Dual-Specificity Phosphatase (DUSP6)

Total Page:16

File Type:pdf, Size:1020Kb

Dual-Specificity Phosphatase (DUSP6) Zuchegna et al. BMC Res Notes (2020) 13:374 https://doi.org/10.1186/s13104-020-05214-y BMC Research Notes RESEARCH NOTE Open Access Dual-specifcity phosphatase (DUSP6) in human glioblastoma: epithelial-to-mesenchymal transition (EMT) involvement Candida Zuchegna1, Erika Di Zazzo2, Bruno Moncharmont2 and Samantha Messina3* Abstract Objective: Glioblastoma (GBM) is the most aggressive and common form of primary brain cancer. Survival is poor and improved treatment options are urgently needed. Dual specifcity phosphatase-6 (DUSP6) is actively involved in oncogenesis showing unexpected tumor-promoting properties in human glioblastoma, contributing to the develop- ment and expression of the full malignant and invasive phenotype. The purpose of this study was to assess if DUSP6 activates epithelial-to-mesenchymal transition (EMT) in glioblastoma and its connection with the invasive capacity. Results: We found high levels of transcripts mRNA by qPCR analysis in a panel of primary GBM compared to adult or fetal normal tissues. At translational levels, these data correlate with high protein expression and long half-life values by cycloheximide-chase assay in immunoblot experiments. Next, we demonstrate that DUSP6 gene is involved in epithelial-to-mesenchymal transition (EMT) in GBM by immunoblot characterization of the mesenchymal and epithe- lial markers. Vimentin, N-Cadherin, E-Cadherin and fbronectin were measured with and without DUSP6 over-expres- sion, and in response to several stimuli such as chemotherapy treatment. In particular, the high levels of vimentin were blunted at increasing doses of cisplatin in condition of DUSP6 over-expression while N-Cadherin contextually increased. Finally, DUSP6 per se increased invasion capacity of GBM. Overall, our data unveil the DUSP6 involvement in invasive mesenchymal-like properties in GBM. Keywords: Dual-specifcity phosphatase (DUSP6), Glioblastoma, Epithelial-to-mesenchymal transition (EMT) Introduction levels of cellular detachment after stimulation with EGF DUSP6 plays a pro-oncogenic role in cancers such as and an increased propensity to form colonies in soft agar. human glioblastoma, thyroid carcinoma, breast cancer, Surprisingly, mouse xenograft tumors expressing DUSP6 and acute myeloid leukemia [1–4]. Particularly, DUSP6 grew signifcantly faster than controls thus refect- is upregulated in human glioblastoma where its over- ing these changes in cell adhesion and morphology [1]. expression induces reduction in proliferation rate. Cell Moreover, overexpression of DUSP6 has also been iden- morphology exhibits a more fattened appearance, lower tifed in a subset of mouse melanoma cell lines, where it is associated with enhanced anchorage-independent growth and invasive capacity [5] and its overexpression *Correspondence: [email protected]; samantha. in papillary thyroid carcinoma (PTC) is associated with [email protected] 3 Department of Science, Roma Tre University, Viale Guglielmo Marconi increased cell migration and invasion [2, 6]. Finally, in 446, 00146 Rome, Italy acute lymphoblastic leukemia (ALL) DUSP6 acts as pro- Full list of author information is available at the end of the article oncogenic phosphatase in pre-B cell transformation [7]. © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/ zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Zuchegna et al. BMC Res Notes (2020) 13:374 Page 2 of 8 Glioblastoma (GBM) is the most common and malig- cycloheximide-chase assay experiments the cells were nant type of primary brain tumor with relevant invasive treated with 20 µg/mL CHX in complete medium and and resistant