Fire in the Black Hills Forest-Grass Ecotonel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tennis Courts, One Large Multi‐Purpose Indoor Facility, and Over 9,000 Acres of Open Space Will Also Be Needed
ACKNOWLEDGMENTS The contribution of the following individuals in preparing this document is gratefully acknowledged: City Council Robert Cashell, Mayor Pierre Hascheff, At‐Large Dan Gustin, Ward One Sharon Zadra, Ward Two Jessica Sferrazza, Ward Three Dwight Dortch, Ward Four David Aiazzi, Ward Five City of Reno Charles McNeely, City Manager Susan Schlerf, Assistant City Manager Julee Conway, Director of Parks, Recreation & Community Services John MacIntyre, Project Manager Jaime Schroeder, Senior Management Analyst Mary Beth Anderson, Interim Community Services Manager Nick Anthony, Legislative Relations Program Manager John Aramini, Recreation & Park Commissioner Angel Bachand, Program Assistant Liz Boen, Senior Management Analyst Tait Ecklund, Management Analyst James Graham, Economic Development Program Manager Napoleon Haney, Special Assistant to the City Manager Jessica Jones, Economic Development Program Manager Sven Leff, Recreation Supervisor Mark Lewis, Redevelopment Administrator Jeff Mann, Park Maintenance Manager Cadence Matijevich, Special Events Program Manager Billy Sibley, Open Space & Trails Coordinator Johnathan Skinner, Recreation Manager Suzanna Stigar, Recreation Supervisor Joe Wilson, Recreation Supervisor Terry Zeller, Park Development Planner University of Nevada, Reno Cary Groth, Athletics Director Keith Hackett, Associate Athletics Director Scott Turek, Development Director Washoe County School District Rick Harris, Deputy Superintendent 2 “The most livable of Nevada cities; City Manager’s Office the focus of culture, commerce and Charles McNeely tourism in Northern Nevada.” August 1, 2008 Dear Community Park & Recreation Advocate; Great Cities are characterized by their parks, trails and natural areas. These areas help define the public spaces; the commons where all can gather to seek solace, find adventure, experience harmony and re’create their souls. The City of Reno has actively led the community in enhancing the livability of the City over the past several years. -
Climbing Inyan Kara
SACRED MOUNTAIN Climbing Inyan Kara >> By Jerry Penry, PS Displayed with permission • The American Surveyor • Vol. 10 No. 10 • Copyright 2013 Cheves Media • www.Amerisurv.com rom many miles away, solitary mountains have captured the attention of explorers and surveyors. Undoubtedly, thoughts of climbing to the summit dominated their minds as they drew closer. Likewise, Native Americans were drawn to isolated mountains and even revered them with spiritual practices. Inyan Kara Mountain is located in northeastern Wyoming approximately five miles off the western edge of the Black Hills and 13 miles south of the town of Sundance. The mountain rises to a height of 6370 feet above sea level and, at well over 1300 feet above the surrounding terrain, can be described as a solitary peak. The name, Inyan Kara, is a modern term derived from the Lakota word, “Heeng-ya ka-ga”, which means “rock gatherer”, or “the peak which makes stone”. Inyan means “stone” in the Dakota language. The word Kara is not part of this language, but is thought to have been a corruption of “Ka-ga” which translates, “to make”. The name probably refers to the fact that the mountain has long been a place for native peoples to gather quartzite for knapping into projectile points and Above: Lt. G. K. Warren of the U. S. Topographical Engineers led the first military expedition to Inyan Kara in 1857 resulting in a tense standoff with the Sioux Indians. Library of Congress. Displayed with permission • The American Surveyor • Vol. 10 No. 10 • Copyright 2013 Cheves Media • www.Amerisurv.com The peak of Inyan Kara is hidden by the Above: Chief Red Cloud southeastern portion of the horseshoe- gave a clear message shaped outer rim that surrounds the to Sir George Gore at mountain. -
Geology and Ground-Water Resources of San Miguel County, New Mexico
