Spherical Harmonics and Homogeneous Har- Monic Polynomials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ladder Operators for Lam\'E Spheroconal Harmonic Polynomials
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 8 (2012), 074, 16 pages Ladder Operators for Lam´eSpheroconal Harmonic Polynomials? Ricardo MENDEZ-FRAGOSO´ yz and Eugenio LEY-KOO z y Facultad de Ciencias, Universidad Nacional Aut´onomade M´exico, M´exico E-mail: [email protected] URL: http://sistemas.fciencias.unam.mx/rich/ z Instituto de F´ısica, Universidad Nacional Aut´onomade M´exico, M´exico E-mail: eleykoo@fisica.unam.mx Received July 31, 2012, in final form October 09, 2012; Published online October 17, 2012 http://dx.doi.org/10.3842/SIGMA.2012.074 Abstract. Three sets of ladder operators in spheroconal coordinates and their respective actions on Lam´espheroconal harmonic polynomials are presented in this article. The poly- nomials are common eigenfunctions of the square of the angular momentum operator and of the asymmetry distribution Hamiltonian for the rotations of asymmetric molecules, in the body-fixed frame with principal axes. The first set of operators for Lam´epolynomials of a given species and a fixed value of the square of the angular momentum raise and lower and lower and raise in complementary ways the quantum numbers n1 and n2 counting the respective nodal elliptical cones. The second set of operators consisting of the cartesian components L^x, L^y, L^z of the angular momentum connect pairs of the four species of poly- nomials of a chosen kind and angular momentum. The third set of operators, the cartesian componentsp ^x,p ^y,p ^z of the linear momentum, connect pairs of the polynomials differing in one unit in their angular momentum and in their parities. -
Homogeneous Polynomial Solutions to Constant Coefficient Pde’S
HOMOGENEOUS POLYNOMIAL SOLUTIONS TO CONSTANT COEFFICIENT PDE'S Bruce Reznick University of Illinois 1409 W. Green St. Urbana, IL 61801 [email protected] October 21, 1994 1. Introduction Suppose p is a homogeneous polynomial over a field K. Let p(D) be the differen- @ tial operator defined by replacing each occurence of xj in p by , defined formally @xj 2 in case K is not a subset of C. (The classical example is p(x1; · · · ; xn) = j xj , for which p(D) is the Laplacian r2.) In this paper we solve the equation p(DP)q = 0 for homogeneous polynomials q over K, under the restriction that K be an algebraically closed field of characteristic 0. (This restriction is mild, considering that the \natu- ral" field is C.) Our Main Theorem and its proof are the natural extensions of work by Sylvester, Clifford, Rosanes, Gundelfinger, Cartan, Maass and Helgason. The novelties in the presentation are the generalization of the base field and the removal of some restrictions on p. The proofs require only undergraduate mathematics and Hilbert's Nullstellensatz. A fringe benefit of the proof of the Main Theorem is an Expansion Theorem for homogeneous polynomials over R and C. This theorem is 2 2 2 trivial for linear forms, goes back at least to Gauss for p = x1 + x2 + x3, and has also been studied by Maass and Helgason. Main Theorem (See Theorem 4.1). Let K be an algebraically closed field of mj characteristic 0. Suppose p 2 K[x1; · · · ; xn] is homogeneous and p = j pj for distinct non-constant irreducible factors pj 2 K[x1; · · · ; xn]. -
Quaternion Zernike Spherical Polynomials
