DUSP6 Mediates Resistance to JAK2 Inhibition and Drives Leukemic Progression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exosome-Mediated MIR211 Modulates Tumor Microenvironment Via the DUSP6-ERK5 Axis and Contributes to BRAFV600E Inhibitor Resistan
bioRxiv preprint doi: https://doi.org/10.1101/548818; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exosome-mediated MIR211 modulates tumor microenvironment via the DUSP6-ERK5 axis and contributes to BRAFV600E inhibitor resistance in melanoma. Bongyong Lee1,3, Anupama Sahoo3, Junko Sawada1,3, John Marchica1,3, Sanjay Sahoo3, Fabiana I. A. L. Layng4, Darren Finlay4, Joseph Mazar5, Piyush Joshi1, Masanobu Komatsu1,3, Kristiina Vuori4, Garth Powis4, Petrus R. de Jong4, Animesh Ray6,7, and Ranjan J. Perera 1,2,3* 1 Department of Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701 USA 2 Department of Oncology, Sydney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA 3 Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827 USA 4 Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, CA 92037, USA 5 Nemours Children Hospital, Orlando, FL 32827 USA 6 Keck Graduate Institute, Claremont CA 91711 USA, 7 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 USA. *Correspondence: Ranjan Perera Tel: 1-727-767-3491 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/548818; this version posted February 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT The microRNA MIR211 is an important regulator of melanoma tumor cell behavior. -
Supplementary Information Method CLEAR-CLIP. Mouse Keratinocytes
Supplementary Information Method CLEAR-CLIP. Mouse keratinocytes of the designated genotype were maintained in E-low calcium medium. Inducible cells were treated with 3 ug/ml final concentration doxycycline for 24 hours before performing CLEAR-CLIP. One 15cm dish of confluent cells was used per sample. Cells were washed once with cold PBS. 10mls of cold PBS was then added and cells were irradiated with 300mJ/cm2 UVC (254nM wavelength). Cells were then scraped from the plates in cold PBS and pelleted by centrifugation at 1,000g for 2 minutes. Pellets were frozen at -80oC until needed. Cells were then lysed on ice with occasional vortexing in 1ml of lysis buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 1mM MgCl2, 0.1 mM CaCl2, 1% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS) containing 1X protease inhibitors (Roche #88665) and RNaseOUT (Invitrogen #10777019) at 4ul/ml final concentration. Next, TurboDNase (Invitrogen #AM2238, 10U), RNase A (0.13ug) and RNase T1 (0.13U) were added and samples were incubated at 37oC for 5 minutes with occasional mixing. Samples were immediately placed on ice and then centrifuged at 16,160g at 4oC for 20 minutes to clear lysate. 25ul of Protein-G Dynabeads (Invitrogen #10004D) were used per IP. Dynabeads were pre-washed with lysis buffer and pre- incubated with 3ul of Wako Anti-Mouse-Ago2 (2D4) antibody. The dynabead/antibody mixture was added to the lysate and rocked for 2 hours at 4oC. All steps after the IP were done on bead until samples were loaded into the polyacrylamide gel. -
Under Serratia Marcescens Treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2*
www.nature.com/scientificreports OPEN SMRT sequencing of the full‑length transcriptome of Odontotermes formosanus (Shiraki) under Serratia marcescens treatment Kai Feng1,2, Xiaoyu Lu1,2, Jian Luo1,2 & Fang Tang1,2* Odontotermes formosanus (Shiraki) is an important pest in the world. Serratia marcescens have a high lethal efect on O. formosanus, but the specifc insecticidal mechanisms of S. marcescens on O. formosanus are unclear, and the immune responses of O. formosanus to S. marcescens have not been clarifed. At present, genetic database resources of O. formosanus are extremely scarce. Therefore, using O. formosanus workers infected by S. marcescens and the control as experimental materials, a full-length transcriptome was sequenced using the PacBio Sequel sequencing platform. A total of 10,364 isoforms were obtained as