Early Mass Selection Response of Two Quinoa Landraces Under Highlands Conditions in Northern Chile

Total Page:16

File Type:pdf, Size:1020Kb

Early Mass Selection Response of Two Quinoa Landraces Under Highlands Conditions in Northern Chile Early Mass Selection Response of Two Quinoa Landraces under Highlands Conditions in Northern Chile 1* 2 1 Francisco FUENTES , Atul BHARGAVA , Claudia ROJAS-BERTINI 1 Facultad de Agronomía e Ingeniería Forestal, Facultad de Ingeniería, Facultad de Medicina, Pontificia Universidad2 Católica de Chile, Casilla 306-22, Santiago, Chile. Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar-845401, India. *corresponding author: [email protected] BulletinUASVM Horticulture 77(2) / 2020 Print ISSN 1843-5254, Electronic ISSN 1843-5394 DOI:10.15835/buasvmcn-hort: 2020.0059 Abstract Quinoa has been cultivated since centuries in the Andean region as a seed crop by indigenous communities. The crop has gained renewed interest because of its highly nutritious grain with high-quality protein rich in essential amino acids, and several bioactive compounds, along with its ability to grow under stress conditions. Despite the importance of the crop, limited research work on breeding aspects has been undertaken, leading to lack of information on the understanding of levels of variability of genotypes for different traits and their interactions. The aim of the present study was to assess and quantify the early response to mass selection in two quinoa landraces in highland conditions. Mass selection experiments were conducted during two successive crop seasons using eleven morphological traits. Correlation, genetic gain (gg) per selection cycle and principal component analysis was carried out. Only plant height (PH) and number of branches (NB) presented changes between selection cycles in both germplasm lines. Grain yield per plant (GYP) was positively correlated with inflorescence length (IL), stem diameter (SD) and plant weight (PW) for both quinoa lines. The results obtained would be useful to facilitate selection of the most relevant variables of quinoa considering its variation and interactions in the highland environmentKeywords: in Chile. mass selection, highland, saponin Introduction Chenopodium quinoa important component of the food chain across a Quinoa ( Willd.) is an broad area of theet Andes,al., including partset al. of Bolivia, ancient crop that has been cultivatedet for al. the past Peru, Ecuador, Colombia, Argentina and Chile 7,000-8,000 years in the mountain regions of the (Vázquez-Luna 2019; Angeli , 2020). In Andes in South America (Fuentes , 2009). consideration of all these factors, the year 2013 was The crop has gained worldwide attention and declared “The International Year of Quinoa” by the renewed popularity because of its highly nutritious United Nations Food and Agriculture Organization grain with high-quality protein (particularly rich (FAO), in recognition of its role in attaining food and in essential amino acids) and several bioactive nutritional security, and its potential for eradicating compounds, along with its ability to grow under poverty (United Nations, 2011). etstress al., conditions (Fuentes and Bhargava, 2011; In Chile, quinoa is produced on small-scale on Fuentes and Paredes-Gonzalez, 2015; Martínez approximately 220 ha in the highlands of Atacama 2015). Quinoa grain is considered the most Desert, representing 31.2% of the national area 16 et al. FUENTES et al. et al. under its cultivation (Fuentes , 2017). Given types and the G × E interaction effects (Bertero , the enormous international demand for quinoa, 2004). In this study, no single quinoa genotype group indigenous communities have transformed their displayed consistently superior grain yield across all crop management system towards intensive the environments, and the genotype and the G × E production, including grain transformation interaction effects observed for the duration of the for diversification of value-added products. crop cycle had major influence on the cultivar perfor- However, the development of these initiatives is mance and on the form of G × E interaction observed still hampered by the heterogeneous quality of for the total above-ground biomass and grain yield. its grain, primarily due to the use of a mixture It was concluded that a good average performance of landraces for cultivation by the farmers who and broad adaptation of quinoa could come from the presume thatet al. a broader genetic base may reduce combination