cells DUSP6 gene was induced upon platelet-derived growth factor (PDGF) stimulation Keywords: glioblastoma; dual-specificity phosphatase; (Tullai et al., 2004). Moreover, DUSP6 can be upregu- tumor promoting lated in specific cancers exhibiting aberrant receptor tyrosine kinase and Ras/Raf signaling, such as non-small cell lung cancer, potentially as a negative-feedback regulator of mitogenic signaling (Sato et al.,2006). Introduction Although the DUSP6 gene is a potential tumor- suppressor in some cancers (Furukawa et al., 2003, Dual-specificity phosphatases (DUSPs) negatively 2005; Okudela et al., 2009; Zhang et al., 2010), here, we regulate mitogen-activated protein kinase (MAPK) show that DUSP6 exerts tumor-promoting properties in glioblastoma cancers. Recently, some papers report that Correspondence: Dr S Messina, Department of Pathology, IRCCS upregulation of tumor suppressor genes might promote Neuromed, via Atinense, 18, Pozzilli, Isernia 86077, Italy. the malignant phenotype of cancer cells (Hong et al., E-mail: [email protected] or Professor A Porcellini, 2007). This split of personality was recently documented Department of Structural Biology, School of Biology, Federico II for PTEN and IDH1 genes in glioblastoma cancers University of Naples, Naples, Italy. E-mail: [email protected] (Li et al., 2008; Yan et al., 2009). Indeed, particular Received 8 September 2010; revised 3 February 2011; accepted 21 DUSPs may have contradicting roles in different tumor February 2011; published online 18 April 2011 types, such as DUSP1, that increased or decreased its DUSP6 regulation and function in glioblastoma cancer cells S Messina et al 3814 expression in different type of cancers, depending on the cultures of human glioblastoma, producing constitutive stage of carcinogenesis (reviewed in Patterson et al., high level of protein expression. Functional assays were 2009). performed with adenovirus-mediated expression of Glioblastoma multiforme is the most aggressive and DUSP6 in glioblastoma cultures. Protein overexpression frequent subtype of glioma, and shows very little inhibits growth by inducing G1-phase delay and response to chemotherapy (Maher et al., 2001). Re- inducing cell flattening that was associated with an cently, members of the DUSP family, such as DUSP26 increased tumor growth in vivo and inhibition of and DUSP4, have been involved in determining the epidermal growth factor (EGF)-detachment in vitro. malignant phenotype of glioblastomas (Tanuma et al., Finally, DUSP6 overexpression decreases tumor cell 2009; Waha et al., 2010). sensitivity to anticancer DNA-damaging cisplatin, We report here experimental evidence that DUSP6 is indicating that DUSP6 may function as a tumor transcriptionally upregulated in primary and long-term promoter in these cancers. Oncogene DUSP6 regulation and function in glioblastoma cancer cells S Messina et al 3815 Results and discussion major isoform in peripheral blood lymphocytes and, to a lesser extent, in normal human astrocytes. In human In order to establish differences in the expression of glioblastomas, in contrast, the shorter transcript was DUSP6 between normal and tumor cells, we first only induced by mitogenic stimulation. To determine analyzed the mRNA levels of DUSP6 by northern blot whether DUSP6 protein levels correlate with transcript and quantitative real-time PCR analysis in short- levels in human glioblastoma cultures, we performed passage cultures (FCN, MTR and MZC) (Calogero biochemical analysis by western blot. Immunoblots et al., 2004) and long-term human glioblastomas on cytosolic fraction showed negligible immuno- (U87MG and variants U87MGvEGFRIII, and kinase- reactivity of endogenous DUSP6 using commercial deficient U87MGDK) (Figure 1a). Comparing the antibodies, as reported previously (Mark et al., 2008). neoplastic cells with the normal counterpart (normal Next, we probed immunoblot membranes with a rabbit human astrocytes), we observed an increased expression polyclonal antibody (generated by Dr Lennartson) of DUSP6 (three- to sixfold) at baseline that increased against DUSP6, which recognizes a protein of 45 kDa upon mitogenic stimulation (Figure 1a, lower panel). (Figure 1c). Importantly, this antibody recognized Consistently, gene expression studies revealed DUSP6 constitutive high levels of endogenous DUSP6 as upregulation (mean fold changes: 3.14) in human multiple bands, probably due to various phosphoryla- astrocytic brain tumors compared with normal