MATHEMATICS OF COMPUTATION Volume 84, Number 293, May 2015, Pages 1317–1337 S 0025-5718(2014)02888-3 Article electronically published on August 29, 2014 QUATERNION ZERNIKE SPHERICAL POLYNOMIALS J. MORAIS AND I. CAC¸ AO˜ Abstract. Over the past few years considerable attention has been given to the role played by the Zernike polynomials (ZPs) in many different fields of geometrical optics, optical engineering, and astronomy. The ZPs and their applications to corneal surface modeling played a key role in this develop- ment. These polynomials are a complete set of orthogonal functions over the unit circle and are commonly used to describe balanced aberrations. In the present paper we introduce the Zernike spherical polynomials within quater- nionic analysis ((R)QZSPs), which refine and extend the Zernike moments (defined through their polynomial counterparts). In particular, the underlying functions are of three real variables and take on either values in the reduced and full quaternions (identified, respectively, with R3 and R4). (R)QZSPs are orthonormal in the unit ball. The representation of these functions in terms of spherical monogenics over the unit sphere are explicitly given, from which several recurrence formulae for fast computer implementations can be derived. A summary of their fundamental properties and a further second or- der homogeneous differential equation are also discussed. As an application, we provide the reader with plot simulations that demonstrate the effectiveness of our approach. (R)QZSPs are new in literature and have some consequences that are now under investigation. 1. Introduction 1.1. The Zernike spherical polynomials. The complex Zernike polynomials (ZPs) have long been successfully used in many different fields of optics. -
Algebra Polynomial(Lecture-I)
Algebra Polynomial(Lecture-I) Dr. Amal Kumar Adak Department of Mathematics, G.D.College, Begusarai March 27, 2020 Algebra Dr. Amal Kumar Adak Definition Function: Any mathematical expression involving a quantity (say x) which can take different values, is called a function of that quantity. The quantity (x) is called the variable and the function of it is denoted by f (x) ; F (x) etc. Example:f (x) = x2 + 5x + 6 + x6 + x3 + 4x5. Algebra Dr. Amal Kumar Adak Polynomial Definition Polynomial: A polynomial in x over a real or complex field is an expression of the form n n−1 n−3 p (x) = a0x + a1x + a2x + ::: + an,where a0; a1;a2; :::; an are constants (free from x) may be real or complex and n is a positive integer. Example: (i)5x4 + 4x3 + 6x + 1,is a polynomial where a0 = 5; a1 = 4; a2 = 0; a3 = 6; a4 = 1a0 = 4; a1 = 4; 2 1 3 3 2 1 (ii)x + x + x + 2 is not a polynomial, since 3 ; 3 are not integers. (iii)x4 + x3 cos (x) + x2 + x + 1 is not a polynomial for the presence of the term cos (x) Algebra Dr. Amal Kumar Adak Definition Zero Polynomial: A polynomial in which all the coefficients a0; a1; a2; :::; an are zero is called a zero polynomial. Definition Complete and Incomplete polynomials: A polynomial with non-zero coefficients is called a complete polynomial. Other-wise it is incomplete. Example of a complete polynomial:x5 + 2x4 + 3x3 + 7x2 + 9x + 1. Example of an incomplete polynomial: x5 + 3x3 + 7x2 + 9x + 1. -
Laplacian Eigenmodes for the Three Sphere
Laplacian eigenmodes for the three sphere M. Lachi`eze-Rey Service d’Astrophysique, C. E. Saclay 91191 Gif sur Yvette cedex, France October 10, 2018 Abstract The vector space k of the eigenfunctions of the Laplacian on the 3 V three sphere S , corresponding to the same eigenvalue λk = k (k + 2 − k 2), has dimension (k + 1) . After recalling the standard bases for , V we introduce a new basis B3, constructed from the reductions to S3 of peculiar homogeneous harmonic polynomia involving null vectors. We give the transformation laws between this basis and the usual hyper-spherical harmonics. Thanks to the quaternionic representations of S3 and SO(4), we are able to write explicitely the transformation properties of B3, and thus of any eigenmode, under an arbitrary rotation of SO(4). This offers the possibility to select those functions of k which remain invariant under V a chosen rotation of SO(4). When the rotation is an holonomy transfor- mation of a spherical space S3/Γ, this gives a method to calculates the eigenmodes of S3/Γ, which remains an open probleme in general. We illustrate our method by (re-)deriving the eigenmodes of lens and prism space. In a forthcoming paper, we present the derivation for dodecahedral space. 1 Introduction 3 The eigenvalues of the Laplacian ∆ of S are of the form λk = k (k + 2), + − k where k IN . For a given value of k, they span the eigenspace of ∈ 2 2 V dimension (k +1) . This vector space constitutes the (k +1) dimensional irreductible representation of SO(4), the isometry group of S3. -