of medium–late maturity and high har- the risk of crop to variations in the environment vest index, and that simultaneous progress for grain (Fuentes , 2005, 2009). Due to the above yield and grain size can be expected from selection. mentioned production strategy, this practice -1is In spite of the great importance of quinoa characterized by low grain yields et(~500 al. kg ha ) cultivation in the highland areas in Northern Chile, and its heterogeneity that makes it non-suitable limited research work on breeding aspects has for marketable production (Bazile , 2014). been done, leading to lack of information on the Grain yield and grain size are frequently used etunderstanding al. of levels of variability of genotypes as selectionet criteria al. for quinoaet breeding al. programs for different traits and their interactions (Fuentes etbecause al. of their influence on commercial quality , 2009). In this context, the only report (Bhargava , 2006; Madrid , 2018; Murphy about Chilean quinoa germplasm evaluated , 2018). The main breeding methods used under highland conditions displayed significant in quinoa include masset al. selection, individualet al. differences among variables describing grain selection, pedigree method, hybridization and yields and morphological traits ofet two al. quinoa backcrossing (Murphy , 2018; Peterson , genotypes, providing the basal germplasm 2015). The intra- and inter-population selection material for this study (Fuentes , 2005). have been quite successfulet in al. exploiting the local The aim of the present study was to assess and adaptation of selected genotypes for increasing quantify the early response to mass selection grain production (Bertero , 2004). in two quinoa landraces in highland conditions. In quinoa, different analytical approaches have The results obtained would be useful to facilitate been employed to analyse the germplasm variability selection of the most relevant variables of quinoa based on different morphological traits. An investiga- considering its variation and interactions in the tion of genotype × environment (G × E) interaction of highlandMaterials environment and methods in Chile. ten varieties of quinoa in England demonstrated that Experimental site and plant material variables of grain yield, number of days to anthesis and maturity were strongly dependent on the vari- ety that led to the conclusion that earliness and grain Field experiments were conducted during crop yield were strongly associated at the level of variety, season 2015-16 and 2016-17 on Ancovinto farm but the pattern of G × E interaction differed among (19°23’23.44”S, 68°32’24.37”W, 3681 m above the variables measured (Risi and Galwey, 1991). An- sea level) belonging to indigenous commu nity of other study of stability for quantitative traits in four- Ancovinto (Tarapacá Region), Chile. The zone is teen quinoa lines suggested that selection for height, characterized by highland desert climate, with inflorescence size andet al. developmental stage could temperatures ranging between -17.6 and 24.4°C, be easily performed at an early stage of a breeding an average of 194 days with frost, and precipitation program (Jacobsen , 1996). Similarly, an inves- between 119.0 and 159.6 mm per year (Arenas, tigation on developmental stability under North 2011). The soil type was classified as Aridisol with European conditions has suggested the selection of sandy loam texture and the following soil parameters early, uniformly maturing plant with more branches, at 0-40 cm depth: pH (1:2.5)-1 = 8.8; electrical low saponin content and high seed yield (Jacobsen, conductivity 0.82 mmhos cm ; exchangeable sodium tion1998). conditions A comprehensive across three multi-environment continents assessed trial, 2%; and organic matter 0.7 % (analysed by standard involving multiple quinoa cultivars under irriga- methods at Agroanalisisred UC and laboratories). yellow The plant material used comprised two Bulletinthe grain UASVM yield Horticulture and 77(2) grain / 2020 size nature of the geno- quinoa lines namely, , because of the 17 Mass selection response of quinoa -1 inflorescence colour at grain filling stage. During (mm); GYP = grain yield plant (g); HI = harvest-1 the first cycle (C1), red and yellow lines consisted index (%) and SC = saponin content (mg g ). The in a bulked seed material of 38 and 39 quinoa definition of variation among each descriptor genotypes respectively, which were selected was made according to (IBPGR, 1981). Saponin according