Computation of Real-Valued Basis Functions Which Transform As Irreducible Representations of the Polyhedral Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quaternion Zernike Spherical Polynomials
MATHEMATICS OF COMPUTATION Volume 84, Number 293, May 2015, Pages 1317–1337 S 0025-5718(2014)02888-3 Article electronically published on August 29, 2014 QUATERNION ZERNIKE SPHERICAL POLYNOMIALS J. MORAIS AND I. CAC¸ AO˜ Abstract. Over the past few years considerable attention has been given to the role played by the Zernike polynomials (ZPs) in many different fields of geometrical optics, optical engineering, and astronomy. The ZPs and their applications to corneal surface modeling played a key role in this develop- ment. These polynomials are a complete set of orthogonal functions over the unit circle and are commonly used to describe balanced aberrations. In the present paper we introduce the Zernike spherical polynomials within quater- nionic analysis ((R)QZSPs), which refine and extend the Zernike moments (defined through their polynomial counterparts). In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4). (R)QZSPs are orthonormal in the unit ball. The representation of these functions in terms of spherical monogenics over the unit sphere are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of their fundamental properties and a further second or- der homogeneous differential equation are also discussed. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QZSPs are new in literature and have some consequences that are now under investigation. 1. Introduction 1.1. The Zernike spherical polynomials. The complex Zernike polynomials (ZPs) have long been successfully used in many different fields of optics. -
Platonic Solids Generate Their Four-Dimensional Analogues
1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a;b;c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. Via the Cartan-Dieudonne´ theorem, the reflective symmetries of the arXiv:1307.6768v1 [math-ph] 25 Jul 2013 Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors gen- erating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic Solids can thus in turn be interpreted as vertices in four- dimensional space, giving a simple construction of the 4D polytopes 16-cell, 24-cell, the F4 root system and the 600-cell. In particular, these polytopes have ‘mysterious’ symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter PREPRINT: Acta Crystallographica Section A A Journal of the International Union of Crystallography 2 groups, which can be shown to be a general property of the spinor construction. -
Laplacian Eigenmodes for the Three Sphere
Laplacian eigenmodes for the three sphere M. Lachi`eze-Rey Service d’Astrophysique, C. E. Saclay 91191 Gif sur Yvette cedex, France October 10, 2018 Abstract The vector space k of the eigenfunctions of the Laplacian on the 3 V three sphere S , corresponding to the same eigenvalue λk = k (k + 2 − k 2), has dimension (k + 1) . After recalling the standard bases for , V we introduce a new basis B3, constructed from the reductions to S3 of peculiar homogeneous harmonic polynomia involving null vectors. We give the transformation laws between this basis and the usual hyper-spherical harmonics. Thanks to the quaternionic representations of S3 and SO(4), we are able to write explicitely the transformation properties of B3, and thus of any eigenmode, under an arbitrary rotation of SO(4). This offers the possibility to select those functions of k which remain invariant under V a chosen rotation of SO(4). When the rotation is an holonomy transfor- mation of a spherical space S3/Γ, this gives a method to calculates the eigenmodes of S3/Γ, which remains an open probleme in general. We illustrate our method by (re-)deriving the eigenmodes of lens and prism space. In a forthcoming paper, we present the derivation for dodecahedral space. 1 Introduction 3 The eigenvalues of the Laplacian ∆ of S are of the form λk = k (k + 2), + − k where k IN . For a given value of k, they span the eigenspace of ∈ 2 2 V dimension (k +1) . This vector space constitutes the (k +1) dimensional irreductible representation of SO(4), the isometry group of S3. -
A User's Guide to Spherical Harmonics
A User's Guide to Spherical Harmonics Martin J. Mohlenkamp∗ Version: October 18, 2016 This pamphlet is intended for the scientist who is considering using Spherical Harmonics for some appli- cation. It is designed to introduce the Spherical Harmonics from a theoretical perspective and then discuss those practical issues necessary for their use in applications. I expect great variability in the backgrounds of the readers. In order to be informative to those who know less, without insulting those who know more, I have adopted the strategy \State even basic facts, but briefly." My dissertation work was a fast transform for Spherical Harmonics [6]. After its publication, I started receiving questions about Spherical Harmonics in general, rather than about my work specifically. This pamphlet aims to answer such general questions. If you find mistakes, or feel that important material is unclear or missing, please inform me. 1 A Theory of Spherical Harmonics In this section we give a development of Spherical Harmonics. There are other developments from other perspectives. The one chosen here has the benefit of being very concrete. 1.1 Mathematical Preliminaries We define the L2 inner product of two functions to be Z hf; gi = f(s)¯g(s)ds (1) R 2π whereg ¯ denotes complex conjugation and the integral is over the space of interest, for example 0 dθ on the R 2π R π 2 p 2 circle or 0 0 sin φdφdθ on the sphere. We define the L norm by jjfjj = hf; fi. The space L consists of all functions such that jjfjj < 1. -