brain tion states (Dr Lennartson’s personal communication tissue (Petalidis et al., 2008). All cells were serum- and Figure 2d). starved overnight and stimulated with 100 ng/ml of EGF Functional assays were performed to focus on the for 3 h. Despite some fluctuation monitored, northern implication of DUSP6 overexpression in glioblastoma hybridization of non-neoplatic cells (unstimulated cul- cancers. In vitro assays were performed with replication- tures of murine pheochromocytoma PC12 cells, mouse deficient adenoviral vector harboring murine sense, fibroblasts NIH-3T3 and normal human astrocytes) antisense and C293S mutant DUSP6 (Muda et al., showed basal negligible mRNA levels and powerful 1996; Kim et al., 1996). The plasmid coding for murine induction of DUSP6 mRNA upon mitogenic stimula- DUSP6 includes a COOH-terminal myc-tag cloned in tion (Figure 1a, upper panel). As observed by Marchetti pAdTRK-CMV adenoviral shuttle in BglII-EcoRV et al. (2005), half-lives of DUSP6 mRNA was less than sites, which contains green fluorescent protein as a 1 h in heterologous expression systems; however, this is tracer (Porcellini and De Blasi, 2004). not the case for native DUSP6 in our system. Following Growth experiments (proliferation, thymidine incor- this line of evidence, we quantified DUSP6 mRNA by poration and cell-cycle analysis) were performed using real-time quantitative PCR in several cultures
Recommended publications
  • Deciphering the Functions of Ets2, Pten and P53 in Stromal Fibroblasts in Multiple
    Deciphering the Functions of Ets2, Pten and p53 in Stromal Fibroblasts in Multiple Breast Cancer Models DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Julie Wallace Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Michael C. Ostrowski, PhD, Advisor Gustavo Leone, PhD Denis Guttridge, PhD Dawn Chandler, PhD Copyright by Julie Wallace 2013 Abstract Breast cancer is the second most common cancer in American women, and is also the second leading cause of cancer death in women. It is estimated that nearly a quarter of a million new cases of invasive breast cancer will be diagnosed in women in the United States this year, and approximately 40,000 of these women will die from breast cancer. Although death rates have been on the decline for the past decade, there is still much we need to learn about this disease to improve prevention, detection and treatment strategies. The majority of early studies have focused on the malignant tumor cells themselves, and much has been learned concerning mutations, amplifications and other genetic and epigenetic alterations of these cells. However more recent work has acknowledged the strong influence of tumor stroma on the initiation, progression and recurrence of cancer. Under normal conditions this stroma has been shown to have protective effects against tumorigenesis, however the transformation of tumor cells manipulates this surrounding environment to actually promote malignancy. Fibroblasts in particular make up a significant portion of this stroma, and have been shown to impact various aspects of tumor cell biology.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Exosome-Mediated MIR211 Modulates Tumor Microenvironment Via the DUSP6-ERK5 Axis and Contributes to BRAFV600E Inhibitor Resistan
    bioRxiv preprint doi: https://doi.org/10.1101/548818; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exosome-mediated MIR211 modulates tumor microenvironment via the DUSP6-ERK5 axis and contributes to BRAFV600E inhibitor resistance in melanoma. Bongyong Lee1,3, Anupama Sahoo3, Junko Sawada1,3, John Marchica1,3, Sanjay Sahoo3, Fabiana I. A. L. Layng4, Darren Finlay4, Joseph Mazar5, Piyush Joshi1, Masanobu Komatsu1,3, Kristiina Vuori4, Garth Powis4, Petrus R. de Jong4, Animesh Ray6,7, and Ranjan J. Perera 1,2,3* 1 Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701 USA 2 Department of Oncology, Sydney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA 3 Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA 4 Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, CA 92037, USA 5 Nemours Children Hospital, Orlando, FL 32827 USA 6 Keck Graduate Institute, Claremont CA 91711 USA, 7 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA. *Correspondence: Ranjan Perera Tel: 1-727-767-3491 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/548818; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The microRNA MIR211 is an important regulator of melanoma tumor cell behavior.