to high grain yield per plant from a mixed contentData was analysis measured using Koziol’s standardized 0 etcrop al. (C , traditional smallholder conditions), afrosimetric test (Koziol, 1991). where no prior selection had taken place (Fuentes 2 , 2005). For the second cycle (C ) was used a An analysis of variance, ®combining quinoaet al. new bulked seeds selection, which comprised 26 lines and selection cycles was performed by the red and 24 yellow genotypes, selected from 100 statistical software INFOSTAT (Di Rienzo , quinoa plants according to phenotypic similarity 2016). Means ofp each trait for two lines and two group obtained after multivariate analysis of cycles were used to make mean comparison with morphological traits
Recommended publications
  • Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium Quinoa Willd)
    plants Review Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium quinoa Willd) Emma M. McGinty 1, Kevin M. Murphy 2 and Amber L. Hauvermale 2,* 1 The School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; [email protected] 2 Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, USA; [email protected] * Correspondence: [email protected]; Tel.:+1-509-335-3661 Abstract: Quinoa (Chenopodium quinoa Willd.) is a culturally significant staple food source that has been grown for thousands of years in South America. Due to its natural drought and salinity tolerance, quinoa has emerged as an agronomically important crop for production in marginal soils, in highly variable climates, and as part of diverse crop rotations. Primary areas of quinoa research have focused on improving resistance to abiotic stresses and disease, improving yields, and increasing nutrition. However, an evolving issue impacting quinoa seed end-use quality is preharvest sprouting (PHS), which is when seeds with little to no dormancy experience a rain event prior to harvest and sprout on the panicle. Far less is understood about the mechanisms that regulate quinoa seed dormancy and seed viability. This review will cover topics including seed dormancy, orthodox and unorthodox dormancy programs, desiccation sensitivity, environmental and hormonal mechanisms that regulate seed dormancy, and breeding and non-breeding strategies for enhancing resistance to PHS in quinoa. Citation: McGinty, E.M.; Murphy, Keywords: abscisic acid; desiccation sensitivity; gibberellin; hormone signaling; precocious germina- K.M.; Hauvermale, A.L. Seed tion; seed morphology Dormancy and Preharvest Sprouting in Quinoa (Chenopodium quinoa Willd).
    [Show full text]
  • Development of New Starch Formulations for Inclusion in the Dietotherapeutic Treatment of Glycogen Storage Disease †
    Proceedings Development of New Starch Formulations for Inclusion in the Dietotherapeutic Treatment of Glycogen Storage Disease † Raquel Selma-Gracia 1,2, José Moisés Laparra Llopis 2 and Claudia Monika Haros 1,* 1 Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Av. Agustín Escardino 7, Parque Científico, 46980 Paterna, Valencia, Spain; [email protected] 2 Molecular Immunonutrition Group, Madrid Institute for Advanced Studies in Food (IMDEA-Food), Ctra. de Canto Blanco n° 8, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected] † Presented at the 2nd International Conference of Ia ValSe-Food Network, Lisbon, Portugal, 21–22 October 2019. Published: 4 August 2020 Abstract: In this study, the thermal properties of quinoa and maize starch were evaluated and related to their digestibility. Lower gelatinisation and retrogradation parameters were obtained in quinoa starch, suggesting a better susceptibility to the disruption of the crystalline structure. These results were accompanied with a higher percentage of hydrolysis in raw quinoa, reaching more twofold higher than in raw maize starch. Besides, the slopes calculated by a Lineweaver-Bürke transformation showed similar values in raw quinoa and maize starches. Taken together, these characteristics of quinoa starch could provide more digestible benefits than the current treatment, raw maize starch, in glycogen storage disease patients. Keywords: maize starch; quinoa starch; thermal properties; starch hydrolysis; glycogen storage disease 1. Introduction Previous research has shown variability in the susceptibility to digestion depending on structural differences in starches from different sources [1]. A crystalline structure is an important factor to take into account in digestibility, and can be modified by a gelatinisation process [2].