Binary Icosahedral Group and 600-Cell
Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons. -
Polyhedral Harmonics
value is uncertain; 4 Gr a y d o n has suggested values of £estrap + A0 for the first three excited 4,4 + 0,1 v. e. states indicate 11,1 v.e. för D0. The value 6,34 v.e. for Dextrap for SO leads on A rough correlation between Dextrap and bond correction by 0,37 + 0,66 for the'valence states of type is evident for the more stable states of the the two atoms to D0 ^ 5,31 v.e., in approximate agreement with the precisely known value 5,184 v.e. diatomic molecules. Thus the bonds A = A and The valence state for nitrogen, at 27/100 F2 A = A between elements of the first short period (with 2D at 9/25 F2 and 2P at 3/5 F2), is calculated tend to have dissociation energy to the atomic to lie about 1,67 v.e. above the normal state, 4S, valence state equal to about 6,6 v.e. Examples that for the iso-electronic oxygen ion 0+ is 2,34 are 0+ X, 6,51; N2 B, 6,68; N2 a, 6,56; C2 A, v.e., and that for phosphorus is 1,05 v.e. above 7,05; C2 b, 6,55 v.e. An increase, presumably due their normal states. Similarly the bivalent states to the stabilizing effect of the partial ionic cha- of carbon, : C •, the nitrogen ion, : N • and racter of the double bond, is observed when the atoms differ by 0,5 in electronegativity: NO X, Silicon,:Si •, are 0,44 v.e., 0,64 v.e., and 0,28 v.e., 7,69; CN A, 7,62 v.e. -
Platonic Solids Generate Their Four-Dimensional Analogues
This is a repository copy of Platonic solids generate their four-dimensional analogues. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/85590/ Version: Accepted Version Article: Dechant, Pierre-Philippe orcid.org/0000-0002-4694-4010 (2013) Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A : Foundations of Crystallography. pp. 592-602. ISSN 1600-5724 https://doi.org/10.1107/S0108767313021442 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Platonic solids generate their four-dimensional analogues PIERRE-PHILIPPE DECHANT a,b,c* aInstitute for Particle Physics Phenomenology, Ogden Centre for Fundamental Physics, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom, bPhysics Department, Arizona State University, Tempe, AZ 85287-1604, United States, and cMathematics Department, University of York, Heslington, York, YO10 5GG, United Kingdom. E-mail: [email protected] Polytopes; Platonic Solids; 4-dimensional geometry; Clifford algebras; Spinors; Coxeter groups; Root systems; Quaternions; Representations; Symmetries; Trinities; McKay correspondence Abstract In this paper, we show how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone. -
Spherical-Harmonic Tensors Jm
Spherical-harmonic tensors Francisco Gonzalez Ledesma1 and Matthew Mewes2 1Department of Physics, Florida State University, Tallahassee, Florida 32306, USA 2Physics Department, California Polytechnic State University, San Luis Obispo, California 93407, USA The connection between spherical harmonics and symmetric tensors is explored. For each spher- ical harmonic, a corresponding traceless symmetric tensor is constructed. These tensors are then extended to include nonzero traces, providing an orthonormal angular-momentum eigenbasis for symmetric tensors of any rank. The relationship between the spherical-harmonic tensors and spin- weighted spherical harmonics is derived. The results facilitate the spherical-harmonic expansion of a large class of tensor-valued functions. Several simple illustrative examples are discussed, and the formalism is used to derive the leading-order effects of violations of Lorentz invariance in Newtonian gravity. I. INTRODUCTION Spherical harmonics Yjm provide an orthonormal basis for scalar functions on the 2-sphere and have numerous applications in physics and related fields. While they are commonly written in terms of the spherical-coordinate polar angle θ and azimuthal angle φ, spherical harmonics can be expressed in terms of cartesian coordinates, which is convenient in certain applications. The cartesian versions involve rank-j symmetric trace-free tensors jm [1–5]. These form a basis for traceless tensors and provide a link between functions on the sphere and symmetricY traceless tensors in three dimensions. This work builds on the above understanding in several ways. We first develop a new method for calculating the scalar spherical harmonics Yjm in terms of components of the direction unit vector n = sin θ cos φ ex + sin θ sin φ ey + cos θ ez . -
Electrodynamic Spherical Harmonic: Defi- Nition and Properties