A User's Guide to Spherical Harmonics
A User's Guide to Spherical Harmonics Martin J. Mohlenkamp∗ Version: October 18, 2016 This pamphlet is intended for the scientist who is considering using Spherical Harmonics for some appli- cation. It is designed to introduce the Spherical Harmonics from a theoretical perspective and then discuss those practical issues necessary for their use in applications. I expect great variability in the backgrounds of the readers. In order to be informative to those who know less, without insulting those who know more, I have adopted the strategy \State even basic facts, but briefly." My dissertation work was a fast transform for Spherical Harmonics [6]. After its publication, I started receiving questions about Spherical Harmonics in general, rather than about my work specifically. This pamphlet aims to answer such general questions. If you find mistakes, or feel that important material is unclear or missing, please inform me. 1 A Theory of Spherical Harmonics In this section we give a development of Spherical Harmonics. There are other developments from other perspectives. The one chosen here has the benefit of being very concrete. 1.1 Mathematical Preliminaries We define the L2 inner product of two functions to be Z hf; gi = f(s)¯g(s)ds (1) R 2π whereg ¯ denotes complex conjugation and the integral is over the space of interest, for example 0 dθ on the R 2π R π 2 p 2 circle or 0 0 sin φdφdθ on the sphere. We define the L norm by jjfjj = hf; fi. The space L consists of all functions such that jjfjj < 1. -
Quadratic Form - Wikipedia, the Free Encyclopedia
Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form Quadratic form From Wikipedia, the free encyclopedia In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic form in the variables x and y. Quadratic forms occupy a central place in various branches of mathematics, including number theory, linear algebra, group theory (orthogonal group), differential geometry (Riemannian metric), differential topology (intersection forms of four-manifolds), and Lie theory (the Killing form). Contents 1 Introduction 2 History 3 Real quadratic forms 4 Definitions 4.1 Quadratic spaces 4.2 Further definitions 5 Equivalence of forms 6 Geometric meaning 7 Integral quadratic forms 7.1 Historical use 7.2 Universal quadratic forms 8 See also 9 Notes 10 References 11 External links Introduction Quadratic forms are homogeneous quadratic polynomials in n variables. In the cases of one, two, and three variables they are called unary, binary, and ternary and have the following explicit form: where a,…,f are the coefficients.[1] Note that quadratic functions, such as ax2 + bx + c in the one variable case, are not quadratic forms, as they are typically not homogeneous (unless b and c are both 0). The theory of quadratic forms and methods used in their study depend in a large measure on the nature of the 1 of 8 27/03/2013 12:41 Quadratic form - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Quadratic_form coefficients, which may be real or complex numbers, rational numbers, or integers. In linear algebra, analytic geometry, and in the majority of applications of quadratic forms, the coefficients are real or complex numbers. -
Solving Quadratic Equations in Many Variables