properties [8]. Te involvement of epithe- then lysed at the indicated times as described in the fg- lial-to-mesenchymal transition (EMT) has been exten- ures’ legends. sively investigated in glioblastoma although the real relevance of this program in malignant glioma is still controversial. A number of preclinical studies have been Western Blot analysis launched to target the process considering the critical Cultured U87-MG and U251-MG cells were washed with role played by EMT on GBM dissemination, resistance PBS and lysed for 15 min in ice-cold Radioimmunopre- to apoptosis and cancer stemness maintenance [9–11]. cipitation (RIPA) bufer (1% Triton X-100, 0.5% deox- Of note, DUSP6 is involved in epithelial-to-mesenchymal ycholate-DOC), 0.1% sodium dodecyl sulphate (SDS), transition (EMT) in epithelial cancers such as breast and 50 mM Tris pH 7.6, 150 mM NaCl, 1 mM phenyl-methyl- endometrial adenocarcinoma [12, 13]. Moreover, GBMs sulfonyl fuoride (PMSF), 1 mg/mL aprotinin, leupeptin mesenchymal subtype are characterized by an elevated and pepstatin. Cell lysates were clarifed at 12,000 rcf for invasive potential and, of note, the most commonly used 30 min at 4 °C and the cytosolic fraction was immedi- glioma cell lines (i.e. U87MG and U251) also present a ately subjected to protein determination using a Bradford predominant mesenchymal signature [14] with elevation colorimetric assay (Bio-Rad Laboratories Inc., Hercules, in mesenchymal markers [15]. Te aim of this study was CA, USA). DUSP6 was detected with a ‘home-made’ rab- to assess the importance of DUSP6 gene in epithelial-to- bit polyclonal specifc antibody against DUSP6 (Lennart- mesenchymal transition in GBM in correlation with its son’s lab). Monoclonal anti-α-tubulin as loading control, invasive capacity. anti-phospho-ERK and anti-Fibronectin were purchased by Sigma-Aldrich (St Louis, MO, USA). Anti-Vimentin Main text was purchased from Millipore and anti-ERK was pur- Methods chased from Cell Signaling Technology. Anti N-Cadherin Cell cultures and anti-E-Cadherin were purchased from Santa Cruz Astrocytoma primary (WHO grade IV) GBM#1; Biotechnology. Goat anti-Mouse IgG (H + L) Highly GBM#10 etc. were established from tumor specimens Cross-Adsorbed Secondary Antibody, HRP (A16078) e of patients and cultured as described [1]. NHA (Nor- Goat anti-Rabbit IgG (H + L) Highly Cross-Adsorbed mal Human Astrocytes) and NSC (Neural Stem Cells) Secondary Antibody, HRP (A16119) Termofsher Scien- were purchased from Cambrex (Corporate, NJ 07073, tifc. ECL detection kit from Amersham GE-Healthcare. USA) and grown according to the manufacturer’s instructions. Normal Human Astrocytes were used as Real-time quantitative PCR reference because of the presumed similarity between astrocytes and the cell-of-origin from which glioblas- A quantitative assay for Human DUSP6 mRNA (seq ref toma develops, both adult (NHA) and foetal (Primary NM_001946.4) expression was established using StepO- ™ ™ Fetal Normal Neural Stem Cells from SVZ). U87-MG nePlus Real-Time PCR System (Applied Biosystems ) ™ ™ (human GBM–astrocytoma) cell line was purchased using PowerUp SYBR Green Master Mix (Applied ™ from the bank of biological material Interlab Cell Line Biosystems ) using the following program: 95 °C/10 min Collection (Genova, Italy). Human breast cell cultures ×1 cycle; 95 °C/15 s, 63 °C/90 s, ×5 cycles; 95 °C/15 s, MCF7, MCF10A and MDA231 cell lines were pur- 60 °C/90 s, ×35 cycles. All reactions were normalized chased from the American Type Culture Collection with the housekeeping gene for 18S. PCR oligo-primers ′ (ATTC, LGC Standards s.r.l, Italy). Cells were cultured were: Human DUSP6 forward primer 5 -CgAggAC- ′ ′ at 37 °C in 5% CO in DMEM with high glucose