Electrodynamic spherical harmonic A V Novitsky Department of Theoretical Physics, Belarusian State University, Nezavisimosti Avenue 4, 220050 Minsk, Belarus [email protected] Abstract Electrodynamic spherical harmonic is a second rank tensor in three- dimensional space. It allows to separate the radial and angle variables in vector solutions of Maxwell’s equations. Using the orthonormaliza- tion for electrodynamic spherical harmonic, a boundary problem on a sphere can be easily solved. 1 Introduction In this paper we introduce new function — electrodynamic spherical har- monic. It is represented as a second rank tensor in three-dimensional space. But the function differs from tensor spherical harmonic [1–5]. By its defini- tion the electrodynamic spherical function possesses a number of properties of usual scalar and vector harmonics and includes them as component parts. Why electrodynamic spherical harmonic? The word “electrodynamic” im- arXiv:0803.4093v1 [math-ph] 28 Mar 2008 plies that the function is applied for solution of vector field problems. We use it in electrodynamics, however one can apply the function for description of spin fields in quantum field theory. Electrodynamic spherical harmonic is not a simple designation of the well- known functions. It satisfies the Maxwell equations and describes the angular dependence of vector fields. The introduced function separates the variables (radial coordinate and angles) in the fields. Moreover, the notation of the fields in terms of electrodynamic spherical harmonic noticeably simplifies the solution of a boundary problem on spherical interface. Just application of 1 the ortonormalization condition allows to find the coefficients of spherical function expansion (e.g. scattering field amplitudes). -
Spherical Harmonics and Homogeneous Har- Monic Polynomials
SPHERICAL HARMONICS AND HOMOGENEOUS HAR- MONIC POLYNOMIALS 1. The spherical Laplacean. Denote by S ½ R3 the unit sphere. For a function f(!) de¯ned on S, let f~ denote its extension to an open neighborhood N of S, constant along normals to S (i.e., constant along rays from the origin). We say f 2 C2(S) if f~ is a C2 function in N , and for such functions de¯ne a di®erential operator ¢S by: ¢Sf := ¢f;~ where ¢ on the right-hand side is the usual Laplace operator in R3. With a little work (omitted here) one may derive the expression for ¢ in polar coordinates (r; !) in R2 (r > 0;! 2 S): 2 1 ¢u = u + u + ¢ u: rr r r r2 S (Here ¢Su(r; !) is the operator ¢S acting on the function u(r; :) in S, for each ¯xed r.) A homogeneous polynomial of degree n ¸ 0 in three variables (x; y; z) is a linear combination of `monomials of degree n': d1 d2 d3 x y z ; di ¸ 0; d1 + d2 + d3 = n: This de¯nes a vector space (over R) denoted Pn. A simple combinatorial argument (involving balls and separators, as most of them do), seen in class, yields the dimension: 1 d := dim(P ) = (n + 1)(n + 2): n n 2 Writing a polynomial p 2 Pn in polar coordinates, we necessarily have: n p(r; !) = r f(!); f = pjS; where f is the restriction of p to S. This is an injective linear map p 7! f, but the functions on S so obtained are rather special (a dn-dimensional subspace of the in¯nite-dimensional space C(S) of continuous functions-let's call it Pn(S)) We are interested in the subspace Hn ½ Pn of homogeneous harmonic polynomials of degree n (¢p = 0). -
Arxiv:1805.12125V2 [Quant-Ph] 27 Sep 2018 Calculations in Quantum Mechanics? Even Quantum Experts Will find Something New in the Way We Compute the Spherical Harmonics
Condensed MatTER Physics, 2018, Vol. 21, No 3, 33002: 1–12 DOI: 10.5488/CMP.21.33002 HTtp://www.icmp.lviv.ua/journal Calculating SPHERICAL HARMONICS WITHOUT DERIVATIVES M. WEITZMAN1, J.K. Freericks2 1 3515 E. Rochelle Ave., Las Vegas, NV 89121, USA 2 Department OF Physics, GeorGETOWN University, 37th AND O Sts. NW, Washington, DC 20057, USA Received May 30, 2018 The DERIVATION OF SPHERICAL HARMONICS IS THE SAME IN NEARLY EVERY QUANTUM MECHANICS TEXTBOOK AND classroom. It IS FOUND TO BE DIffiCULT TO follow, HARD TO understand, AND CHALLENGING TO REPRODUCE BY MOST students. In THIS work, WE SHOW HOW ONE CAN DETERMINE SPHERICAL HARMONICS IN A MORE NATURAL WAY BASED ON OPERATORS AND A POWERFUL IDENTITY CALLED THE EXPONENTIAL DISENTANGLING OPERATOR IDENTITY (known IN QUANTUM optics, BUT LITTLE USED elsewhere). This NEW STRATEGY FOLLOWS NATURALLY AFTER ONE HAS INTRODUCED DirAC notation, COMPUTED THE ANGULAR MOMENTUM ALGEBRa, AND DETERMINED THE ACTION OF THE ANGULAR MOMENTUM RAISING AND LOWERING 2 OPERATORS ON THE SIMULTANEOUS ANGULAR MOMENTUM EIGENSTATES (under Lˆ AND Lˆ z). Key words: ANGULAR momentum, SPHERICAL harmonics, OPERATOR METHODS PACS: 01.40.gb, 02.20.Qs, 03.65.Fd, 31.15.-p 1. Introduction One of us (JKF), first met Prof. Stasyuk in the early 2000s when visiting Ukraine for a conference and then subsequently became involved in a long-standing collaboration with Andrij Shvaika, who is also at the Institute for Condensed Matter Physics in Lviv. It is always a pleasure to meet Prof. Stasyuk on subsequent trips to Lviv as his friendly smile and enthusiasm for physics is contagious. -
Local Symmetry Preserving Operations on Polyhedra
Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References