    [Show full text]
  • Efficient Immune Cell Genome Engineering with Improved CRISPR Editing Tools
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947002; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: Efficient Immune Cell Genome Engineering with Improved CRISPR Editing Tools 2 3 Authors: 4 Waipan Chan1,*, Rachel A. Gottschalk1,4, Yikun Yao2, Joel L. Pomerantz3 & Ronald N. Germain1,* 5 6 Affiliation: 7 1Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy 8 and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 9 2Molecular Development of the Immune System Section, Laboratory of Immune System Biology, 10 National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 11 20892 12 3Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins 13 University School of Medicine, Baltimore, MD 21205 14 4Current Address: Department of Immunology, University of Pittsburgh School of Medicine, 15 W1047 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 16 17 *Corresponding authors: [email protected]; [email protected] 18 19 This work was supported by the Intramural Research Program of NIAID, NIH. 20 21 All animal experiments were done in accordance with the guidelines of the NIAID/NIH 22 Institutional Animal Care and Use Committee. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.947002; this version posted February 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Pathognomonic and Epistatic Genetic Alterations in B-Cell Non-Hodgkin
    bioRxiv preprint doi: https://doi.org/10.1101/674259; this version posted June 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Pathognomonic and epistatic genetic alterations in 2 B-cell non-Hodgkin lymphoma 3 4 Man Chun John Ma1¥, Saber Tadros1¥, Alyssa Bouska2, Tayla B. Heavican2, Haopeng Yang1, 5 Qing Deng1, Dalia Moore3, Ariz Akhter4, Keenan Hartert3, Neeraj Jain1, Jordan Showell1, 6 Sreejoyee Ghosh1, Lesley Street5, Marta Davidson5, Christopher Carey6, Joshua Tobin7, 7 Deepak Perumal8, Julie M. Vose9, Matthew A. Lunning9, Aliyah R. Sohani10, Benjamin J. 8 Chen11, Shannon Buckley12, Loretta J. Nastoupil1, R. Eric Davis1, Jason R. Westin1, Nathan H. 9 Fowler1, Samir Parekh8, Maher K. Gandhi7, Sattva S. Neelapu1, Douglas Stewart5, Javeed 10 Iqbal2, Timothy Greiner2, Scott J. Rodig13, Adnan Mansoor5, Michael R. Green1,14,15* 11 1Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD 12 Anderson Cancer Center, Houston, TX, USA; 2Department of Pathology and Microbiology, University of 13 Nebraska Medical Center, Omaha, NE, USA; 3Eppley Institute for Research in Cancer and Allied 14 Diseases, University of Nebraska Medical Center, Omaha, NE, USA; 4Department of Pathology and 15 Laboratory Medicine, University of Calgary, Calgary, AB, Canada; 5Section of Hematology, Department of 16 Medicine, University
    [Show full text]
  • Hypoxia-Induced Downregulation of DUSP-2 Phosphatase Drives Colon
    Author Manuscript Published OnlineFirst on June 26, 2017; DOI: 10.1158/0008-5472.CAN-16-2990 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Hypoxia-induced downregulation of DUSP-2 phosphatase drives colon cancer stemness Pei-Chi Hou1†, Yo-Hua Li1†, Shih-Chieh Lin2, Shau-Chieh Lin3, Jenq-Chang Lee3, Bo-Wen Lin3, Jing-Ping Liou5, Jang-Yang Chang6, Ching-Chuan Kuo4, Yi-Min Liu5, H. Sunny Sun1,7, and Shaw-Jenq Tsai1, 2* 1Institute of Basic Medical Sciences, 2Department of Physiology, 3Department of Surgery, 6Department of Internal Medicine, and 7Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan 4Institute of Biotechnology & Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan 5School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan †: Co-first authors Running title: DUSP2 inhibits cancer stemness Key words: Hypoxia, Dual specificity phosphatase, Cancer Stem Cells, Histone Deacetylase Inihibitor, Prostaglandin E2 Conflict of Interest: The authors declare no potential conflicts of interest. Financial support: This work was supported by National Research Program for Biopharmaceuticals (NSC 101-2325-B-006-017), National Health Research Institute 1 Downloaded from cancerres.aacrjournals.org on September 27, 2021. © 2017 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 26, 2017; DOI: 10.1158/0008-5472.CAN-16-2990 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. (NHRI-EX-102-10244BI), and Top University grant of National Cheng Kung University (D103-35A17).
