Interior Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Interior Algebras VARIETIES OF INTERIOR ALGEBRAS bv w. J. BLOK $@@>@ Abstract Westudy (generalized) Boolean algebras endowedwith an interior operator, called (generalized) interior algebras. Particular attention is paid to the structure of the free (generalized) interior algebra on a finite numberof generators. Free objects in somevarieties of (generalized) interior algebras are determined. Using methods of a universal algebraic nature we investigate the lattice of varieties of interior algebras. Keywords:(generalized) interior algebra, Heyting algebra, free algebra, *ra1gebra, lattice of varieties, splitting algebra. AMSMOS70 classification: primary 02 J 05, 06 A 75 secondary 02 C 10, 08 A 15. Dvuk:HuisdrukkerijUniversiteitvanAmsterdam T _ VARIETIES OF INTERIOR ALGEBRAS ACADEMISCH PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE WISKUNDE EN NATUURWETENSCHAPPEN AAN DE UNIVERSITEIT VAN AMSTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS DR G. DEN BOEF HOOGLERAAR IN DE FACULTEIT DER WISKUNDE EN NATUURWETENSCHAPPEN IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT (TIJDELIJK IN DE LUTHERSE KERK, INGANG SINGEL 4!], HOEK SPUI) OP WOENSDAG 3 NOVEMBER 1976 DES NAMIDDAGS TE 4 UUR DOOR WILLEM JOHANNES BLOK GEBOREN TE HOORN Promotor : Prof. Dr. Ph.Dwinger Coreferent: Prof. Dr. A.S.Troe1stra Druk: Huisdrukkerii Universiteit van Amsterdam T ./ I-‘£670 aan mijn oude/Us (U171 /LQVLQQ Acknowledgements I ammuch indebted to the late prof. J. de Groot, the contact with whomhas meant a great deal to me. The origin of this dissertation lies in Chicago, during mystay at the University of Illinois at ChicagoCircle in the year '73 - '74. I want to express myfeelings of gratitude to all persons whocontri­ buted to making this stay as pleasant and succesful as I experienced it, in particular to prof. J. Bermanwhoseseminar on "varieties of lattices" influenced this dissertation in several respects. Prof. Ph. Dwinger, who introduced me into the subject of closure algebras and with whomthis research was started (witness Blok and Dwinger [75]) was far more than a supervisor; mathematically as well as personally he was a constant source of inspiration. I amgrateful to prof. A.S. Troelstra for his willingness to be coreferent. The attention he paid to this work has resulted in many improvements. Finally I want to thank the Mathematical Institute of the University of Amsterdamfor providing all facilities whichhelped realizing this dissertation. Special thanks are due to Mrs. Y. Cahn and Mrs. L. Molenaar, whomanaged to decipher my hand-writing in order to produce the present typewritten paper. Most drawings are by Mrs. Cahn's hand. CONTENTS INTRODUCTION 1 Someremarks on the subject and its history 2 Relation to modal logic (iii) 3 The subject matter of the paper (vii) CHAPTER 0. PRELIMINARIES 1 Universal algebra 2 Lattices CHAPTER I. GENERAL THEORY OF (GENERALIZED) INTERIOR ALGEBRAS 16 1 Generalized interior algebras: definitions and basic properties I6 2 Interior algebras: definition, basic properties and relation with generalized interior algebras 24 3 Twoinfinite interior algegras generated by one element 30 4 Principal ideals in finitely generated free algebras in 31 and 5; 36 5 Subalgebras of finitely generated free algebras in 31 and 3; 50 6 Functional freeness of finitely generated algebras in gi and Q; 57 7 Someremarks on free products, injectives and weakly projectives in fii and g; 70 CHAPTER II. ON SOME VARIETIES OF (GENERALIZED) INTERIOR 85 ALGEBRAS 1 Relations between subvarieties of gi and III: ,-1 B. and -H-,-1 B. and-1 BI 86 2 The variety generated by all (generalized) interior *-algebras 95 3 The free algebra on one generator in §;* 104 4 Injectives and projectives in fig and §;* 112 5 Varieties generated by (generalized) interior algebras whose lattices of open elements are chains I19 6 Finitely generated free objects in Q; and M-n , n 6 N 128 7 Free objects in fl- and fl 145 CHAPTER III. THE LATTICE OF SUBVARIETIES OF fii I52 1 General results 153 2 Equations defining subvarieties of fii I57 3 Varieties associated with finite subdirectly irreducibles 167 A Locally finite and finite varieties 178 5 The lattice of subvarieties of M 189 6 The lattice of subvarieties of (fii: K3) 200 7 The relation between the lattices of subvarieties of fii and E 209 8 On the cardinality of some sublattices of 52 219 9 Subvarieties of Qi not generated by their