Prof. Dr. Jürgen Scheffran & Prof. Dr. Udo Schickhoff
Total Page:16
File Type:pdf, Size:1020Kb
CLIMATE AND ENVIRONMENTAL CHANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Prof. Dr. Jürgen Scheffran & Prof. Dr. Udo Schickhoff with slides provided by Prof. Dr. Jürgen Böhner Lecture 3 Prof. Dr. Jürgen Scheffran Abteilung Integrative Geographie, Universität Hamburg Research Group Climate Change and Security Grindelberg 7, Room 2015 (Sprechstunde nach Vereinbarung) Tel: 040 – 42838 7722 Email: [email protected] Web: www.clisec-hamburg.de 1 CLIMATE AND ENVIRONMENTAL CHANGE M.Sc. Module ‚Global Transformation and Environmental Change‘ Part A: Climate and Environment – Jürgen Scheffran I Introduction II The Climate System III Climate Change IV Environmental Change Part B: Human Impact on World Vegetation – Udo Schickhoff 2 III CLIMATE CHANGE Indication & Reconstruction Archives Overview 3 III CLIMATE CHANGE Indication & Reconstruction Archives Overview Archives (Proxy data) for the reconstruction of former (Paleo-) Climates and Climate Change (BRADLEY 1999) T = Temperature N = Precipitation B = Biomass and Vegetation V = Volcanic eruption E = Terrestrial magnetic field M = Sea-level fluctuations C = Chemical composition S = Solar radiation 4 III CLIMATE CHANGE Indication & Reconstruction Archives Dating Methods Radiocarbon dating: dating of carbonaceous organic material up to about 58 to 62 ka using the half-life of the radioactive carbon-14 (14C) Oxygen isotope method: analysis of the 18O/16O ratio in marine sediments and ice Thermoluminescence (TL): determination of the time elapsed since the material containing crystalline minerals was exposed to sunlight Varve chronology: counting and measuring thicknesses in annual paired layers of stratified limnic sediments (varved clays) Dendrochronology: tree-ring dating based on the analysis of patterns of tree-rings Pollen analysis: Reconstruction of vegetation analyzing the distribution of pollen grains of various species contained in deposits Lichenometry: geochronologic aging using lichen growth (Rhizocarpon geographicum) to determine the age of exposed rocks 5 III CLIMATE CHANGE Indication & Reconstruction Archives Dating Methods Loess-paleosol-sequence and chrono- stratigraphy of the Baoji loess profile in the Chinese Loess Plateau (GEBHARDT et al. 2007:301) „L“ in the second column indicates (glacial) loess and correspond to glacial (even-numbered) marine isotope stages (left column) „S“ indicates (interglacial) soil formation and corresponds to interglacial uneven- numbered isotope stages (right column) The correlation allows a back dating by means of remanent magnetization (right column) 6 III CLIMATE CHANGE Causes External and Internal Forcing Overview Natural causes of climate changes 1. Changes of Earth-Sun relationships (i.e. the Earths’ orbital parameters) and changes of solar radiation emission (cyclic fluctuations of solar activity) 2. Changes of the surface structure and the planetary albedo of the Earth (depending on land-sea-distri- bution, topography, ice cover, cloud cover) 3. Changes of the chemical compo- sition of the Earths’ atmosphere (carbon dioxid, water vapor content, methane etc.) or the amount of aerosols 7 III CLIMATE CHANGE Causes Orbital and Solar Variations Earth-Sun-Relations 8 III CLIMATE CHANGE Causes Orbital and Solar Variations Earth-Sun-Relations 9 III CLIMATE CHANGE Causes Orbital and Solar Variations Milankovitch-Cycles Precession 19.000, 22.000 and 24.000 Years Obliquity 41.000 Years Eccentricity 95.000, 125.000 and 400.000 Years 10 III CLIMATE CHANGE Causes Orbital and Solar Variations Milankovitch-Cycles Now [ka ago] Milutin Milanković (1879 – 1958) James Croll (1864) 11 III CLIMATE CHANGE Causes Orbital and Solar Variations Sunspot Numbers Prior to 1749, sporadic observations of sunspots were compiled and placed on consistent monthly framework by HOYT & SCHATTEN (1998). Since ~1749, continuous monthly averages of sunspot activity were reported by the Solar Influences Data Analysis Center, World Data Center for the Sunspot Index, at the Royal Observatory of Belgium. The ~11 year solar magnetic cycle is associated with the natural waxing and waning of solar activity. 