    [Show full text]
  • Macrophage DUSP3 Genetic Deletion Confers M2-Like
    DUSP3 Genetic Deletion Confers M2-like Macrophage−Dependent Tolerance to Septic Shock This information is current as Pratibha Singh, Lien Dejager, Mathieu Amand, Emilie of September 27, 2021. Theatre, Maud Vandereyken, Tinatin Zurashvili, Maneesh Singh, Matthias Mack, Steven Timmermans, Lucia Musumeci, Emmanuel Dejardin, Tomas Mustelin, Jo A. Van Ginderachter, Michel Moutschen, Cécile Oury, Claude Libert and Souad Rahmouni Downloaded from J Immunol 2015; 194:4951-4962; Prepublished online 15 April 2015; doi: 10.4049/jimmunol.1402431 http://www.jimmunol.org/content/194/10/4951 http://www.jimmunol.org/ References This article cites 35 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/194/10/4951.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology DUSP3 Genetic Deletion Confers M2-like Macrophage–Dependent Tolerance to Septic Shock Pratibha Singh,*,1 Lien Dejager,†,‡,1 Mathieu Amand,*,1 Emilie Theatre,x Maud Vandereyken,* Tinatin Zurashvili,* Maneesh Singh,* Matthias Mack,{ Steven Timmermans,†,‡ Lucia Musumeci,* Emmanuel Dejardin,‖ Tomas Mustelin,#,** Jo A.
    [Show full text]
  • Dual-Specificity Phosphatases in Immunity and Infection
    International Journal of Molecular Sciences Review Dual-Specificity Phosphatases in Immunity and Infection: An Update Roland Lang * and Faizal A.M. Raffi Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany * Correspondence: [email protected]; Tel.: +49-9131-85-22979 Received: 15 May 2019; Accepted: 30 May 2019; Published: 2 June 2019 Abstract: Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins.
    [Show full text]
  • Up-Regulation of DUSP5 and DUSP6 by Gonadotropin-Releasing Hormone in Cultured Hypothalamic Neurons, GT1-7 Cells
    Biomedical Research (Tokyo) 39 (3) 149–158, 2018 Up-regulation of DUSP5 and DUSP6 by gonadotropin-releasing hormone in cultured hypothalamic neurons, GT1-7 cells 1, 2 1 1 2 1 Teruyuki HIGA , Hana TAKAHASHI , Sayomi HIGA-NAKAMINE , Mikio SUZUKI , and Hideyuki YAMAMOTO Departments of 1 Biochemistry, and 2 Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan (Received 29 March 2018; and accepted 11 April 2018) ABSTRACT Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons) and stimulates anterior pituitary gonadotrophs to synthesize and secrete gonadotropins. In addition to gonadotrophs, GnRH neurons also express GnRH receptors, and the autocrine action of GnRH is reportedly involved in the regulation of functions of GnRH neurons. There is accumulating evi- dence that extracellular signal-regulated kinase (ERK), one of mitogen-activated protein kinases (MAPKs), is activated by GnRH and involved in various effects of GnRH in GnRH neurons. In the present study, we performed microarray analysis to examine the types of genes whose expres- sion was regulated by GnRH in immortalized mouse GnRH neurons (GT1-7 cells). We found that 257 genes among 55,681 genes examined were up-regulated after 30-min treatment of GT1-7 cells with GnRH. These up-regulated genes included four dual-specificity MAPK phosphatases (DUSPs), DUSP1, DUSP2, DUSP5, and DUSP6. Reverse transcription-polymerase chain reaction analysis confirmed that the mRNA levels of DUSP5 and DUSP6 were robustly increased within 30 min. U0126, an inhibitor of ERK activation, completely inhibited the increases in the mRNA levels of DUSP5 and DUSP6.