    [Show full text]
  • Cherry, Wild Rice & Quinoa Salad
    Cherry, Wild Rice & Quinoa Salad Recipe Source: www.eatingwell.com Servings: 3 Ingredients: ¾ cup wild rice ½ cup quinoa, rinsed and drained ¼ cup olive oil ¼ cup fruity vinegar, such as raspberry or pomegranate ¾ tsp salt ¼ tsp freshly ground black pepper 2 cups halved pitted sweet fresh cherries 2 stalks celery, diced ¾ cup diced aged goat cheese, smoked cheddar, or other smoked cheese ½ cup chopped pecans, toasted Steps: . Bring a large saucepan of water to a boil over high heat. Add wild rice and cook for 30 minutes. Add quinoa and cook until the rice and quinoa are tender, about 15 minutes more. Drain and rinse with cold water until cool to the touch. Drain well. Meanwhile, whisk oil, vinegar, salt and pepper in a large bowl. Add the rice and quinoa, cherries, celery, cheese, and pecans. Toss to combine. Serve at room temperature or cold. Tips from the Test Kitchen: Can be covered and refrigerated ahead of time. To save time pitting cherries, try a hand-held cherry pitter or use the tip of a paring knife or vegetable peeler. If cherries aren’t in season, apples are fantastic in this salad as well, or you can substitute 1 cup dried cranberries. Use reduced-fat cheese. If you don’t have a fruity vinegar, balsamic can be substituted. Nutritional Facts (Per Serving): Calories: 590, Carbohydrates: 50 grams, Protein:13 grams, Total Fat: 40 grams, Saturated Fat: 8 grams, Cholesterol: 35 mg, Sodium: 728 mg, Fiber: 8 grams, Total Sugars: 18 grams. .
    [Show full text]
  • Eurostat Handbook for Annual Crop Statistics
    Annual crop statistics Handbook 2020 Edition TABLE OF CONTENTS Table of Contents .............................................................................................................................. 3 1. Introduction ................................................................................................................................... 5 1.1 Changes from previous versions ............................................................................................. 6 1.1.1 Changes in classification .................................................................................................. 6 2. Methodology ................................................................................................................................. 9 2.1 Definitions and concepts ........................................................................................................... 9 2.1.1 Area ...................................................................................................................................... 9 2.1.2 Production ......................................................................................................................... 13 2.1.3 Humidity degree ............................................................................................................... 13 2.1.4 Yield ................................................................................................................................... 16 2.2 Units of measurement ............................................................................................................
    [Show full text]
  • Quinoa Industry Development in China
    International Quinoa Conference 2016: Quinoa for Future Food and Nutrition Security in Marginal Environments Dubai, 6-8 December 2016 www.quinoaconference.com Quinoa Industry Development in China By: REN Gui-xing Institute of Crop Science (ICS), Chinese Academy of Agricultural Sciences (CAAS) Presenter email: [email protected] Contents 1 Quinoa cultivation and breeding in China 2 Quinoa product and market in China 3 Opportunity and challenge for quinoa Brief introduction of ICS 4 research departments, 357 staff 3 academicians, 95 professors 1600 papers (SCI), 300 books 240 certified varieties, 290 issued patents The 2nd biggest genebank, with more than 400 000 germplasm Brief introduction of ICS The Crop Science Society of China (CSSC) belongs to ICS 19 committees belong to the society Quinoa Committee of the CSSC was founded in 2015 Brief introduction of ICS International cooperation project for quinoa between ICS and UNALM: China-Peru Joint Research and Demonstration of Quinoa Processing Technology Visit Dr. Luz Rayda Gomez Pando and Dr. Ritva Ann-Mari Repo-Carrasco Va of UNALM in Peru, 2015 Brief introduction of ICS Team achievements: 1st industrial standard for quinoa in China 1st translated book for quinoa in Chinese 9 papers (3 SCI indexed), 3 patents Yao, Yang, Shi et al. Anti-inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J. Food Sci. 2014, 79: 1018-1023. Yao, Shi, Ren. Antioxidant and immunoregulatory activity of polysaccharides from quinoa (Chenopodium quinoa Willd.). Int. J. Mol. Sci. 2014, 15, 19307-19318 Yao, Zhu, Gao, et al. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation.
