Case Study: Heavy Rainfall Event Over Lai Nullah Catchment Area
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dasu Hydropower Project
Public Disclosure Authorized PAKISTAN WATER AND POWER DEVELOPMENT AUTHORITY (WAPDA) Public Disclosure Authorized Dasu Hydropower Project ENVIRONMENTAL AND SOCIAL ASSESSMENT Public Disclosure Authorized EXECUTIVE SUMMARY Report by Independent Environment and Social Consultants Public Disclosure Authorized April 2014 Contents List of Acronyms .................................................................................................................iv 1. Introduction ...................................................................................................................1 1.1. Background ............................................................................................................. 1 1.2. The Proposed Project ............................................................................................... 1 1.3. The Environmental and Social Assessment ............................................................... 3 1.4. Composition of Study Team..................................................................................... 3 2. Policy, Legal and Administrative Framework ...............................................................4 2.1. Applicable Legislation and Policies in Pakistan ........................................................ 4 2.2. Environmental Procedures ....................................................................................... 5 2.3. World Bank Safeguard Policies................................................................................ 6 2.4. Compliance Status with -
Air Pollution Monitoring in Urban Areas Due to Heavy Transportation and Industries: a Case Study of Rawalpindi and Islamabad
MUJTABA HASSAN et al., J.Chem.Soc.Pak., Vol. 35, No. 6, 2013 1623 Air pollution Monitoring in Urban Areas due to Heavy Transportation and Industries: a Case Study of Rawalpindi and Islamabad 1 Mujtaba Hassan, 2 Amir Haider Malik, 3 Amir Waseem*, and 4 Muhammad Abbas 1Institute of Space Technology, Department of Space Science, Islamabad, Pakistan. 2Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan. 3Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan. 4Department of Environment Science and Engineering, National University of Science and Technology, Islamabad Pakistan. [email protected]* (Received on 7th January 2013, accepted in revised form 6th May 2013) Summary: The present study deals with the air pollution caused by Industry and transportation in urban areas of Pakistan. Rawalpindi and Islamabad, the twin cities of Pakistan were considered for this purpose. The concentrations of major air pollutants were taken from different location according their standard time period using Air Quality Monitoring Station. Five major air pollutants were considered i.e., NO2, SO2, CO, O3 and PM2.5. The average mean values for all pollutants were taken on monthly and four monthly bases. The concentrations of NO2 and PM2.5 were exceeding the permissible limits as define by Environmental Protection Agency of Pakistan. Other pollutants concentrations were within the standard limits. Geographic Information System was used as a tool for the representation and analysis of Environmental Impacts of air pollution. Passquill and Smith dispersion model was used to calculate the buffer zones. Some mitigation measures were also recommended to assess the environmental and health Impacts because of PM2.5 and NO2. -
PAKISTAN: LAI NULLAH BASIN FLOOD PROBLEM ISLAMABAD – RAWALPINDI CITIES1 Ahmed Kamal 2
WMO/GWP Associated Programme on Flood Management PAKISTAN: LAI NULLAH BASIN FLOOD PROBLEM ISLAMABAD – RAWALPINDI CITIES1 Ahmed Kamal 2 Abstract. Information is provided about the general approach and experience regarding flood management and mitigation in Pakistan, and in the Lai Nullah Basin in particular. An extraordinary flood event in the year 2001 marked the start of a shift towards the concept of integrated flood management with a view to effectively manage and mitigate flood and related problems, both on a national basis and on a river basin level. The paper discusses the countrywide approach, the various structural and non-structural