plus CgggACCgCTT CAC C-3 and reverse primer 5 -CCgA- 2 ′ 10% (v/v) fetal bovine serum (FBS, Euroclone, Milan, gATggggATTTgCTTgTATT-3 generating a 543 bp ′ Italy), penicillin–streptomycin (100 U/mL, Euroclone) fragment; Human 18S forward primer 5 -gACCgATgTA- ′ ′ and l-glutamine (2 mM, Euroclone), according to TATgCTTgCAgAgT-3 and reverse primer 5 -ggATCTg- ′ manufacturer’s instructions. Primary glioblastomas cell gAgTTA AAC TggTCCAg-3 . Te two transcripts of lines (WHO grade IV) were established from tumor mRNA DUSP6 were detected by PCR using the following ′ specimens of patients and cultured as described [1, primers: Forward primer 5 -CgAggACCgggACCgCTT ′ ′ 16]. Cells were plated at 80% of confuence on 100 mm CAC C-3 ; Reverse primer: 5 -AgTTAggggATATgTTg- ′ dishes and the day after infected with recombinant gATTTT-3 . Te expected size of the fragment was: adenovirus as previously described with the amounts 758 bp for the transcript variant 1 (NM_001946.4) and according to the scheme indicated in the fgures [16]. In 321 bp for the transcript variant 2 (NM_022652.4). Zuchegna et al. BMC Res Notes (2020) 13:374 Page 3 of 8 Cell invasion assay cascade activation was sustained in both primary and Trans-well
Recommended publications
  • Exosome-Mediated MIR211 Modulates Tumor Microenvironment Via the DUSP6-ERK5 Axis and Contributes to BRAFV600E Inhibitor Resistan
    bioRxiv preprint doi: https://doi.org/10.1101/548818; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exosome-mediated MIR211 modulates tumor microenvironment via the DUSP6-ERK5 axis and contributes to BRAFV600E inhibitor resistance in melanoma. Bongyong Lee1,3, Anupama Sahoo3, Junko Sawada1,3, John Marchica1,3, Sanjay Sahoo3, Fabiana I. A. L. Layng4, Darren Finlay4, Joseph Mazar5, Piyush Joshi1, Masanobu Komatsu1,3, Kristiina Vuori4, Garth Powis4, Petrus R. de Jong4, Animesh Ray6,7, and Ranjan J. Perera 1,2,3* 1 Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701 USA 2 Department of Oncology, Sydney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA 3 Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA 4 Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, CA 92037, USA 5 Nemours Children Hospital, Orlando, FL 32827 USA 6 Keck Graduate Institute, Claremont CA 91711 USA, 7 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA. *Correspondence: Ranjan Perera Tel: 1-727-767-3491 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/548818; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The microRNA MIR211 is an important regulator of melanoma tumor cell behavior.
    [Show full text]
  • Macrophage DUSP3 Genetic Deletion Confers M2-Like
    DUSP3 Genetic Deletion Confers M2-like Macrophage−Dependent Tolerance to Septic Shock This information is current as Pratibha Singh, Lien Dejager, Mathieu Amand, Emilie of September 27, 2021. Theatre, Maud Vandereyken, Tinatin Zurashvili, Maneesh Singh, Matthias Mack, Steven Timmermans, Lucia Musumeci, Emmanuel Dejardin, Tomas Mustelin, Jo A. Van Ginderachter, Michel Moutschen, Cécile Oury, Claude Libert and Souad Rahmouni Downloaded from J Immunol 2015; 194:4951-4962; Prepublished online 15 April 2015; doi: 10.4049/jimmunol.1402431 http://www.jimmunol.org/content/194/10/4951 http://www.jimmunol.org/ References This article cites 35 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/194/10/4951.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology DUSP3 Genetic Deletion Confers M2-like Macrophage–Dependent Tolerance to Septic Shock Pratibha Singh,*,1 Lien Dejager,†,‡,1 Mathieu Amand,*,1 Emilie Theatre,x Maud Vandereyken,* Tinatin Zurashvili,* Maneesh Singh,* Matthias Mack,{ Steven Timmermans,†,‡ Lucia Musumeci,* Emmanuel Dejardin,‖ Tomas Mustelin,#,** Jo A.