    [Show full text]
  • Gluten-Free Grains
    Gluten-Free Grains Amaranth Updated February 2021 Buckwheat The gluten-free diet requires total avoidance of the grains wheat, barley, rye and all varieties and hybrids of these grains, such as spelt. However, there are many wonderful gluten-free grains* to enjoy. Cornmeal, Amaranth Polenta, Grits, Once the sacred food of the Aztecs, amaranth is high in protein, calcium, iron, and fiber. Toasting this tiny grain before cooking brings out its nutty flavor. Hominy Makes a delicious, creamy hot breakfast cereal. Serve with fruit of choice on top and/or a touch of maple syrup. Millet Rice Rice comes in many varieties: short grain, long grain, jasmine and basmati to name a Oats few. Long grain rice tends to be fluffier while short grain rice is stickier. Rice also comes in various colors: black, purple, brown, and red. These colorful un-refined rices contribute more nutritional benefits than does refined white rice and have subtly unique flavors and Quinoa textures too. Wild rice is another different and delicious option. Versatile rice leftovers can go in many directions. Add to salads or sautéed vegetables; Rice make rice pancakes or rice pudding; season and use as filling for baked green peppers or winter squash. Sorghum Buckwheat Despite the name, buckwheat is a gluten-free member of the rhubarb family. Roasted buckwheat is called kasha. Buckwheat is high in B Vitamins, fiber, iron, magnesium, Teff phosphorous and zinc. Buckwheat has an earthy, nutty, slightly bitter taste. Experiment with using the cooked grain (buckwheat “groats”, or “kasha” which is the toasted version) as you would rice.
    [Show full text]
  • Alkaline Foods...Acidic Foods
    ...ALKALINE FOODS... ...ACIDIC FOODS... ALKALIZING ACIDIFYING VEGETABLES VEGETABLES Alfalfa Corn Barley Grass Lentils Beets Olives Beet Greens Winter Squash Broccoli Cabbage ACIDIFYING Carrot FRUITS Cauliflower Blueberries Celery Canned or Glazed Fruits Chard Greens Cranberries Chlorella Currants Collard Greens Plums** Cucumber Prunes** Dandelions Dulce ACIDIFYING Edible Flowers GRAINS, GRAIN PRODUCTS Eggplant Amaranth Fermented Veggies Barley Garlic Bran, wheat Green Beans Bran, oat Green Peas Corn Kale Cornstarch Kohlrabi Hemp Seed Flour Lettuce Kamut Mushrooms Oats (rolled) Mustard Greens Oatmeal Nightshade Veggies Quinoa Onions Rice (all) Parsnips (high glycemic) Rice Cakes Peas Rye Peppers Spelt Pumpkin Wheat Radishes Wheat Germ Rutabaga Noodles Sea Veggies Macaroni Spinach, green Spaghetti Spirulina Bread Sprouts Crackers, soda Sweet Potatoes Flour, white Tomatoes Flour, wheat Watercress Wheat Grass ACIDIFYING Wild Greens BEANS & LEGUMES Black Beans ALKALIZING Chick Peas ORIENTAL VEGETABLES Green Peas Maitake Kidney Beans Daikon Lentils Dandelion Root Pinto Beans Shitake Red Beans Kombu Soy Beans Reishi Soy Milk Nori White Beans Umeboshi Rice Milk Wakame Almond Milk ALKALIZING ACIDIFYING FRUITS DAIRY Apple Butter Apricot Cheese Avocado Cheese, Processed Banana (high glycemic) Ice Cream Berries Ice Milk Blackberries Cantaloupe ACIDIFYING Cherries, sour NUTS & BUTTERS Coconut, fresh Cashews Currants Legumes Dates, dried Peanuts Figs, dried Peanut Butter Grapes Pecans Grapefruit Tahini Honeydew Melon Walnuts Lemon Lime ACIDIFYING Muskmelons
    [Show full text]
  • Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries
    ORIGINAL RESEARCH published: 21 June 2016 doi: 10.3389/fpls.2016.00850 Worldwide Evaluations of Quinoa: Preliminary Results from Post International Year of Quinoa FAO Projects in Nine Countries Didier Bazile 1*, Cataldo Pulvento 2, Alexis Verniau 3, Mohammad S. Al-Nusairi 4, Djibi Ba 5, Joelle Breidy 6, Layth Hassan 7, Maarouf I. Mohammed 8, Omurbek Mambetov 9, Munira Otambekova 10, Niaz Ali Sepahvand 11, Amr Shams 12, Djamel Souici 13, Khaled Miri 11 and Stefano Padulosi 14 1 Unité Propre de Recherche Gestion des Ressources Renouvelables et Environnement, Department of Environments and Societies, French Agricultural Research and International Cooperation Organization, Montpellier, France, 2 CNR–Institute for Agricultural and Forest Systems in the Mediterranean, Ercolano, Italy, 3 ESA–Ecole Supérieur d’Agriculture, Angers, France, 4 General Seed Multiplication Cooperation, Agricultural