Snapshots of modern mathematics № 12/2017 from Oberwolfach Solving quadratic equations in many variables Jean-Pierre Tignol 1 Fields are number systems in which every linear equa- tion has a solution, such as the set of all rational numbers Q or the set of all real numbers R. All fields have the same properties in relation with systems of linear equations, but quadratic equations behave dif- ferently from field to field. Is there a field in which every quadratic equation in five variables has a solu- tion, but some quadratic equation in four variables has no solution? The answer is in this snapshot. 1 Fields No problem is more fundamental to algebra than solving polynomial equations. Indeed, the name algebra itself derives from a ninth century treatise [1] where the author explains how to solve quadratic equations like x2 +10x = 39. It was clear from the start that some equations with integral coefficients like x2 = 2 may not have any integral solution. Even allowing positive and negative numbers with infinite decimal expansion as solutions (these numbers are called real numbers), one cannot solve x2 = −1 because the square of every real number is positive or zero. However, it is only a small step from the real numbers to the solution 1 Jean-Pierre Tignol acknowledges support from the Fonds de la Recherche Scientifique (FNRS) under grant n◦ J.0014.15. He is grateful to Karim Johannes Becher, Andrew Dolphin, and David Leep for comments on a preliminary version of this text. 1 of every polynomial equation: one gives the solution of the equation x2 = −1 (or x2 + 1 = 0) the name i and defines complex numbers as expressions of the form a + bi, where a and b are real numbers. -
Degree Bounds for Gröbner Bases in Algebras of Solvable Type
Degree Bounds for Gröbner Bases in Algebras of Solvable Type Matthias Aschenbrenner University of California, Los Angeles (joint with Anton Leykin) Algebras of Solvable Type • . introduced by Kandri-Rody & Weispfenning (1990); • . form a class of associative algebras over fields which generalize • commutative polynomial rings; • Weyl algebras; • universal enveloping algebras of f. d. Lie algebras; • . are sometimes also called polynomial rings of solvable type or PBW-algebras (Poincaré-Birkhoff-Witt). Weyl Algebras Systems of linear PDE with polynomial coefficients can be represented by left ideals in the Weyl algebra An(C) = Chx1,..., xn, ∂1, . , ∂ni, the C-algebra generated by the xi , ∂j subject to the relations: xj xi = xi xj , ∂j ∂i = ∂i ∂j and ( xi ∂j if i 6= j ∂j xi = xi ∂j + 1 if i = j. The Weyl algebra acts naturally on C[x1,..., xn]: ∂f (∂i , f ) 7→ , (xi , f ) 7→ xi f . ∂xi Universal Enveloping Algebras Let g be a Lie algebra over a field K . The universal enveloping algebra U(g) of g is the K -algebra obtained by imposing the relations g ⊗ h − h ⊗ g = [g, h]g on the tensor algebra of the K -linear space g. Poincaré-Birkhoff-Witt Theorem: the canonical morphism g → U(g) is injective, and g generates the K -algebra U(g). If g corresponds to a Lie group G, then U(g) can be identified with the algebra of left-invariant differential operators on G. Affine Algebras and Monomials N Let R be a K -algebra, and x = (x1,..., xN ) ∈ R . Write α α1 αN N x := x1 ··· xN for a multi-index α = (α1, . -
Hyperbolicity and Stable Polynomials in Combinatorics and Probability
Hyperbolicity and stable polynomials in combinatorics and probability Robin Pemantle 1,2 ABSTRACT: These lectures survey the theory of hyperbolic and stable polynomials, from their origins in the theory of linear PDE’s to their present uses in combinatorics and probability theory. Keywords: amoeba, cone, dual cone, G˚arding-hyperbolicity, generating function, half-plane prop- erty, homogeneous polynomial, Laguerre–P´olya class, multiplier sequence, multi-affine, multivariate stability, negative dependence, negative association, Newton’s inequalities, Rayleigh property, real roots, semi-continuity, stochastic covering, stochastic domination, total positivity. Subject classification: Primary: 26C10, 62H20; secondary: 30C15, 05A15. 1Supported in part by National Science Foundation grant # DMS 0905937 2University of Pennsylvania, Department of Mathematics, 209 S. 33rd Street, Philadelphia, PA 19104 USA, pe- [email protected] Contents 1 Introduction 1 2 Origins, definitions and properties 4 2.1 Relation to the propagation of wave-like equations . 