finite members 229 REFERENCES 238 SAMENVATTING 246 (1) INTRODUCTION 1 Someremarks on the subject and its history In an extensive paper titled "The algebra of topology", J.C.C. McKinsey and A. Tarski [44] started the investigation of a class of algebraic struc­ tures which they termed "closure algebras". The notion of closure algebra developed quite naturally from set theoretic topology. Already in 1922, C. Kuratowski gave a definition of the concept of topological space in terms of a (topological) closure operator defined on the field of all subsets of a set. Bya process of abstraction one arrives from topological spaces defined in this manner at closure algebras, just as one may inves­ tigate fields of sets in the abstract setting of Booleanalgebras. A clo­ sure algebra is thus an algebra (L,(+,.,',C,0,l)) such that (L,(+,.,',0,l)) is a Booleanalgebra, where +,.,' are operations satisfying certain postu­ lates so as to guarantee that they behave as the operations of union, in­ tersection and complementation do on fields of sets and where 0 and l are nullary operations denoting the smallest element and largest element of L respectively. The operation C is a closure operator, that is, C is a unary operation on L satisfying the well-known "Kuratowski axioms" (i) x s x° (ii) xcc = xc (iii) (x+y)° = x° + y“ (iv) 0° = o. The present paper is largely devoted to a further investigation of classes of these algebras. However, in our treatment, not the closure operator C will be taken as the basic operation, but instead the interior operator 0, which relates to C by x0 = x'C' and which satisfies the postulates (i)' x0 s x, (ii)' x°° = x°, (iii)' (xy)° = x°y° and (iv)' 1° = 1, corresponding to (i) - (iv). Accordingly, we shall speak of interior algebras rather than closure algebras. The reason for our favouring the interior operator is the following. Animportant feature in the structure of an interior algebra is the set of closed elements, or, equivalently, the set of open elements. In a continuation of their work on closure algebras, "On closed elements in closure algebrasfi McKinseyand Tarski showed that the set of closed elements (ii) of a closure algebra may be regarded in a natural way as what one would now call a dual Heyting algebra. Hence the set of open elements may be taken as a Heyting algebra, that is, a relatively pseudo-complemented distributive lattice with 0,], treated as an algebra (L,(+,.,+,O,l)) where + is defined by a + b = max {z I az 5 b}. Therefore, since the theory of Heyting algebras is nowwell-established, it seems pre­ ferable to deal with the open elements and hence with the interior operator such as to makeknownresults more easily applicable to the algebras under consideration. when they started the study of closure algebras McKinseyand Tarski wanted to create an algebraic apparatus adequate to the treatment of certain portions of topology. Theywere particularly interested in the question as to whether the interior algebras of all subsets of spaces like the Cantor discontinuum or the Euclidean spaces of any number of dimensions .are functionally free, i.e. if they satisfy only those to­ pological equations which hold in any interior algebra. By topological equations we understand those whose terms are expressions involving only the operations of interior algebras. McKinseyand Tarski proved that the answer to this question is in the affirmative: the interior algebra of any separable metric space which is dense in itself is func­ tionally free. Hence, every topological equation which holds in Eucli­ dean space of a given number of dimensions also holds in every other topological space. However, for a deeper study of topology in an algebraic framework in­ terior algebras prove to be too coarse an instrument. For instance, even a basic notion like the derivative of a set cannot be defined in terms of the interior operator. A possible approach, which was suggested in McKinseyand Tarski [44] and realized in Pierce [70], would be to consi­ der Boolean algebras endowedwith more operations of a topological nature than just the interior operator. That will not be the course taken here. Weshall stay with the interior algebras, not only because the algebraic theory of these structures is interesting, but also since interior alge­ bras, rather unexpectedly, appear in still another branch of mathematics, namely, in the study of certain non-classical, so-called modal logics. (iii) Algebraic structures arising