    [Show full text]
  • Dual-Specificity Phosphatase DUSP6 Has Tumor-Promoting Properties In
    Oncogene (2011) 30, 3813–3820 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc SHORT COMMUNICATION Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas S Messina1,2, L Frati1, C Leonetti3, C Zuchegna4,5, E Di Zazzo4, A Calogero6 and A Porcellini5 1Department of Pathology, IRCCS Neuromed, Pozzilli, Italy; 2Department of Health and Motor Sciences, University of Cassino, Cassino, Italy; 3Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Rome, Italy; 4Department of Health Sciences, University of Campobasso, Campobasso, Italy; 5Department of Structural and Functional Biology, Federico II University of Naples, Naples, Italy and 6Department of Medical and Surgical Sciences and Biotecnology, Sapienza University of Rome, Rome, Italy Dual-specificity phosphatase 6 (DUSP6, mitogen-acti- signaling by dephosphorylating components of the vated protein kinase (MAPK) phosphatase 3 or PYST1) MAPK cascade. DUSPs are typically negative feedback dephosphorylates phosphotyrosine and phosphothreonine regulators of MAPK activity that become transcription- residues on extracellular signal-regulated kinase (ERK1/ ally induced after stress or mitogenic stimulation; this 2; MAPK1/2) to inactivate the ERK1/2 kinase. DUSP6 is leads to early production of proteins that inactivate a critical regulator of the ERK signaling cascade and has MAPKs within 20–40 min (Owens and Keyse, 2007). been implicated as a tumor suppressor. We report here Importantly, some DUSPs may provide biomarkers of experimental evidences that DUSP6 is transcriptionally therapeutic responsiveness and patient outcome in upregulated in primary and long-term cultures of human specific cancers, as well as DUSP1 and DUSP2 in glioblastoma, as assayed by northern hybridization and different type of cancers (reviewed in Patterson et al., real-time quantitative PCR, producing constitutive high 2009).
    [Show full text]
  • Dual-Specificity Phosphatases in Immunity and Infection
    International Journal of Molecular Sciences Review Dual-Specificity Phosphatases in Immunity and Infection: An Update Roland Lang * and Faizal A.M. Raffi Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany * Correspondence: [email protected]; Tel.: +49-9131-85-22979 Received: 15 May 2019; Accepted: 30 May 2019; Published: 2 June 2019 Abstract: Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins.
    [Show full text]
  • Up-Regulation of DUSP5 and DUSP6 by Gonadotropin-Releasing Hormone in Cultured Hypothalamic Neurons, GT1-7 Cells
    Biomedical Research (Tokyo) 39 (3) 149–158, 2018 Up-regulation of DUSP5 and DUSP6 by gonadotropin-releasing hormone in cultured hypothalamic neurons, GT1-7 cells 1, 2 1 1 2 1 Teruyuki HIGA , Hana TAKAHASHI , Sayomi HIGA-NAKAMINE , Mikio SUZUKI , and Hideyuki YAMAMOTO Departments of 1 Biochemistry, and 2 Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan (Received 29 March 2018; and accepted 11 April 2018) ABSTRACT Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons) and stimulates anterior pituitary gonadotrophs to synthesize and secrete gonadotropins. In addition to gonadotrophs, GnRH neurons also express GnRH receptors, and the autocrine action of GnRH is reportedly involved in the regulation of functions of GnRH neurons. There is accumulating evi- dence that extracellular signal-regulated kinase (ERK), one of mitogen-activated protein kinases (MAPKs), is activated by GnRH and involved in various effects of GnRH in GnRH neurons. In the present study, we performed microarray analysis to examine the types of genes whose expres- sion was regulated by GnRH in immortalized mouse GnRH neurons (GT1-7 cells). We found that 257 genes among 55,681 genes examined were up-regulated after 30-min treatment of GT1-7 cells with GnRH. These up-regulated genes included four dual-specificity MAPK phosphatases (DUSPs), DUSP1, DUSP2, DUSP5, and DUSP6. Reverse transcription-polymerase chain reaction analysis confirmed that the mRNA levels of DUSP5 and DUSP6 were robustly increased within 30 min. U0126, an inhibitor of ERK activation, completely inhibited the increases in the mRNA levels of DUSP5 and DUSP6.