measures in place and also those in the case study area. The relative importance and applicability of these measures are outlined and, for the case study area, an analysis of those being adopted or proposed for the future is made. Legal aspects of flood management regarding land use, flood warning, preparedness and response are briefly described. Mention is also made of emerging concepts of stakeholder participation. The study concludes with a detailed listing of “lessons learnt”, which could be used for possible application in countries that intend to adopt an IFM approach 1. Location The Lai Nullah Basin is located in the northern part of Pakistan, with a catchment area of 239.8 Km². It has a length of about 30 Km, stretching from the upper reaches which comprise the Federal Capital City Islamabad, at its north-western edge, to the lower reaches which hold the Rawalpindi District, Punjab Province, in its south-eastern edge. The Nai Nullah river has six mayor tributaries, three originating in the foothills of Islamabad in the higher plain area; it then flows down through the lower lying city of Rawalpindi, where another three tributaries join the river. -
Pakistan: Lai Nullah Basin Flood Problem Islamabad – Rawalpindi Cities
WORLD METEOROLOGICAL ORGANIZATION THE ASSOCIATED PROGRAMME ON FLOOD MANAGEMENT INTEGRATED FLOOD MANAGEMENT CASE STUDY1 PAKISTAN: LAI NULLAH BASIN FLOOD PROBLEM ISLAMABAD – RAWALPINDI CITIES January 2004 Edited by TECHNICAL SUPPORT UNIT Note: Opinions expressed in the case study are those of author(s) and do not necessarily reflect those of the WMO/GWP Associated Programme on Flood Management (APFM). Designations employed and presentations of material in the case study do not imply the expression of any opinion whatever on the part of the Technical Support Unit (TSU), APFM concerning the legal status of any country, territory, city or area of its authorities, or concerning the delimitation of its frontiers or boundaries. LIST OF ACRONYMS ADB Asian Development Bank ADPC Asian Disaster Preparedness Centre ADRC Asian Disaster Reduction Centre CDA Capital Development Authority Cfs Cubic Feet Per Second DCOs District Coordination Officers DTM Digital Terrain Model ECNEC Executive Committee of National Economic Council ERC Emergency Relief Cell FFC Federal Flood Commission FFD Flood Forecasting Division FFS Flood Forecasting System GPS Global Positioning System ICID International Commission on Irrigation & Drainage ICIMOD International Centre for Integrated Mountain Development ICOLD International Commission on Large Dams IDB Islamic Development Bank IFM Integrated Flood Management IWRM Integrated Water Resources Management JBIC Japan Bank for International Cooperation JICA Japan International Cooperation Agency LLA Land Acquisition Act MAF -
Short Communications Assessment Of
Short Communications Pakistan J. Zool., vol. 45(2), pp. 555-558, 2013. diarrohoea, endocarditis, and bacterimia (Nannini et al., 2005). Enterococci are facultative anaerobic, Assessment of Antibacterial Activity Gram positive cocci that live as normal flora in the of Momordica charantia Extracts and gastrointestinal tract of humans and animals (Kiem et al., 2003). Enterococcus species are indicators of Antibiotics against Fecal animal and human fecal contamination in water and Contaminated Water Associated various food products (Moneoang and Enterococcus spp. Bezuidenhout, 2009; Valenzuela et al., 2008). More than twenty species of Enterococci Saiqa Andleeb1*, Tahseen Ghous2, Nazia Riaz1, have been classified. Enterococcus faecium and Nosheen Shahzad2, Summya Ghous1 and Uzma Enterococcus faecalis are the mostly indentified Azeem Awan1 species in humans, animals, food products and water 1Biotechnology laboratory, Department of Zoology, (Facklam, 2002). Fisher and Philips (2009) Azad Jammu and Kashmir University, demonstrated that these pathogens would cause Muzaffarabad 13100, Pakistan disease if the hosts immune system is suppressed. 2Biochemistry Laboratory, Department of Hydrogen peroxide derived from E. faecium was Chemistry, Azad Jammu and Kashmir University, shown to damage luminal cells in the colon of rats Muzaffarabad 13100, Pakistan (Huycke et al., 2002). Infectious pathogens have been reduced using various medicinal plants such as Abstract.- Antibacterial activity of Momordica charantia due to their potential extracts of Momordica charantia and several antidiabetic, antihelmintic, antmicrobial, anti- antibiotics were studied against Enterococcus faecalis and Enterococcus faecium isolated cancerigenos and antioxidant activities (Costa et al., from water receiving fertilizers of animal origin 2011). In the present study Enterococcus pathogens by filter disc diffusion method. E. -