Research and Extension Authority, Dhamar, Yemen, 5 Centre National Edited by: de Recherche Agronomique et de Développement Agricole, Kaedi, Mauritania, 6 Department of Plant Breeding, Lebanese Soren K. Rasmussen, Agricultural Research Institute, Zahlé, Lebanon, 7 Plant Production Department, Ministry of Agriculture, Baghdad, Iraq, University of Copenhagen, Denmark 8 Genetics and Plant Breeding, Forage and Range Research Program, Agricultural Research Corporation, Khartoum North, Reviewed by: Sudan, 9 Seed Association of Kyrgyzstan, Bishkek, Kyrgyz, 10 Seed Association of Tajikistan, Dushanbe, Tajikistan, 11 Research Michael Benjamin Kantar, Department,
    [Show full text]
  • (Chenopodium Quinoa Willd.): an Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization
    foods Review Quinoa (Chenopodium quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization Viktória Angeli 1, Pedro Miguel Silva 2,3,* , Danilo Crispim Massuela 4 , Muhammad Waleed Khan 5, Alicia Hamar 6, Forough Khajehei 4, Simone Graeff-Hönninger 4 and Cinzia Piatti 7 1 Department of Historical and Geographic Sciences and the Ancient World (DiSSGeA), University of Padova, 35141 Padova, Italy; [email protected] 2 Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal 3 International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal 4 Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] (D.C.M.); [email protected] (F.K.); simone.graeff@uni-hohenheim.de (S.G.-H.) 5 Faculty of Agricultural Sciences, University Hohenheim, 70599 Stuttgart, Germany; [email protected] 6 Faculty of Natural Sciences, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] 7 Institute of Social Sciences in Agriculture, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] * Correspondence: [email protected] Received: 26 December 2019; Accepted: 15 February 2020; Published: 19 February 2020 Abstract: Quinoa (Chenopodium quinoa Willd.) is native to the Andean region and has attracted a global growing interest due its unique nutritional value. The protein content of quinoa grains is higher than other cereals while it has better distribution of essential amino acids. It can be used as an alternative to milk proteins. Additionally, quinoa contains a high amount of essential fatty acids, minerals, vitamins, dietary fibers, and carbohydrates with beneficial hypoglycemic effects while being gluten-free.
    [Show full text]
  • Global Expansion of Quinoa and Challenges for the Andean Region
    Global Food Security 26 (2020) 100429 Contents lists available at ScienceDirect Global Food Security journal homepage: www.elsevier.com/locate/gfs Global expansion of quinoa and challenges for the Andean region G. Alandia a,*, J.P. Rodriguez b, S.-E. Jacobsen c, D. Bazile d,e, B. Condori f a University of Copenhagen, Faculty of Science, Department of Plant and Environmental Sciences, Højbakkegaard Alle 13, DK-2630, Taastrup, Denmark b Crop Diversification and Genetics Program, International Center for Biosaline Agriculture, ICBA, Dubai, P.O. Box 14660, United Arab Emirates c Quinoa Quality Aps, DK-4420, Regstrup, Denmark d UPR GREEN, CIRAD, 34398 Montpellier, France e GREEN, Univ Montpellier, CIRAD, Montpellier, France f Inter-American Institute for Cooperation on Agriculture. Bolivian Representation – IICA, La Paz, Bolivia ARTICLE INFO ABSTRACT Keywords: Quinoa (Chenopodium quinoa, Willd.) is an Andean grain crop recognized as an ally for global food security due to Chenopodium its high nutritional value. However, quinoa globalization entails challenges to the countries of origin. Farmers Market face a scenario of new concerns and competitors. In 2018, quinoa was present for research and production in 123 Agrobiodiversity countries. Although 74% of global exports are still supplied by Peru and Bolivia, production outside the Andes is Sustainability increasing. In addition, producer prices collapsed in 2015 while yields remained unstable, averaging 0.4–1.1 t Diversification 1 Food security ha . Understanding the reality of the new quinoa situation is fundamental to face the challenges of encouraging local biodiversity, promoting market diversification and cooperating with inclusive processes towards equitable benefits. 1. Introduction et al., 2016a).