    [Show full text]
  • Dual-Specificity Phosphatases 2
    Genes and Immunity (2013) 14, 1–6 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene REVIEW Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases WWei1,2, Y Jiao2,3, A Postlethwaite4,5, JM Stuart4,5, Y Wang6, D Sun1 and W Gu2 Dual-specificity phosphatases (DUSPs) is an emerging subclass of the protein tyrosine phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/ phosphothreonine residues within the one substrate. Recently, a series of investigations of DUSPs defined their essential roles in cell proliferation, cancer and the immune response. This review will focus on DUSP2, its involvement in different diseases and its potential as a therapeutic target. Genes and Immunity (2013) 14, 1–6; doi:10.1038/gene.2012.54; published online 29 November 2012 Keywords: dual-specificity phosphatases; disease; mitogen-activated protein kinase; immune INTRODUCTION extracellular stimuli. Inducible nucleuses MKPs include DUSP1, Mitogen-activated protein kinase (MAPK) activation cascades DUSP2, DUSP4 and DUSP5, which originated from a common mediate various physiological processes, such as cell proliferation, ancestral gene. They were shown to dephosphorylate Erks, Jnk differentiation, stress responses, inflammation, apoptosis and and p38 MAPKs to the same extent and to be induced by growth immune defense.1–4 Dysregulation of MAPK activation cascades or stress signals. DUSP6, DUSP7 and DUSP9 are cytoplasmic Erk- has been implicated in various diseases and has been the focus of specific MPKs, which can preferentially recognize Erk1 and Erk2 extensive research.5–7 MAPKs are grouped into three major classes in vitro.
    [Show full text]
  • Dual-Specificity Phosphatase (DUSP6)
    Zuchegna et al. BMC Res Notes (2020) 13:374 https://doi.org/10.1186/s13104-020-05214-y BMC Research Notes RESEARCH NOTE Open Access Dual-specifcity phosphatase (DUSP6) in human glioblastoma: epithelial-to-mesenchymal transition (EMT) involvement Candida Zuchegna1, Erika Di Zazzo2, Bruno Moncharmont2 and Samantha Messina3* Abstract Objective: Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Survival is poor and improved treatment options are urgently needed. Dual specifcity phosphatase-6 (DUSP6) is actively involved in oncogenesis showing unexpected tumor-promoting properties in human glioblastoma, contributing to the develop- ment and expression of the full malignant and invasive phenotype. The purpose of this study was to assess if DUSP6 activates epithelial-to-mesenchymal transition (EMT) in glioblastoma and its connection with the invasive capacity. Results: We found high levels of transcripts mRNA by qPCR analysis in a panel of primary GBM compared to adult or fetal normal tissues. At translational levels, these data correlate with high protein expression and long half-life values by cycloheximide-chase assay in immunoblot experiments. Next, we demonstrate that DUSP6 gene is involved in epithelial-to-mesenchymal transition (EMT) in GBM by immunoblot characterization of the mesenchymal and epithe- lial markers. Vimentin, N-Cadherin, E-Cadherin and fbronectin were measured with and without DUSP6 over-expres- sion, and in response to several stimuli such as chemotherapy treatment. In particular, the high levels of vimentin were blunted at increasing doses of cisplatin in condition of DUSP6 over-expression while N-Cadherin contextually increased. Finally, DUSP6 per se increased invasion capacity of GBM.
    [Show full text]
  • HER2 Therapy in Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 44), pp: 77207-77218 Research Paper DUSP4 is associated with increased resistance against anti- HER2 therapy in breast cancer Otília Menyhart1, Jan Budczies2, Gyöngyi Munkácsy1, Francisco J. Esteva3, András Szabó1, Teresa Puig Miquel4 and Balázs Győrffy1,5 1Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary 2Institute of Pathology, Charité University Hospital, Berlin, Germany 3Clinical Cancer Center, NYU Langone Medical Center, New York, NY, USA 4New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain 5MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary Correspondence to: Balázs Győrffy, email: [email protected] Keywords: DUSP4, targeted therapy, trastuzumab, biomarker, breast cancer Received: March 09, 2017 Accepted: June 27, 2017 Published: August 24, 2017 Copyright: Menyhart et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The majority of patients develop resistance against suppression of HER2-signaling mediated by trastuzumab in HER2 positive breast cancer (BC). HER2 overexpression activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade. MAPK phosphatases (MKPs) are essential regulators of MAPKs and participate in many facets of cellular regulation, including proliferation and apoptosis. We aimed to identify whether differential MKPs are associated with resistance to targeted therapy in patients previously treated with trastuzumab. Using gene chip data of 88 HER2-positive, trastuzumab treated BC patients, candidate MKPs were identified by Receiver Operator Characteristics analysis performed in R.
    [Show full text]