from logic have received a great deal of attention in the past. As early as in the 19th century George Boole initiated the study of the relationship betweenalgebra and classical pro­ positional logic, which resulted in the development of what we nowknow as the theory of Boolean algebras, a subject which has been studied very thoroughly. In the twenties and thirties several new systems of proposi­ tional logic were introduced, notably the intuitionistic logic, created by Brouwer and Heyting [30], various systems of modal logic, introduced by Lewis (see Lewis and Langford [32]), and many-valued logics, proposed by Post [21] and Lukasiewicz. The birth of these non-classical logics sti­ mulated investigations into the relationships between these logics and the corresponding classes of algebras as well as into the structural properties of the algebras associated with these logics. The algebras turn out to be interesting not only from a logical point of view, but also in a purely algebraic sense, and structures like Heyting algebras, Brouwerianalgebras, distributive pseudo-complementedlattices, Post algebras and Lukasiewicz algebras have been studied intensively.
Recommended publications
  • Willem Blok and Modal Logic M
    W. Rautenberg F. Wolter Willem Blok and modal logic M. Zakharyaschev Abstract. We present our personal view on W.J. Blok’s contribution to modal logic. Introduction Willem Johannes Blok started his scientific career in 1973 as an algebraist with an investigation of varieties of interior (a.k.a. closure or topological Boolean or topoboolean) algebras. In the years following his PhD in 1976 he moved on to study more general varieties of modal algebras (and matrices) and, by the end of the 1970s, this algebraist was recognised by the modal logic community as one of the most influential modal logicians. Wim Blok worked on modal algebras till about 1979–80, and over those seven years he obtained a number of very beautiful and profound results that had and still have a great impact on the development of the whole discipline of modal logic. In this short note we discuss only three areas of modal logic where Wim Blok’s contribution was, in our opinion, the most significant: 1. splittings of the lattice of normal modal logics and the position of Kripke incomplete logics in this lattice [3, 4, 6], 2. the relation between modal logics containing S4 and extensions of intuitionistic propositional logic [1], 3. the position of tabular, pretabular, and locally tabular logics in lattices of modal logics [1, 6, 8, 10]. As usual in mathematics and logic, it is not only the results themselves that matter, but also the power and beauty of the methods developed to obtain them. In this respect, one of the most important achievements of Wim Blok was a brilliant demonstration of the fact that various techniques and results that originated in universal algebra can be used to prove significant and deep theorems in modal logic.
    [Show full text]
  • Uniform Boundedness Principle for Unbounded Operators
    UNIFORM BOUNDEDNESS PRINCIPLE FOR UNBOUNDED OPERATORS C. GANESA MOORTHY and CT. RAMASAMY Abstract. A uniform boundedness principle for unbounded operators is derived. A particular case is: Suppose fTigi2I is a family of linear mappings of a Banach space X into a normed space Y such that fTix : i 2 Ig is bounded for each x 2 X; then there exists a dense subset A of the open unit ball in X such that fTix : i 2 I; x 2 Ag is bounded. A closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings as consequences of this principle. Some applications of this principle are also obtained. 1. Introduction There are many forms for uniform boundedness principle. There is no known evidence for this principle for unbounded operators which generalizes classical uniform boundedness principle for bounded operators. The second section presents a uniform boundedness principle for unbounded operators. An application to derive Hellinger-Toeplitz theorem is also obtained in this section. A JJ J I II closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings in the third section as consequences of this principle. Go back Let us assume the following: Every vector space X is over R or C. An α-seminorm (0 < α ≤ 1) is a mapping p: X ! [0; 1) such that p(x + y) ≤ p(x) + p(y), p(ax) ≤ jajαp(x) for all x; y 2 X Full Screen Close Received November 7, 2013. 2010 Mathematics Subject Classification. Primary 46A32, 47L60. Key words and phrases.