TCP Core Plan of Melghat Tiger Resurve
PREFACE Melghat Tiger Reserve (MTR), the part of Satpuda Maikal ranges falls in Amarvati, Akola and Buldhana districts of Vidharbha in Maharashtra. It is one of the 9 Project Tiger declared initially in 1973 by Government of India and came into existence on 22nd Feb, 1974 as the first tiger reserve of Maharashtra. MTR is the store house of biodiversity and tribal culture. MTR is a typical representative of Central Indian Highland forming a part of the Bio- geographic zone ‘6 E-Deccan Peninsula’– Central Highlands. The reserve forms an important corridor between protected and forests areas of Madhya Pradesh and Maharashtra ensuring contiguity of forests in Satpuras. Melghat Tiger Reserve is predominately inhabited by Korku tribes. The Korkus, Nihals and Gaolis have their own tradition of indigenous ethno botanical knowledge. The gotras of Korkus are seen to have been named after trees e.g. Jamunkar, Semalkar etc. which goes to prove the integration of their culture with nature. The reserve forms a very important catchment to Tapi and Purna river systems with important tributaries like Dolar, Khandu, Sipna, Gadga, Khapra and Wan river. The river Chandrabhaga which originates from Chikhaldara has its watershed in the reserve. The Gavilgarh fort and Vairat points in the Vicinity of Chikhaldara hill station have important historical significance. Crevices in valleys and forts offer good hiding spaces for wildlife. It harbours a viable population of Tiger (Panthera tigris) and of the endangered Gaur (Bos gaurus). All India Tiger Census, 2010 estimated the presence of about 32-35 tigers in the reserve and it has the potential of supporting 50 tigers based on today’s prey base available as estimated by the method of Hayward et.al. -
Storm Water Flood Modeling in the Sub- Basin of Chennai Corporation, Chennai, Tamilnadu, India
Storm Water Flood Modeling in the Sub- basin of Chennai Corporation, Chennai, Tamilnadu, India Dr. Y. R. Satyaji Rao Scientist F and Head Deltaic Regional Centre National Institute of Hydrology Kakinada 533003, Andhra Pradesh, India Website: www.nih.ernet.in Types of Flooding (Geographically): Riverine flooding It happens when extreme rainfall attacks in a river basin (Mississippi, 1993; Miller, 1997; Changman, 1998; Li and Guo et al., 1999; NVE, 2000; Meade, 2002). Urban flooding It is triggered when surface runoff exceeds the capacity of drainage systems, which happens when heavy rainfall pours on sewers with the limited capacity, or even medium rainfall falls on poorly planned or operated drainage systems (Kamal and Rabbi, 1998; Arambepola, 2002). Coastal flooding It takes place when heavy rainfall on inland encounters storm surges from the sea (Miller, 1997; Barry, 1997; Smith and Ward, 1998; Parker1, 2000; Pilarczyk and Nuoi, 2002). Definition of Urban Drainage Systems Urban drainage systems are defined as physical facilities that collect, store, convey, and treat runoff in urban areas. These facilities normally include detention and retention facilities, streets, storm sewers, inlets, open channels, and special structures such as inlets, manholes, and energy dissipaters” (ASCE and WEF, 1992). Why Urban Floods are increasing ? Increase in Flood peak and storm water network designs are old (Design limitations) Improper maintenance of storm water network (Carrying capacity) Impact of Boundary Conditions (Confluence points/backwater/tides) -
Macro Drainage System in Cma