12 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution North American Plate Eurasian Plate African Pacific Plate Plate South American Indo-Australian Plate Plate 250 Mio. yrs. b.p. | 200 Mio. yrs.Antarctic b.p. | 150 Plate Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 13 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 14 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 15 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 16 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 17 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 18 III CLIMATE CHANGE Causes Surface Structure of the Earth Land-Sea-Distribution 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 19 III CLIMATE CHANGE Causes Surface Structure of the Earth Orogenesis and Orography 250 Mio. yrs. b.p. | 200 Mio. yrs. b.p. | 150 Mio. yrs. b.p. | 100 Mio. yrs. b.p. | 50 Mio. yrs. b.p. | Now 20 III CLIMATE CHANGE Causes Surface Structure of the Earth Orogenesis and Orography OROGENESIS Physical Atmosphere Weathering Chemical Biosphere Weathering Pedosphere Translocation Hydrosphere and Deposition 21 III CLIMATE CHANGE Causes Surface Structure of the Earth Thermohaline Circulation Salinity [PSS] 22 III CLIMATE CHANGE Causes Surface Structure of the Earth Orogenesis and Orography 23 III CLIMATE CHANGE Causes Chemical Composition of the Atmosphere Volcanism North American Plate Eurasian Plate African Plate Pacific Plate South American Plate Indo-Australian Plate Antarctic Plate Distribution of active volcanoes in the Holocene with a significant concentration at plate margins and subduction zones (GEBHARDT et al. 2007: 269) 24 III CLIMATE CHANGE Causes Chemical Composition of the Atmosphere Volcanism Volcanism Solid and/or gaseous components are raised by volcanic activities. The types of eruption differentiate between: • Exhalation: Outgassing • Effusion: Non-explosive delivery of solid and liquid components • Explosion: Ejection of flowed and/or solid particles 25 III CLIMATE CHANGE Causes Chemical Composition of the Atmosphere Volcanism The June 12, 1991 eruption column from Mount Pinatubo taken from the east side of Clark Air Base (USGS 2010) 26 III CLIMATE CHANGE Climate History Evolution of Climate Geological Time Table 2,59 248 542 27 (www.geo.cornell.edu/eas/education) III CLIMATE CHANGE Climate History Evolution of Climate Evolution of the Earth’s Atmosphere Time [Bil. yrs b.p.] 4,5 - 4,0 4,0 - 3,5 3,5 - 2,1 2,1 - 1,5 1,5 - 0,8 Atmosphere First Second Third Fourth Modern Water Vapour 5 % 60 % 10 % 5 % 0-4 % Nitrogen 1 % 3 % 60 % 65 % 78 % Carbon Dioxide 20 % 5 % 1 % 0.04 % Oxygen 5 % 21 % Hydrogen 35 % 1 % Helium 35 % Methane / Ammonia 21 % 10 % Sulphur Dioxide 0.0001 % 2,59 248 542 Key phases in the development of the atmosphere (www.ozh2o.com) 28 III CLIMATE CHANGE Climate History Evolution of Climate Precambrian Climate simulation for a „Snowball Earth-Situation“ before 700 Mio. yrs b.p. 29 III CLIMATE CHANGE Climate History Evolution of Climate Precambrian Global paleogeography for late proterozoic (600 Mio. yrs b.p.) 30 III CLIMATE CHANGE Climate History Evolution of Climate Paleozoic and Mesozoic warmer next figure Ice Age Ice Age colder Mio. yrs b.p. cambrian ordovician silurian devonian carboniferous permian triassic jurassic cretaceous tertiary quat. PALEOZOIC MESOZOIC CENOZOIC Global changes in temperature of the last 542 Mio. years – deviations from the contemporary mean temperature (BUBENZER & RADTKE 2009) 31 III CLIMATE CHANGE Climate History Evolution of Climate Paleozoic and Mesozoic warmer next figure Ice Age Ice Age colder Mio. yrs b.p. cambrian ordovician silurian devonian carboniferous permian triassic jurassic cretaceous tertiary quat. PALEOZOIC MESOZOIC CENOZOIC Global changes in temperature of the last 542 Mio. years – deviations from the contemporary mean temperature (BUBENZER & RADTKE 2009) Late Permian Paleogeography of the Earth (http://jan.ucc.nau.edu) 32 III CLIMATE CHANGE Climate History Evolution of Climate Tertiary -+12[°C] next figure -+9 -+6 -+3 --3 --6 --9 --12[°C] Mio. yrs b.p. paleocene eocene oligocene miocene plioc. pl. PALEOGENE NEOGENE Global changes in temperature of the last 65 Mio. years – deviations from the contemporary mean temperature (BUBENZER & RADTKE 2009) 33 III CLIMATE CHANGE Climate History Evolution of Climate Late Tertiary and Quaternary next -+4[°C] figure -+2 --2 --4 --6 --8 Mio. yrs pliocene pleistocene NEOGENE Global changes in temperature of the last 5,3 Mio. years - deviations from the contemporary mean temperature (BUBENZER & RADTKE 2009) 34 III CLIMATE CHANGE Climate History Evolution of Climate Late Quaternary Mindel-Riss interglacial Riss-Würm