    [Show full text]
  • Dual-Specificity Phosphatases 2
    Genes and Immunity (2013) 14, 1–6 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene REVIEW Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases WWei1,2, Y Jiao2,3, A Postlethwaite4,5, JM Stuart4,5, Y Wang6, D Sun1 and W Gu2 Dual-specificity phosphatases (DUSPs) is an emerging subclass of the protein tyrosine phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/ phosphothreonine residues within the one substrate. Recently, a series of investigations of DUSPs defined their essential roles in cell proliferation, cancer and the immune response. This review will focus on DUSP2, its involvement in different diseases and its potential as a therapeutic target. Genes and Immunity (2013) 14, 1–6; doi:10.1038/gene.2012.54; published online 29 November 2012 Keywords: dual-specificity phosphatases; disease; mitogen-activated protein kinase; immune INTRODUCTION extracellular stimuli. Inducible nucleuses MKPs include DUSP1, Mitogen-activated protein kinase (MAPK) activation cascades DUSP2, DUSP4 and DUSP5, which originated from a common mediate various physiological processes, such as cell proliferation, ancestral gene. They were shown to dephosphorylate Erks, Jnk differentiation, stress responses, inflammation, apoptosis and and p38 MAPKs to the same extent and to be induced by growth immune defense.1–4 Dysregulation of MAPK activation cascades or stress signals. DUSP6, DUSP7 and DUSP9 are cytoplasmic Erk- has been implicated in various diseases and has been the focus of specific MPKs, which can preferentially recognize Erk1 and Erk2 extensive research.5–7 MAPKs are grouped into three major classes in vitro.
    [Show full text]
  • HER2 Therapy in Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 44), pp: 77207-77218 Research Paper DUSP4 is associated with increased resistance against anti- HER2 therapy in breast cancer Otília Menyhart1, Jan Budczies2, Gyöngyi Munkácsy1, Francisco J. Esteva3, András Szabó1, Teresa Puig Miquel4 and Balázs Győrffy1,5 1Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary 2Institute of Pathology, Charité University Hospital, Berlin, Germany 3Clinical Cancer Center, NYU Langone Medical Center, New York, NY, USA 4New Terapeutics Targets Laboratory (TargetsLab), Department of Medical Sciences, University of Girona, Girona, Spain 5MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary Correspondence to: Balázs Győrffy, email: [email protected] Keywords: DUSP4, targeted therapy, trastuzumab, biomarker, breast cancer Received: March 09, 2017 Accepted: June 27, 2017 Published: August 24, 2017 Copyright: Menyhart et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The majority of patients develop resistance against suppression of HER2-signaling mediated by trastuzumab in HER2 positive breast cancer (BC). HER2 overexpression activates multiple signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade. MAPK phosphatases (MKPs) are essential regulators of MAPKs and participate in many facets of cellular regulation, including proliferation and apoptosis. We aimed to identify whether differential MKPs are associated with resistance to targeted therapy in patients previously treated with trastuzumab. Using gene chip data of 88 HER2-positive, trastuzumab treated BC patients, candidate MKPs were identified by Receiver Operator Characteristics analysis performed in R.
    [Show full text]
  • Dual-Specificity Phosphatase 3 Deletion Promotes Obesity, Non
    www.nature.com/scientificreports OPEN Dual‑specifcity phosphatase 3 deletion promotes obesity, non‑alcoholic steatohepatitis and hepatocellular carcinoma Sophie Jacques1,10, Arash Arjomand1,10, Hélène Perée1, Patrick Collins2, Alice Mayer3, Arnaud Lavergne3, Marie Wéry1, Myriam Mni1, Alexandre Hego4, Virginie Thuillier1, Guillaume Becker5, Mohamed Ali Bahri5, Alain Plenevaux5, Emmanuel Di Valentin6, Cécile Oury7, Michel Moutschen8, Philippe Delvenne2, Nicolas Paquot9 & Souad Rahmouni1* Non‑alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non‑alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual‑specifcity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3‑KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3‑KO compared to wild type (WT) mice. DUSP3‑KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway.