Chapter X MACRO DRAINAGE SYSTEM IN CMA Introduction: CMA lies along the east coast of Southern India and is traversed by three major rivers namely Kosasthalaiyar River, Cooum River and Adyar River. The climate of the region is dominated by the monsoons, which are caused by thermal contrast between land and sea. Monsoon climates are characterised by clearly marked seasons with specific types of wind and weather. The South West monsoon dominates weather patterns in Tamilnadu from July –September and is characterised by periods of sultry wet weather. Rain shadow effects limit rainfall in the east coast in Tamilnadu and it is light or intermittent during this season. This period is followed by North-East Monsoon, which brings cool cloudy weather, relatively free of rain over most of the monsoon- dominated land (India). The exception is South-East-India including Tamilnadu where about 78% of the annual rainfall occurs at this time. The start of the heavy rains usually falls in October lasting up to December. Most of the rainfall is associated with clear synoptic systems of depressions and cyclones with night time rainfall most common. In CMA between October and December most of the rainfall occurs and it is rare between January and April. 10.02 River Nagari which has a large catchment area in the Chittoor District (Andhra Pradesh) region and the Nandi River, which has catchment area in the Vellore District, join near Kanakamma Chattiram and enter Poondi Reservoir. Kosasthalaiyar River, which has its origin near Kaveripakkam and has catchment area in North Arcot District, has a branch near Kesavaram Anicut and flows to the city as Cooum River and the main Kosasthalaiyar river flows to Poondi reservoir. -
2013 Policy Address Policy Initiatives of Development Bureau
CB(1)428/12-13(03) LEGISLATIVE COUNCIL PANEL ON DEVELOPMENT 2013 Policy Address Policy Initiatives of Development Bureau INTRODUCTION The Chief Executive (CE) delivered his 2013 Policy Address on 16 January 2013. This paper elaborates on the policy initiatives of the Development Bureau (DEVB). OUR VISION 2. Our vision is to ensure adequate land supply and to build up a “land reserve” so as to meet future demands in a timely manner and improve people’s living space. It is also our vision to continue to invest in and manage infrastructure development to facilitate economic and sustainable development of Hong Kong. 3. We aim to create a safe and quality city through formulating and implementing policies in the areas of heritage conservation, greening, tree management and total water management; implementing measures in landslip prevention, flood prevention, and lifts and escalators safety; implementing a multi-pronged approach to enhance building safety; as well as expediting urban renewal to improve the built environment and achieve better utilisation of land resources to meet various development needs. NEW INITIATIVES (1) LAND SUPPLY (a) Increasing Supply of Housing Land in Short to Medium Term (i) Increasing Development Density and Streamlining Land Administration - 2 - 4. Increasing the development density of residential sites is a feasible way to enhance flat production. We are working closely with the Planning Department (PlanD) and other departments to increase the development density of unleased or unallocated residential sites as far as allowable in planning terms. Similar applications from private residential developments for approval of higher development density will also be positively considered. -
Government of Pakistan Prime Minister's Office National Disaster
Page 1 of 6 Government of Pakistan Prime Minister’s Office National Disaster Management Authority Islamabad MONSOON 2021 DAILY SITUATION REPORT NO – 046 (Period Covered: 1300 Hrs 14 August 2021 – 1300 Hrs 15 August 2021) 1. Area Affected (Last 24 Hours). Ser Province / Rgn Daily Incident a. ICT b. Balochistan Nothing to Report (NTR) Khyber c. Pakhtunkhwa d. Punjab 2 x children got injured in District Bhakkar due to house collapse. e. Sindh NTR f. AJ&K 18 out of 18 x landslides / mudflows have been cleared for one way traffic at below mentioned roads by Rehab Team:- RD 232+000 near Dubair RD 232+200 near Dubair RD 232+600 near Dubair RD 233+000 near Dubair RD 233+350 near Dubair RD 233+750 near Dubair RD 234+000 near Dubair RD 234+500 near Dubair RD 234+700 near Dubair RD 235+000 near Dubair RD 237+000 near Jijal g. Gilgit Baltistan RD 237+900 near Jijal RD 239+500 near Jijal RD 240+200 near Jijal RD 242+000 near Jijal RD 243+000 near Jijal RD 245+500 near Shaitan Pari RD 247+700 near Gloze Banda KKH blocked from Zero Point to Gini. Rehabilitation work under progress. Babusar road blocked at 4 x locations due to landslide. Rehabilitation work under progress. Rehabilitation work under progress.at Badswat, Assumber valley & Hispar. 2. Cumulative Damages (1 July todate) a. Summary of Casualty – Injured/ Death Province / Deaths Injured Region M F C T M F C T AJ&K 4 2 2 8 1 2 1 4 Balochistan 13 3 - 16 10 - - 10 GB 3 2 1 6 - - - - Page 2 of 6 Province / Deaths Injured Region M F C T M F C T ICT - 1 1 2 - - - - KP 14 1 13 28 35 7 14 56 Punjab 37 3 2 42 104 - 2 106 Sindh - - 3 3 - - - - Total 71 12 22 105 150 9 17 176 b. -