    [Show full text]
  • On the Boundary Between Mereology and Topology
    On the Boundary Between Mereology and Topology Achille C. Varzi Istituto per la Ricerca Scientifica e Tecnologica, I-38100 Trento, Italy [email protected] (Final version published in Roberto Casati, Barry Smith, and Graham White (eds.), Philosophy and the Cognitive Sciences. Proceedings of the 16th International Wittgenstein Symposium, Vienna, Hölder-Pichler-Tempsky, 1994, pp. 423–442.) 1. Introduction Much recent work aimed at providing a formal ontology for the common-sense world has emphasized the need for a mereological account to be supplemented with topological concepts and principles. There are at least two reasons under- lying this view. The first is truly metaphysical and relates to the task of charac- terizing individual integrity or organic unity: since the notion of connectedness runs afoul of plain mereology, a theory of parts and wholes really needs to in- corporate a topological machinery of some sort. The second reason has been stressed mainly in connection with applications to certain areas of artificial in- telligence, most notably naive physics and qualitative reasoning about space and time: here mereology proves useful to account for certain basic relation- ships among things or events; but one needs topology to account for the fact that, say, two events can be continuous with each other, or that something can be inside, outside, abutting, or surrounding something else. These motivations (at times combined with others, e.g., semantic transpar- ency or computational efficiency) have led to the development of theories in which both mereological and topological notions play a pivotal role. How ex- actly these notions are related, however, and how the underlying principles should interact with one another, is still a rather unexplored issue.
    [Show full text]
  • Baire Category Theorem and Uniform Boundedness Principle)
    Functional Analysis (WS 19/20), Problem Set 3 (Baire Category Theorem and Uniform Boundedness Principle) Baire Category Theorem B1. Let (X; k·kX ) be an innite dimensional Banach space. Prove that X has uncountable Hamel basis. Note: This is Problem A2 from Problem Set 1. B2. Consider subset of bounded sequences 1 A = fx 2 l : only nitely many xk are nonzerog : Can one dene a norm on A so that it becomes a Banach space? Consider the same question with the set of polynomials dened on interval [0; 1]. B3. Prove that the set L2(0; 1) has empty interior as the subset of Banach space L1(0; 1). B4. Let f : [0; 1) ! [0; 1) be a continuous function such that for every x 2 [0; 1), f(kx) ! 0 as k ! 1. Prove that f(x) ! 0 as x ! 1. B5.( Uniform Boundedness Principle) Let (X; k · kX ) be a Banach space and (Y; k · kY ) be a normed space. Let fTαgα2A be a family of bounded linear operators between X and Y . Suppose that for any x 2 X, sup kTαxkY < 1: α2A Prove that . supα2A kTαk < 1 Uniform Boundedness Principle U1. Let F be a normed space C[0; 1] with L2(0; 1) norm. Check that the formula 1 Z n 'n(f) = n f(t) dt 0 denes a bounded linear functional on . Verify that for every , F f 2 F supn2N j'n(f)j < 1 but . Why Uniform Boundedness Principle is not satised in this case? supn2N k'nk = 1 U2.( pointwise convergence of operators) Let (X; k · kX ) be a Banach space and (Y; k · kY ) be a normed space.
    [Show full text]
  • FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
    FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality).