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]
  • Expression Profile of Tyrosine Phosphatases in HER2 Breast
    Cellular Oncology 32 (2010) 361–372 361 DOI 10.3233/CLO-2010-0520 IOS Press Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors Maria Antonietta Lucci a, Rosaria Orlandi b, Tiziana Triulzi b, Elda Tagliabue b, Andrea Balsari c and Emma Villa-Moruzzi a,∗ a Department of Experimental Pathology, University of Pisa, Pisa, Italy b Molecular Biology Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, Milan, Italy c Department of Human Morphology and Biomedical Sciences, University of Milan, Milan, Italy Abstract. Background: HER2-overexpression promotes malignancy by modulating signalling molecules, which include PTPs/DSPs (protein tyrosine and dual-specificity phosphatases). Our aim was to identify PTPs/DSPs displaying HER2-associated expression alterations. Methods: HER2 activity was modulated in MDA-MB-453 cells and PTPs/DSPs expression was analysed with a DNA oligoar- ray, by RT-PCR and immunoblotting. Two public breast tumor datasets were analysed to identify PTPs/DSPs differentially ex- pressed in HER2-positive tumors. Results: In cells (1) HER2-inhibition up-regulated 4 PTPs (PTPRA, PTPRK, PTPN11, PTPN18) and 11 DSPs (7 MKPs [MAP Kinase Phosphatases], 2 PTP4, 2 MTMRs [Myotubularin related phosphatases]) and down-regulated 7 DSPs (2 MKPs, 2 MTMRs, CDKN3, PTEN, CDC25C); (2) HER2-activation with EGF affected 10 DSPs (5 MKPs, 2 MTMRs, PTP4A1, CDKN3, CDC25B) and PTPN13; 8 DSPs were found in both groups. Furthermore, 7 PTPs/DSPs displayed also altered protein level. Analysis of 2 breast cancer datasets identified 6 differentially expressed DSPs: DUSP6, strongly up-regulated in both datasets; DUSP10 and CDC25B, up-regulated; PTP4A2, CDC14A and MTMR11 down-regulated in one dataset.
    [Show full text]
  • Phosphatases Page 1
    Phosphatases esiRNA ID Gene Name Gene Description Ensembl ID HU-05948-1 ACP1 acid phosphatase 1, soluble ENSG00000143727 HU-01870-1 ACP2 acid phosphatase 2, lysosomal ENSG00000134575 HU-05292-1 ACP5 acid phosphatase 5, tartrate resistant ENSG00000102575 HU-02655-1 ACP6 acid phosphatase 6, lysophosphatidic ENSG00000162836 HU-13465-1 ACPL2 acid phosphatase-like 2 ENSG00000155893 HU-06716-1 ACPP acid phosphatase, prostate ENSG00000014257 HU-15218-1 ACPT acid phosphatase, testicular ENSG00000142513 HU-09496-1 ACYP1 acylphosphatase 1, erythrocyte (common) type ENSG00000119640 HU-04746-1 ALPL alkaline phosphatase, liver ENSG00000162551 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPP alkaline phosphatase, placental ENSG00000163283 HU-14729-1 ALPPL2 alkaline phosphatase, placental-like 2 ENSG00000163286 HU-07767-1 BPGM 2,3-bisphosphoglycerate mutase ENSG00000172331 HU-06476-1 BPNT1 3'(2'), 5'-bisphosphate nucleotidase 1 ENSG00000162813 HU-09086-1 CANT1 calcium activated nucleotidase 1 ENSG00000171302 HU-03115-1 CCDC155 coiled-coil domain containing 155 ENSG00000161609 HU-09022-1 CDC14A CDC14 cell division cycle 14 homolog A (S. cerevisiae) ENSG00000079335 HU-11533-1 CDC14B CDC14 cell division cycle 14 homolog B (S. cerevisiae) ENSG00000081377 HU-06323-1 CDC25A cell division cycle 25 homolog A (S. pombe) ENSG00000164045 HU-07288-1 CDC25B cell division cycle 25 homolog B (S. pombe) ENSG00000101224 HU-06033-1 CDKN3 cyclin-dependent kinase inhibitor 3 ENSG00000100526 HU-02274-1 CTDSP1 CTD (carboxy-terminal domain,
    [Show full text]
  • Dual Specificity Phosphatases from Molecular Mechanisms to Biological Function
    International Journal of Molecular Sciences Dual Specificity Phosphatases From Molecular Mechanisms to Biological Function Edited by Rafael Pulido and Roland Lang Printed Edition of the Special Issue Published in International Journal of Molecular Sciences www.mdpi.com/journal/ijms Dual Specificity Phosphatases Dual Specificity Phosphatases From Molecular Mechanisms to Biological Function Special Issue Editors Rafael Pulido Roland Lang MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Rafael Pulido Roland Lang Biocruces Health Research Institute University Hospital Erlangen Spain Germany Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal International Journal of Molecular Sciences (ISSN 1422-0067) from 2018 to 2019 (available at: https: //www.mdpi.com/journal/ijms/special issues/DUSPs). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03921-688-8 (Pbk) ISBN 978-3-03921-689-5 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ....................................
    [Show full text]