Climate Change Profile of Pakistan
Climate Change Profi le of Pakistan Catastrophic fl oods, droughts, and cyclones have plagued Pakistan in recent years. The fl ood killed , people and caused around billion in damage. The Karachi heat wave led to the death of more than , people. Climate change-related natural hazards may increase in frequency and severity in the coming decades. Climatic changes are expected to have wide-ranging impacts on Pakistan, a ecting agricultural productivity, water availability, and increased frequency of extreme climatic events. Addressing these risks requires climate change to be mainstreamed into national strategy and policy. This publication provides a comprehensive overview of climate change science and policy in Pakistan. About the Asian Development Bank ADB’s vision is an Asia and Pacifi c region free of poverty. Its mission is to help its developing member countries reduce poverty and improve the quality of life of their people. Despite the region’s many successes, it remains home to a large share of the world’s poor. ADB is committed to reducing poverty through inclusive economic growth, environmentally sustainable growth, and regional integration. Based in Manila, ADB is owned by members, including from the region. Its main instruments for helping its developing member countries are policy dialogue, loans, equity investments, guarantees, grants, and technical assistance. CLIMATE CHANGE PROFILE OF PAKISTAN ASIAN DEVELOPMENT BANK 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines ASIAN DEVELOPMENT BANK www.adb.org Prepared by: Qamar Uz Zaman Chaudhry, International Climate Technology Expert ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2017 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 632 4444; Fax +63 2 636 2444 www.adb.org Some rights reserved. -
Operating Experience of Inflatable Dam for Pollution Control in Deep Bay, Hong Kong
Proceedings of 2013 IAHR Congress © 2013 Tsinghua University Press, Beijing Operating Experience of Inflatable Dam for Pollution Control in Deep Bay, Hong Kong S.K. SHE1, S.H. WONG2, Gigi W.C. POON3 Drainage Services Department, The Government of the Hong Kong Special Administrative Region Email: [email protected], [email protected], [email protected] ABSTRACT: Inflatable dams have been adopted for pollution control in urban streams in Hong Kong. The dams have served the purpose satisfactorily by preventing organic suspended particles from the polluted tidal backflow entering the streams in which odor is generated when these organic pollutants are decomposed under anaerobic condition at the bottom of the stream. With an automatic deflation response to an increase in flow rates under a heavy rainfall, the dams do not pose higher flooding risk to the community. In recent years, there is a paradigm shift in stormwater management in which more focus is placed on eco-hydraulics and low carbon footprint (Wenger et al., 2009; Brown and Farrelly, 2008). Therefore, it is time to review the need and the operation mode of these inflatable dams so that the operation not only meets the objective of pollution control, but also enhances the ecological value of the stream and reduces energy consumption. As measures for achieving these multiple targets are sometimes contradictory, it is not easy to reach the right balance which is dynamic in nature and also site specific, with limited information on flow, ecology, and pollution loading. This paper presents a review of the operating experience of three inflatable dams in urban streams, namely the Yuen Long Bypass Floodway (YLBF), Ngau Tam Mei Nullah (NTMN) and Yuen Long Nullah (YTN).