    [Show full text]
  • Alternative Healthy Food Crops Manju Sharma* and Paul Khurana SM Amity Institute of Biotechnology, Amity University, Haryana, Gurgaon, Manesar-122413, India
    ition & F tr oo u d N f S o c Manju and Paul Khurana, J Nutr Food Sci 2014, 4:4 l i e a n n c r e DOI: 10.4172/2155-9600.1000288 u s o J Journal of Nutrition & Food Sciences ISSN: 2155-9600 Review Article Open Access Alternative Healthy Food Crops Manju Sharma* and Paul Khurana SM Amity Institute of Biotechnology, Amity University, Haryana, Gurgaon, Manesar-122413, India Abstract Plants having diverse profile in terms of nutrition, availability, tolerance to harsh climatic conditions and possibility of usages as food, forage and biofuel usually referred as Alternative plants. This article will only be focused on the plants having value to reinstate themselves as alternative food crop for the burgeoning population. Indigenous communities across the globe are familiar with a large diversity of flora and fauna that provide sustenance in form of food and medicine. The ‘plants for a future’ website reveals a list of more than 7000 underutilized species with different values (PFAF website). Most of these plants thrive well on impoverished or marginal soils and dry weather conditions. Millets, Buckwheat, Oats, and Chenopods are coming up as imperative nutritious option. The multipurpose use of Millets, Buckwheat, Oats, Chenopods and Barley coupled with early maturity, low nutrient demand and ability to adapt well to marginal and degraded lands makes them an ideal crop for future sustainable agriculture. Keywords: Millets; Chenopods; Oats; Buckwheat; Alternative food; Millets Healthy food Millets are indigenous to many parts of the world; most likely had Introduction an evolutionary origin in tropical western Africa, where they exist in wild and cultivated forms [4].
    [Show full text]
  • Molecular Advances for Improving Nutrient Bioavailability
    REVIEW published: 27 February 2020 doi: 10.3389/fgene.2020.00049 Healthy and Resilient Cereals and Pseudo-Cereals for Marginal Agriculture: Molecular Advances for Improving Nutrient Bioavailability † † Juan Pablo Rodríguez , Hifzur Rahman , Sumitha Thushar and Rakesh K. Singh* Crop Diversification and Genetics Program, International Center for Biosaline Agriculture, Dubai, United Arab Emirates With the ever-increasing world population, an extra 1.5 billion mouths need to be fed by Edited by: 2050 with continuously dwindling arable land. Hence, it is imperative that extra food come Felipe Klein Ricachenevsky, from the marginal lands that are expected to be unsuitable for growing major staple crops Universidade Federal de under the adverse climate change scenario. Crop diversity provides right alternatives for Santa Maria, Brazil marginal environments to improve food, feed, and nutritional security. Well-adapted and Reviewed by: fi Joel B. Mason, climate-resilient crops will be the best t for such a scenario to produce seed and Tufts University School of Medicine, biomass. The minor millets are known for their high nutritional profile and better resilience United States for several abiotic stresses that make them the suitable crops for arid and salt-affected Scott Aleksander Sinclair, Ruhr University soils and poor-quality waters. Finger millet (Eleucine coracana) and foxtail millet (Setaria Bochum, Germany italica), also considered as orphan crops, are highly tolerant grass crop species that grow *Correspondence: well in marginal and degraded lands of Africa and Asia with better nutritional profile. Rakesh K. Singh [email protected]; Another category of grains, called pseudo-cereals, is considered as rich foods because of [email protected] their protein quality and content, high mineral content, and healthy and balance food quality.
    [Show full text]