GEOLOGY AND GROUND - WATER RESOURCES OF SAN MIGUEL COUNTY, NEW MEXICO GROUND-WATER REPORT 2 Geology and Ground-Water Resources of San Miguel County, New Mexico BY R. L. GRIGGS AND G. E. HENDRICKSON Prepared in cooperation with The United States Bureau of Reclamation New Mexico Bureau of Mines & Mineral Resources and the New Mexico State Engineer NEW MEXICO BUREAU OF MINES AND MINERAL RESOURCES SOCORRO 1951 NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Eugene Callaghan, Director THE REGENTS MEMBERS EX-OFFICIO The Honorable Edwin L. Mechem ...................... Governor of New Mexico Tom Wiley ............................................... Superintendent of Public Instruction APPOINTED MEMBERS Thomas M. Cramer, President ...................................................... Carlsbad Holm 0. Bursum, Jr., Secretary-Treasurer ........................................ Socorro Frank C. DiLuzio ..................................................................... Los Alamos A. A. Kemnitz .................................................................................... Hobbs Cooper Shapley ............................................................................... Deming Contents Page ABSTRACT .............................................................................................................. 9 INTRODUCTION ............................................................................................... 11 Location, area, and accessibility 11 Previous investigations -
Geological Survey of Wyoming
GEOLOGICAL SURVEY OF WYOMING SELECTED REFERENCES USED TO CO~IPILE THE ~IETALLIC AND INDUSTRIAL MI ERALS ~IAP OF WYOMING by Ray E. Harris and W. Dan Hausel OPEN FILE REPORT 85-1 1985 This report has no~ been reviewed for conformity with the editorial standards of the Geological Survey of Wyoming. CONTENTS District or Region Page Introduction . iii Absaroka Mountains ...........................•.......................... 1 Aladdin District . 1 Barlow Canyon District . 1 Bear Lodge District . 1 Big Creek District . 2 Bighorn Basin . 2 Bighorn Mountains ...•................................................... 3 Black Hills . 4 Carlile District ...........•............................................ 5 Centennial Ridge District . 5 Clay Spur District ...................................•.................. 5 Colony District . 6 Cooke City - New World District . 6 Copper Mountain District .........................................•...... 7 Cooper Hill District . 7 Crooks Gap-Green Mountain District . 7 Deer Creek District . 8 Denver Basin . 8 Elkhorn Creek District . 8 Esterbrook District . 8 Gas Hills District . 8 Gold Hill District . 9 Grand Encampment District . 9 Granite Mountains . 9 Green River Basin ................................•...................... 10 Gras Ventre Mountains ..................•...............•................ 11 Hanna Basin . 11 Hartville Uplift . 12 Hulett Creek District .........................................•......... 13 Iron Mountain District . 13 Iron Mountain Kimberlite District ......•............................... -
Download Press Release (.Pdf), 222.76 Kb
PRESS RELEASE _______________________________________________________________________ Waiblingen, September 19, 2017 STIHL develops future technology and records double-digit growth Triple-digit unit sales growth in cordless segment boosts turnover growth World firsts: STIHL TS 440 cut-off machine and robotic mower VIKING iMow TeaM STIHL sets new standards with electronic fuel injection in gasoline chainsaws The turnover of the STIHL Group in the current year increased by 11.9 percent to EUR 2.7 billion in the period from January to August. Had foreign exchange rates remained unchanged, growth would have been 10.7 percent. “This double-digit plus has upped the pace of our projected growth. In cordless products in particular we have achieved an exceptionally strong increase in unit sales”, explained STIHL executive board chairman Dr. Bertram Kandziora at the company’s autumn press conference in Wai- blingen. “We have the capacity to continue growing strongly and want to consolidate our technology leadership”, stressed Dr. Kandziora. STIHL is currently researching and developing products not only in the areas of battery technology and connected prod- ucts, but also wants to set new standards in gasoline products: “At present we are working on the world’s first chainsaw with electronically controlled fuel injection”, said the executive board chairman. Further world firsts are the STIHL TS 440 cut-off ma- chine with integrated Quickstop wheel brake and the intelligently interconnected robotic mower VIKING iMow TeaM. Worldwide growth – increased demand for gasoline and cordless products The U.S. market and Western Europe were the main growth engines for the STIHL Group in the first eight months of this year. -
Restoring Forests for the Future: Profiles in Climate-Smart Restoration on America's National Forests