    [Show full text]
  • Semisimplicity, Glivenko Theorems, and the Excluded Middle
    Semisimplicity, Glivenko theorems, and the excluded middle Adam Pˇrenosil (joint work with Tomáš Láviˇcka) Vanderbilt University, Nashville, USA Online Logic Seminar 29 October 2020 1 / 40 Introduction Semisimplicity is equivalent to the law of the excluded middle (LEM). The semisimple companion and the Glivenko companion of a logic coincide. for compact propositional logics with a well-behaved negation. 2 / 40 Intuitionistic and classical logic How can we obtain classical propositional logic from intuitionistic logic? 1. Classical logic is intuitionistic logic plus the LEM (the axiom ' '). _: 2. Classical consequence is related to intuitionistic consequence through the Glivenko translation (the double negation translation): Γ CL ' Γ IL '. ` () ` :: In other words, CL is the Glivenko companion of IL. 3. The algebraic models of classical logic (Boolean algebras) are precisely the semisimple models of intuitionistic logic (Heyting algebras). In other words, CL is the semisimple companion of IL. 3 / 40 Modal logic S4 and S5 How can we obtain the global modal logic S5 (modal logic of equivalence relations) from the global modal logic S4 (modal logic of preorders)? 1. Modal logic S5 is modal logic S4 plus the axiom ' '. _ : This is just the LEM with disjunction x y and negation x. _ : 2. Consequence in S5 is related to consequence in S4 through the Glivenko translation (the double negation translation): Γ S5 ' Γ S4 '. ` () ` : : This is just the Glivenko translation with negation x. : 3. The algebraic models of S5 are precisely the semisimple models of S4 (Boolean algebras with a topological interior operator). 4 / 40 Semisimplicity: algebraic definition Each algebra A has a lattice of congruences Con A.
    [Show full text]
  • A Study of Optimization in Hilbert Space
    California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 1998 A study of optimization in Hilbert Space John Awunganyi Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Awunganyi, John, "A study of optimization in Hilbert Space" (1998). Theses Digitization Project. 1459. https://scholarworks.lib.csusb.edu/etd-project/1459 This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. A STUDY OF OPTIMIZATIONIN HELBERT SPACE A Project Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment ofthe Requirements for the Degree Master ofArts in Mathematics by John Awunganyi June 1998 A STUDY OF OPTIMIZATION IN HILBERT SPACE A Project Presented to the Faculty of California State University, San Bernardino by John Awunganyi June 1998 Approved by; Dr. Chetan Prakash, Chair, Mathematics Date r. Wenxang Wang Dr. Christopher Freiling Dr. Terry Hallett, Graduate Coordinator Dr. Peter Williams, Department Chair ABSTRACT The primary objective ofthis project is to demonstrate that a certain field ofoptimization can be effectively unified by afew geometric principles ofcomplete normed linear space theory. By employing these principles, important and complex finite - dimensional problems can be interpreted and solved by methods springing from geometric insight. Concepts such as distance, orthogonality, and convexity play a fundamental and indispensable role in this development. Viewed in these terms, seemingly diverse problems and techniques often are found to be closely related.
    [Show full text]
  • A Hilbert Space Theory of Generalized Graph Signal Processing
    1 A Hilbert Space Theory of Generalized Graph Signal Processing Feng Ji and Wee Peng Tay, Senior Member, IEEE Abstract Graph signal processing (GSP) has become an important tool in many areas such as image pro- cessing, networking learning and analysis of social network data. In this paper, we propose a broader framework that not only encompasses traditional GSP as a special case, but also includes a hybrid framework of graph and classical signal processing over a continuous domain. Our framework relies extensively on concepts and tools from functional analysis to generalize traditional GSP to graph signals in a separable Hilbert space with infinite dimensions. We develop a concept analogous to Fourier transform for generalized GSP and the theory of filtering and sampling such signals. Index Terms Graph signal proceesing, Hilbert space, generalized graph signals, F-transform, filtering, sampling I. INTRODUCTION Since its emergence, the theory and applications of graph signal processing (GSP) have rapidly developed (see for example, [1]–[10]). Traditional GSP theory is essentially based on a change of orthonormal basis in a finite dimensional vector space. Suppose G = (V; E) is a weighted, arXiv:1904.11655v2 [eess.SP] 16 Sep 2019 undirected graph with V the vertex set of size n and E the set of edges. Recall that a graph signal f assigns a complex number to each vertex, and hence f can be regarded as an element of n C , where C is the set of complex numbers. The heart of the theory is a shift operator AG that is usually defined using a property of the graph.