the fnal transcriptome. The unigenes were further annotated with the Nr, Swiss-Prot, EuKaryotic Orthologous Groups (KOG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog public databases. In a comparison between the control group and a Serratia marcescens-infected group, a total of 259 diferentially expressed genes (DEGs) were identifed, including 132 upregulated and 127 downregulated genes. Pathway enrichment analysis indicated that the expression of the mitogen-activated protein kinase (MAPK) pathway, oxidative stress genes and the AMP-activated protein kinase (AMPK) pathway in O. formosanus may be associated with S. marcescens treatment. This research intensively studied O. formosanus at the high-throughput full-length transcriptome level, laying a foundation for further development of molecular markers and mining of target genes in this species and thereby promoting the biological control of O. -
Supporting Information
Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures. -
Macrophage DUSP3 Genetic Deletion Confers M2-Like
DUSP3 Genetic Deletion Confers M2-like Macrophage−Dependent Tolerance to Septic Shock This information is current as Pratibha Singh, Lien Dejager, Mathieu Amand, Emilie of September 27, 2021. Theatre, Maud Vandereyken, Tinatin Zurashvili, Maneesh Singh, Matthias Mack, Steven Timmermans, Lucia Musumeci, Emmanuel Dejardin, Tomas Mustelin, Jo A. Van Ginderachter, Michel Moutschen, Cécile Oury, Claude Libert and Souad Rahmouni Downloaded from J Immunol 2015; 194:4951-4962; Prepublished online 15 April 2015; doi: 10.4049/jimmunol.1402431 http://www.jimmunol.org/content/194/10/4951 http://www.jimmunol.org/ References This article cites 35 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/194/10/4951.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology DUSP3 Genetic Deletion Confers M2-like Macrophage–Dependent Tolerance to Septic Shock Pratibha Singh,*,1 Lien Dejager,†,‡,1 Mathieu Amand,*,1 Emilie Theatre,x Maud Vandereyken,* Tinatin Zurashvili,* Maneesh Singh,* Matthias Mack,{ Steven Timmermans,†,‡ Lucia Musumeci,* Emmanuel Dejardin,‖ Tomas Mustelin,#,** Jo A. -
Dual-Specificity Phosphatase DUSP6 Has Tumor-Promoting Properties In
Oncogene (2011) 30, 3813–3820 & 2011 Macmillan Publishers Limited All rights reserved 0950-9232/11 www.nature.com/onc SHORT COMMUNICATION Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas S Messina1,2, L Frati1, C Leonetti3, C Zuchegna4,5, E Di Zazzo4, A Calogero6 and A Porcellini5 1Department of Pathology, IRCCS Neuromed, Pozzilli, Italy; 2Department of Health and Motor Sciences, University of Cassino, Cassino, Italy; 3Department of Experimental Chemotherapy, Regina Elena Cancer Institute, Rome, Italy; 4Department of Health Sciences, University of Campobasso, Campobasso, Italy; 5Department of Structural and Functional Biology, Federico II University of Naples, Naples, Italy and 6Department of Medical and Surgical Sciences and Biotecnology, Sapienza University of Rome, Rome, Italy Dual-specificity phosphatase 6 (DUSP6, mitogen-acti- signaling by dephosphorylating components of the vated protein kinase (MAPK) phosphatase 3 or PYST1) MAPK cascade. DUSPs are typically negative feedback dephosphorylates phosphotyrosine and phosphothreonine regulators of MAPK activity that become transcription- residues on extracellular signal-regulated kinase (ERK1/ ally induced after stress or mitogenic stimulation; this 2; MAPK1/2) to inactivate the ERK1/2 kinase. DUSP6 is leads to early production of proteins that inactivate a critical regulator of the ERK signaling cascade and has MAPKs within 20–40 min (Owens and Keyse, 2007). been implicated as a tumor suppressor. We report here Importantly, some DUSPs may provide biomarkers of experimental evidences that DUSP6 is transcriptionally therapeutic responsiveness and patient outcome in upregulated in primary and long-term cultures of human specific cancers, as well as DUSP1 and DUSP2 in glioblastoma, as assayed by northern hybridization and different type of cancers (reviewed in Patterson et al., real-time quantitative PCR, producing constitutive high 2009). -
Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma
G C A T T A C G G C A T genes Article Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma Dumitru A. Iacobas Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA; [email protected]; Tel.: +1-936-261-9926 Received: 1 August 2020; Accepted: 1 September 2020; Published: 2 September 2020 Abstract: Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B. -
Dual-Specificity Phosphatases in Immunity and Infection
International Journal of Molecular Sciences Review Dual-Specificity Phosphatases in Immunity and Infection: An Update Roland Lang * and Faizal A.M. Raffi Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany * Correspondence: [email protected]; Tel.: +49-9131-85-22979 Received: 15 May 2019; Accepted: 30 May 2019; Published: 2 June 2019 Abstract: Kinase activation and phosphorylation cascades are key to initiate immune cell activation in response to recognition of antigen and sensing of microbial danger. However, for balanced and controlled immune responses, the intensity and duration of phospho-signaling has to be regulated. The dual-specificity phosphatase (DUSP) gene family has many members that are differentially expressed in resting and activated immune cells. Here, we review the progress made in the field of DUSP gene function in regulation of the immune system during the last decade. Studies in knockout mice have confirmed the essential functions of several DUSP-MAPK phosphatases (DUSP-MKP) in controlling inflammatory and anti-microbial immune responses and support the concept that individual DUSP-MKP shape and determine the outcome of innate immune responses due to context-dependent expression and selective inhibition of different mitogen-activated protein kinases (MAPK). In addition to the canonical DUSP-MKP, several small-size atypical DUSP proteins regulate immune cells and are therefore also reviewed here. Unexpected and complex findings in DUSP knockout mice pose new questions regarding cell type-specific and redundant functions. Another emerging question concerns the interaction of DUSP-MKP with non-MAPK binding partners and substrate proteins. -
Mathematical Modeling Reveals That G2/M Checkpoint Override Creates a Therapeutic Vulnerability in Tsc2-Null Tumors
The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2017 MATHEMATICAL MODELING REVEALS THAT G2/M CHECKPOINT OVERRIDE CREATES A THERAPEUTIC VULNERABILITY IN TSC2-NULL TUMORS Hui Ju Hsieh Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Medicine and Health Sciences Commons Recommended Citation Hsieh, Hui Ju, "MATHEMATICAL MODELING REVEALS THAT G2/M CHECKPOINT OVERRIDE CREATES A THERAPEUTIC VULNERABILITY IN TSC2-NULL TUMORS" (2017). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 808. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/808 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. MATHEMATICAL MODELING REVEALS THAT G2/M CHECKPOINT OVERRIDE CREATES A THERAPEUTIC VULNERABILITY IN TSC2-NULL TUMORS by Hui-Ju Hsieh, -
Evidence for the Role of Ywha in Mouse Oocyte Maturation
EVIDENCE FOR THE ROLE OF YWHA IN MOUSE OOCYTE MATURATION A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ariana Claire Detwiler August, 2015 © Copyright All rights reserved Except for previously published materials Thesis written by Ariana Claire Detwiler B.S., Pennsylvania State University, 2012 M.S., Kent State University, 2015 Approved by ___________________________________________________________ Douglas W. Kline, Professor, Ph.D., Department of Biological Sciences, Masters Advisor ___________________________________________________________ Laura G. Leff, Professor, PhD., Chair, Department of Biological Sciences ___________________________________________________________ James L. Blank, Professor, Dean, College of Arts and Sciences i TABLE OF CONTENTS List of Figures ……………………………………………………………………………………v List of Tables ……………………………………………………………………………………vii Acknowledgements …………………………………………………………………………….viii Abstract ……………………………………………………………………………………….....1 Chapter I Introduction…………………………………………………………………………………..2 1.1 Introduction …………………………………………………………………………..2 1.2 Ovarian Function ……………………………………………………………………..2 1.3 Oogenesis and Folliculogenesis ………………………………………………………3 1.4 Oocyte Maturation ……………………………………………………………………5 1.5 Maternal to Embryonic Messenger RNA Transition …………………………………8 1.6 Meiotic Spindle Formation …………………………………………………………...9 1.7 YWHA Isoforms and Oocyte Maturation …………………………………………...10 Aim…………………………………………………………………………………………..15 Chapter II Methods……………………………………………………………………………………...16 -
Up-Regulation of DUSP5 and DUSP6 by Gonadotropin-Releasing Hormone in Cultured Hypothalamic Neurons, GT1-7 Cells
Biomedical Research (Tokyo) 39 (3) 149–158, 2018 Up-regulation of DUSP5 and DUSP6 by gonadotropin-releasing hormone in cultured hypothalamic neurons, GT1-7 cells 1, 2 1 1 2 1 Teruyuki HIGA , Hana TAKAHASHI , Sayomi HIGA-NAKAMINE , Mikio SUZUKI , and Hideyuki YAMAMOTO Departments of 1 Biochemistry, and 2 Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan (Received 29 March 2018; and accepted 11 April 2018) ABSTRACT Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons) and stimulates anterior pituitary gonadotrophs to synthesize and secrete gonadotropins. In addition to gonadotrophs, GnRH neurons also express GnRH receptors, and the autocrine action of GnRH is reportedly involved in the regulation of functions of GnRH neurons. There is accumulating evi- dence that extracellular signal-regulated kinase (ERK), one of mitogen-activated protein kinases (MAPKs), is activated by GnRH and involved in various effects of GnRH in GnRH neurons. In the present study, we performed microarray analysis to examine the types of genes whose expres- sion was regulated by GnRH in immortalized mouse GnRH neurons (GT1-7 cells). We found that 257 genes among 55,681 genes examined were up-regulated after 30-min treatment of GT1-7 cells with GnRH. These up-regulated genes included four dual-specificity MAPK phosphatases (DUSPs), DUSP1, DUSP2, DUSP5, and DUSP6. Reverse transcription-polymerase chain reaction analysis confirmed that the mRNA levels of DUSP5 and DUSP6 were robustly increased within 30 min. U0126, an inhibitor of ERK activation, completely inhibited the increases in the mRNA levels of DUSP5 and DUSP6. -
Dual-Specificity Phosphatases 2
Genes and Immunity (2013) 14, 1–6 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene REVIEW Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases WWei1,2, Y Jiao2,3, A Postlethwaite4,5, JM Stuart4,5, Y Wang6, D Sun1 and W Gu2 Dual-specificity phosphatases (DUSPs) is an emerging subclass of the protein tyrosine phosphatase gene superfamily, a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/ phosphothreonine residues within the one substrate. Recently, a series of investigations of DUSPs defined their essential roles in cell proliferation, cancer and the immune response. This review will focus on DUSP2, its involvement in different diseases and its potential as a therapeutic target. Genes and Immunity (2013) 14, 1–6; doi:10.1038/gene.2012.54; published online 29 November 2012 Keywords: dual-specificity phosphatases; disease; mitogen-activated protein kinase; immune INTRODUCTION extracellular stimuli. Inducible nucleuses MKPs include DUSP1, Mitogen-activated protein kinase (MAPK) activation cascades DUSP2, DUSP4 and DUSP5, which originated from a common mediate various physiological processes, such as cell proliferation, ancestral gene. They were shown to dephosphorylate Erks, Jnk differentiation, stress responses, inflammation, apoptosis and and p38 MAPKs to the same extent and to be induced by growth immune defense.1–4 Dysregulation of MAPK activation cascades or stress signals. DUSP6, DUSP7 and DUSP9 are cytoplasmic Erk- has been implicated in various diseases and has been the focus of specific MPKs, which can preferentially recognize Erk1 and Erk2 extensive research.5–7 MAPKs are grouped into three major classes in vitro.