RESTORING FORESTS for the FUTURE Profiles in climate-smart restoration on America’s National Forests Left: Melissa Jenkins Front cover: Kent Mason Back cover: MaxForster. Contents Introduction. ............................................................................................................................................2 This publication was prepared as part of a collaboration among American Forests, National Wildlife Federation and The Nature Conservancy and was funded through a generous grant from the Doris Duke Charitable Foundation. Principles for Climate-Smart Forest Restoration. .................................................................3 Thank you to the many partners and contributors who provided content, photos, quotes and Look to the future while learning from the past. more. Special thanks to Nick Miner and Eric Sprague (American Forests); Lauren Anderson, Northern Rockies: Reviving ancient traditions of fire to restore the land .....................4 Jessica Arriens, Sarah Bates, Patty Glick and Bruce A. Stein (National Wildlife Federation); and Eric Bontrager, Kimberly R. Hall, Karen Lee and Christopher Topik (The Nature Conservancy). Embrace functional restoration of ecological integrity. Southern Rockies: Assisted regeneration in fire-scarred landscapes ............................ 8 Editor: Rebecca Turner Montana: Strategic watershed restoration for climate resilience ................................... 12 Managing Editor: Ashlan Bonnell Writer: Carol Denny Restore and manage forests in the context of -
S-1/GEOH/CC-1/19 (Honours)
S-1/GEOH/CC-1/19 TDP (Honours) 1st Semester Exam., 2019 GEOGRAPHY (Honours) FIRST PAPER (CC-1) (Physical Geography) Full Marks : 60 Time:3 Hours The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Section A 1. Answer any sir ofthe following questions: 2x6-12 : (a) Mention any two causes of earthquake. b) Distinguish between cuesta and hogback. (c) Differentiate between Sial and Sima. (d) Distinguish between earth flow and mud flow. (e)What do you understand by line of compensation'? [ Turn Over ] B1/23-150 (2) What is tombolo? (3 Or, Define the tem 'cycle of erosion'. b) What is the difference between magma and lava? between Write the h) Distinguish corrasion and attrition. characteristics of the of volcanoes with sketches. following types Section - B 3+(3+3+3)=12 Hawaiian type Answer the following questions 12x4-48 G) Vulcanian type 2. (a) Discuss the interior structure of the earth according to Suess. What are the characteristics i) Fissure type. of Igneous rocks? Describe the landformns 4. (a) Detfine in produced by intrusive Ilgneous rocks with neat Geomorphology. "Complexity landforms is more common than simplicity" - Explain the sketches. 4+4+4-12 statement. What are the different erosional processes of river and glacier? Or 2+5+5-12 (6) Write the concept of Isostasy. Explain Airy's Or, concept on Isostasy. Write a note on global (6) What do you mean by slope development? Write Isostatic adjustment. 2+5+5=12 the concept of slope development proposed by L.C. -
Geology and Petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon Area, Crook County, Wyoming Don L
University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1980 Geology and petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon area, Crook County, Wyoming Don L. Halvorson University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Halvorson, Don L., "Geology and petrology of the Devils Tower, Missouri Buttes, and Barlow Canyon area, Crook County, Wyoming" (1980). Theses and Dissertations. 119. https://commons.und.edu/theses/119 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGY AND PETROLOGY OF THE DEVILS TOWER, MISSOURI BUTTES, AND BARLOW CANYON AREA, CROOK c.OUNTY, WYOMING by Don L. Halvorson Bachelor of Science, University of Colorado, 1965 Master of Science Teaching, University of North Dakota, 1971 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota May 1980 Th:ls clisserratio.1 submitted by Don L. Halvol'.'son in partial ful fillment of the requirements fo1· the Degree of Doctor of Philosophy from the University of North Dakota is hereby approved by the Faculty Advisory Committee under whora the work has been done. This dissertation meets the standards for appearance aud con forms to the style and format requirements of the Graduate School of the University of North Dakota, and is hereby approved. -
Geology and Description of Thorium and Rare-Earth Deposits in the Southern Bear Lodge Mountains, Northeastern Wyoming