    [Show full text]
  • HILBERT SPACES in MODELLING of SYSTEMS Jean Claude Dutailly
    HILBERT SPACES IN MODELLING OF SYSTEMS Jean Claude Dutailly To cite this version: Jean Claude Dutailly. HILBERT SPACES IN MODELLING OF SYSTEMS. 2014. hal-00974251 HAL Id: hal-00974251 https://hal.archives-ouvertes.fr/hal-00974251 Preprint submitted on 5 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HILBERT SPACES IN MODELLING OF SYSTEMS Jean Claude Dutailly Paris April 4, 2014 Abstract This paper studies the quantitative models which are used to represent systems, whatever the field (Physics, Economics, Finances,...). We prove that models which meet some very general conditions can be associated to Hilbert vector spaces : the state of the system is then identified with a unique vector. The measure of this state is done through observables, whose properties are studied and we show that they can take only values which are eigen vectors of the observables, and a probability law can be associated to the occurence of these measures. The effect of a change of variables in a model is related to a unitary operator. This leads to general laws for the evolution of systems, and to powerful tools for the study of transitions of phases in a system.
    [Show full text]
  • Normal Families of Holomorphic Functions and Mappings on a Banach Space
    EXPOSITIONES Expo. Math. 21 (2003): 193-218 © Urban & Fischer Verlag MATHEMATICAE www. urbanfischer.de/journals/expomath Normal Families of Holomorphic Functions and Mappings on a Banach Space Kang-Tae Kim 1 and Steven G. Krantz 2 1Pohang University of Science and Technology, Pohang 790-784, Korea 2 Department of Mathematics, Washington University, St. Louis, Missouri 63130, U.S.A. Abstract: The authors lay the foundations for the study of nor- mal families of holomorphic functions and mappings on an infinite- dimensional normed linear space. Characterizations of normal fami- lies, in terms of value distribution, spherical derivatives, and other geo- metric properties are derived. Montel-type theorems are established. A number of different topologies on spaces of holomorphic mappings are considered. Theorems about normal families are formulated and proved in the language of these various topologies. Normal functions are also introduced. Characterizations in terms of automorphisms and also in terms of invariant derivatives are presented. Keywords: holomorphic function, holomorphic mapping, Banach space, normal family, normal function. Introduction The theory of holomorphic functions of infinitely many complex variables is about forty years old. Pioneers of the subject were Nachbin [NAC1-NAC17], Gruman and Kiselman [GRK], and Mujica [MUJ]. After a quiet period of nearly two decades, the discipline is now enjoying a rebirth thanks to the ideas of Lempert [LEM1-LEM6]. Lempert has taught us that it is worthwhile to restrict attention to particular Banach spaces, and he has directed our efforts to especially fruitful questions. The work of the present paper is inspired by the results of [KIK]. That paper studied domains in a Hilbert space with an automorphism group orbit accumulating at a boundary point.
    [Show full text]
  • Non-Linear Inner Structure of Topological Vector Spaces
    mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set.
    [Show full text]
  • Math 396. Interior, Closure, and Boundary We Wish to Develop Some Basic Geometric Concepts in Metric Spaces Which Make Precise C
    Math 396. Interior, closure, and boundary We wish to develop some basic geometric concepts in metric spaces which make precise certain intuitive ideas centered on the themes of \interior" and \boundary" of a subset of a metric space. One warning must be given. Although there are a number of results proven in this handout, none of it is particularly deep. If you carefully study the proofs (which you should!), then you'll see that none of this requires going much beyond the basic definitions. We will certainly encounter some serious ideas and non-trivial proofs in due course, but at this point the central aim is to acquire some linguistic ability when discussing some basic geometric ideas in a metric space. Thus, the main goal is to familiarize ourselves with some very convenient geometric terminology in terms of which we can discuss more sophisticated ideas later on. 1. Interior and closure Let X be a metric space and A X a subset. We define the interior of A to be the set ⊆ int(A) = a A some Br (a) A; ra > 0 f 2 j a ⊆ g consisting of points for which A is a \neighborhood". We define the closure of A to be the set A = x X x = lim an; with an A for all n n f 2 j !1 2 g consisting of limits of sequences in A. In words, the interior consists of points in A for which all nearby points of X are also in A, whereas the closure allows for \points on the edge of A".
    [Show full text]