4 2.2 Homogeneous hyperbolic polynomials . 7 2.3 Cones of hyperbolicity for homogeneous polynomials . 10 3 Semi-continuity and Morse deformations 14 3.1 Localization . 14 3.2 Amoeba boundaries . 15 3.3 Morse deformations . 17 3.4 Asymptotics of Taylor coefficients . 19 4 Stability theory in one variable 23 4.1 Stability over general regions . 23 4.2 Real roots and Newton’s inequalities . 26 4.3 The Laguerre–P´olya class . 31 5 Multivariate stability 34 5.1 Equivalences . 36 5.2 Operations preserving stability . 38 5.3 More closure properties . 41 6 Negative dependence 41 6.1 A brief history of negative dependence . 41 6.2 Search for a theory . 43 i 6.3 The grail is found: application of stability theory to joint laws of binary random variables . -
Resultant and Discriminant of Polynomials
RESULTANT AND DISCRIMINANT OF POLYNOMIALS SVANTE JANSON Abstract. This is a collection of classical results about resultants and discriminants for polynomials, compiled mainly for my own use. All results are well-known 19th century mathematics, but I have not inves- tigated the history, and no references are given. 1. Resultant n m Definition 1.1. Let f(x) = anx + ··· + a0 and g(x) = bmx + ··· + b0 be two polynomials of degrees (at most) n and m, respectively, with coefficients in an arbitrary field F . Their resultant R(f; g) = Rn;m(f; g) is the element of F given by the determinant of the (m + n) × (m + n) Sylvester matrix Syl(f; g) = Syln;m(f; g) given by 0an an−1 an−2 ::: 0 0 0 1 B 0 an an−1 ::: 0 0 0 C B . C B . C B . C B C B 0 0 0 : : : a1 a0 0 C B C B 0 0 0 : : : a2 a1 a0C B C (1.1) Bbm bm−1 bm−2 ::: 0 0 0 C B C B 0 bm bm−1 ::: 0 0 0 C B . C B . C B C @ 0 0 0 : : : b1 b0 0 A 0 0 0 : : : b2 b1 b0 where the m first rows contain the coefficients an; an−1; : : : ; a0 of f shifted 0; 1; : : : ; m − 1 steps and padded with zeros, and the n last rows contain the coefficients bm; bm−1; : : : ; b0 of g shifted 0; 1; : : : ; n−1 steps and padded with zeros. In other words, the entry at (i; j) equals an+i−j if 1 ≤ i ≤ m and bi−j if m + 1 ≤ i ≤ m + n, with ai = 0 if i > n or i < 0 and bi = 0 if i > m or i < 0. -
Spherical-Harmonic Tensors Jm
Spherical-harmonic tensors Francisco Gonzalez Ledesma1 and Matthew Mewes2 1Department of Physics, Florida State University, Tallahassee, Florida 32306, USA 2Physics Department, California Polytechnic State University, San Luis Obispo, California 93407, USA The connection between spherical harmonics and symmetric tensors is explored. For each spher- ical harmonic, a corresponding traceless symmetric tensor is constructed. These tensors are then extended to include nonzero traces, providing an orthonormal angular-momentum eigenbasis for symmetric tensors of any rank. The relationship between the spherical-harmonic tensors and spin- weighted spherical harmonics is derived. The results facilitate the spherical-harmonic expansion of a large class of tensor-valued functions. Several simple illustrative examples are discussed, and the formalism is used to derive the leading-order effects of violations of Lorentz invariance in Newtonian gravity. I. INTRODUCTION Spherical harmonics Yjm provide an orthonormal basis for scalar functions on the 2-sphere and have numerous applications in physics and related fields. While they are commonly written in terms of the spherical-coordinate polar angle θ and azimuthal angle φ, spherical harmonics can be expressed in terms of cartesian coordinates, which is convenient in certain applications. The cartesian versions involve rank-j symmetric trace-free tensors jm [1–5]. These form a basis for traceless tensors and provide a link between functions on the sphere and symmetricY traceless tensors in three dimensions. This work builds on the above understanding in several ways. We first develop a new method for calculating the scalar spherical harmonics Yjm in terms of components of the direction unit vector n = sin θ cos φ ex + sin θ sin φ ey + cos θ ez .