l^ft PER COVER PHOTOGRAPHS 1 . Asbestos ore 8. Aluminum ore, bauxite, Georgia 1 2 3 4 2. Lead ore, Balmat mine, N. Y. 9. Native copper ore, Keweenawan 5 6 3. Chromite-chromium ore, Washington Peninsula, Mich. 4. Zinc ore, Friedensville, Pa. 10. Porphyry molybdenum ore, Colorado 7 8 5. Banded iron-formation. Palmer, 11. Zinc ore, Edward, N. Y. Michigan 12. Manganese nodules, ocean floor 9 10 6. Ribbon asbestos ore, Quebec, Canada 13. Botryoidal fluorite ore, 11 12 13 14 7. Manganese ore, banded Poncha Springs, Colo. rhodochrosite 14. Tungsten ore. North Carolina Geology and Description of Thorium and Rare-Earth Deposits in the Southern Bear Lodge Mountains, Northeastern Wyoming By MORTIMER H. STAATZ GEOLOGY AND RESOURCES OF THORIUM IN THE UNITED STATES GEOLOGICAL SURVEY PROFESSIONAL PAPER 1049-D A description of the size, mineralogy, chemical composition, economic geology, and geologic setting of the thorium and rare-earth veins and newly discovered large disseminated deposits UNITED STATES GOVERNMENT PRINTING OFFICE, W AS H I NGTON : 1 983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Staatz, Mortimer Hay, 1918- Geology and description of thorium and rare-earth deposits in the southern Bear Lodge Mountains, northeastern Wyoming (Geological Survey Professional Paper 1049-D) Bibliography: 52 p. Supt. of Docs. No.: I 19.16:1049-D 1. Thorium ores Wyoming Bear Lodge Mountains. 2. Earth, Rare Wyoming Bear Lodge Mountains. I. Title. II. Series. III. Series: Geological Survey Professional Paper 1049-D QE390.2.T45S73 553.4'93 81-607092 AACR2 For sale by the Superintendent of Documents, U.S. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Land Use Policy Tree Farms
Land Use Policy 26 (2009) 545–550 Contents lists available at ScienceDirect Land Use Policy journal homepage: www.elsevier.com/locate/landusepol Tree farms: Driving forces and regional patterns in the global expansion of forest plantations Thomas K. Rudel ∗ Department of Human Ecology, Rutgers University, 55 Dudley Road, New Brunswick, NJ 08901, United States article info abstract Article history: People have planted trees in rural places with increasing frequency during the past two decades, but the Received 21 November 2007 circumstances in which they plant and the social forces inducing them to plant remain unclear. While Accepted 7 August 2008 forests that produce wood for industrial uses comprise an increasing number of the plantations, most of the growth has occurred in Asia where plantations that produce wood for local consumption remain Keywords: important. Explanations for these trends take economic, political, and human ecological forms. Growth Forest plantations in urban and global markets for forest products, coupled with rural to urban migration, may spur the Forest transition conversion of fields into tree farms. Government programs also stimulate tree planting. These programs Tree farms Rural to urban migration occur frequently in nations with high population densities. Quantitative, cross-national analyses suggest that these forces combine in regionally distinctive ways to promote the expansion of forest plantations. In Africa and Asia plantations have expanded most rapidly in nations with densely populated rural districts, rural to urban migration, and government policies that promote tree planting. In the Americas and Oceania plantations have expanded rapidly in countries with relatively stable rural populations, low densities, and extensive tracts of land in pasture. -
Forest--Savanna Transition Zones
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 11, 4591–4636, 2014 Open Access www.biogeosciences-discuss.net/11/4591/2014/ Biogeosciences BGD doi:10.5194/bgd-11-4591-2014 Discussions © Author(s) 2014. CC Attribution 3.0 License. 11, 4591–4636, 2014 This discussion paper is/has been under review for the journal Biogeosciences (BG). Forest–savanna Please refer to the corresponding final paper in BG if available. transition zones Structural, physiognomic and E. M. Veenendaal et al. aboveground biomass variation in Title Page savanna-forest transition zones on three Abstract Introduction continents. How different are Conclusions References co-occurring savanna and forest Tables Figures formations? J I E. M. Veenendaal1, M. Torello-Raventos2, T. R. Feldpausch3, T. F. Domingues4, J I 5 3 2,25 3,6 7 8 F. Gerard , F. Schrodt , G. Saiz , C. A. Quesada , G. Djagbletey , A. Ford , Back Close J. Kemp9, B. S. Marimon10, B. H. Marimon-Junior10, E. Lenza10, J. A. Ratter11, L. Maracahipes10, D. Sasaki12, B. Sonké13, L. Zapfack13, D. Villarroel14, Full Screen / Esc M. Schwarz15, F. Yoko Ishida6,16, M. Gilpin3, G. B. Nardoto17, K. Affum-Baffoe18, L. Arroyo14, K. Bloomfield3, G. Ceca1, H. Compaore19, K. Davies2, A. Diallo20, Printer-friendly Version N. M. Fyllas3, J. Gignoux21, F. Hien20, M. Johnson3, E. Mougin22, P. Hiernaux22, Interactive Discussion T. Killeen14,23, D. Metcalfe8, H. S. Miranda17, M. Steininger24, K. Sykora1, M. I. Bird2, J. Grace4, S. Lewis3,26, O. L. Phillips3, and J. Lloyd16,27 4591