Genetic Aspects of Ex Situ Conservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Works in Conservation
What Works in Conservation 2017 EDITED BY WILLIAM J. SUTHERLAND, LYNN V. DICKS, NANCY OCKENDON AND REBECCA K. SMITH To access digital resources including: blog posts videos online appendices and to purchase copies of this book in: hardback paperback ebook editions Go to: https://www.openbookpublishers.com/product/552 Open Book Publishers is a non-profit independent initiative. We rely on sales and donations to continue publishing high-quality academic works. What Works in Conservation 2017 Edited by William J. Sutherland, Lynn V. Dicks, Nancy Ockendon and Rebecca K. Smith http://www.openbookpublishers.com © 2017 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Sutherland, W.J., Dicks, L.V., Ockendon, N., and Smith, R.K. What Works in Conservation 2017. Cambridge, UK: Open Book Publishers, 2017. http://dx.doi.org/10.11647/OBP.0109 In order to access detailed and updated information on the license, please visit http://www.openbookpublishers.com/isbn/9781783743087#copyright Further details about CC BY licenses are available at http://creativecommons.org/licenses/by/4.0/ All links were active at the time of publication unless otherwise stated. Digital material and resources associated with this volume are available at http://www.openbookpublishers.com/isbn/9781783743087#resources and http://www.conservationevidence.com ISSN 2059-4232 (Print) ISSN 2059-4240 (Online) ISBN Paperback: 978-1-78374-308-7 ISBN Hardback: 978-1-78374-309-4 ISBN Digital (PDF): 978-1-78374-310-0 ISBN Digital ebook (epub): 978-1-78374-311-7 ISBN Digital ebook (mobi): 978-1-78374-312-4 DOI: 10.11647/OBP.0109 Funded by Arcadia, Synchronicity Earth, ESRC, NERC, Natural England and Waitrose Ltd. -
Management and Breeding of Birds of Paradise (Family Paradisaeidae) at the Al Wabra Wildlife Preservation
Management and breeding of Birds of Paradise (family Paradisaeidae) at the Al Wabra Wildlife Preservation. By Richard Switzer Bird Curator, Al Wabra Wildlife Preservation. Presentation for Aviary Congress Singapore, November 2008 Introduction to Birds of Paradise in the Wild Taxonomy The family Paradisaeidae is in the order Passeriformes. In the past decade since the publication of Frith and Beehler (1998), the taxonomy of the family Paradisaeidae has been re-evaluated considerably. Frith and Beehler (1998) listed 42 species in 17 genera. However, the monotypic genus Macgregoria (MacGregor’s Bird of Paradise) has been re-classified in the family Meliphagidae (Honeyeaters). Similarly, 3 species in 2 genera (Cnemophilus and Loboparadisea) – formerly described as the “Wide-gaped Birds of Paradise” – have been re-classified as members of the family Melanocharitidae (Berrypeckers and Longbills) (Cracraft and Feinstein 2000). Additionally the two genera of Sicklebills (Epimachus and Drepanornis) are now considered to be combined as the one genus Epimachus. These changes reduce the total number of genera in the family Paradisaeidae to 13. However, despite the elimination of the 4 species mentioned above, 3 species have been newly described – Berlepsch's Parotia (P. berlepschi), Eastern or Helen’s Parotia (P. helenae) and the Eastern or Growling Riflebird (P. intercedens). The Berlepsch’s Parotia was once considered to be a subspecies of the Carola's Parotia. It was previously known only from four female specimens, discovered in 1985. It was rediscovered during a Conservation International expedition in 2005 and was photographed for the first time. The Eastern Parotia, also known as Helena's Parotia, is sometimes considered to be a subspecies of Lawes's Parotia, but differs in the male’s frontal crest and the female's dorsal plumage colours. -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
Genetic Diversity and Population Structure of Two Endangered Neotropical Parrots Inform in Situ and Ex Situ Conservation Strategies
diversity Article Genetic Diversity and Population Structure of Two Endangered Neotropical Parrots Inform In Situ and Ex Situ Conservation Strategies Carlos I. Campos 1 , Melinda A. Martinez 1, Daniel Acosta 1, Jose A. Diaz-Luque 2, Igor Berkunsky 3 , Nadine L. Lamberski 4, Javier Cruz-Nieto 5 , Michael A. Russello 6 and Timothy F. Wright 1,* 1 Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] (C.I.C.); [email protected] (M.A.M.); [email protected] (D.A.) 2 Fundación CLB (FPCILB), Estación Argentina, Calle Fermín Rivero 3460, Santa Cruz de la Sierra, Bolivia; [email protected] 3 Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustenable, CONICET-Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil 7000, Argentina; [email protected] 4 San Diego Zoo Wildlife Alliance, San Diego, CA 92027, USA; [email protected] 5 Organización Vida Silvestre A.C. (OVIS), San Pedro Garza Garciá 66260, Mexico; [email protected] 6 Department of Biology, University of British Columbia, Kelowna, BC V1V 1V7, Canada; [email protected] * Correspondence: [email protected] Abstract: A key aspect in the conservation of endangered populations is understanding patterns of Citation: Campos, C.I.; Martinez, genetic variation and structure, which can provide managers with critical information to support M.A.; Acosta, D.; Diaz-Luque, J.A.; evidence-based status assessments and management strategies. This is especially important for Berkunsky, I.; Lamberski, N.L.; species with small wild and larger captive populations, as found in many endangered parrots. We Cruz-Nieto, J.; Russello, M.A.; Wright, used genotypic data to assess genetic variation and structure in wild and captive populations of T.F. -
Sustainability of Threatened Species Displayed in Public Aquaria, with a Case Study of Australian 1 Sharks and Rays 2 3 Kathryn
https://link.springer.com/article/10.1007/s11160-017-9501-2 1 PREPRINT 1 Sustainability of threatened species displayed in public aquaria, with a case study of Australian 2 sharks and rays 3 4 Kathryn A. Buckley • David A. Crook • Richard D. Pillans • Liam Smith • Peter M. Kyne 5 6 7 K.A. Buckley • D.A. Crook • P.M. Kyne 8 Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, 9 Australia 10 R.D. Pillans 11 CSIRO Oceans and Atmosphere, 41 Boggo Road, Dutton Park, QLD 4102, Australia 12 L. Smith 13 BehaviourWorks Australia, Monash Sustainable Development Institute, Building 74, Monash University, 14 Wellington Road, Clayton, VIC 3168, Australia 15 Corresponding author: K.A. Buckley, Research Institute for the Environment and Livelihoods, Charles Darwin 16 University, Darwin, NT 0909, Australia; Telephone: +61 4 2917 4554; Fax: +61 8 8946 7720; e-mail: 17 [email protected] 18 https://www.nespmarine.edu.au/document/sustainability-threatened-species-displayed-public-aquaria-case-study-australian-sharks-and https://link.springer.com/article/10.1007/s11160-017-9501-2 2 PREPRINT 19 Abstract Zoos and public aquaria exhibit numerous threatened species globally, and in the modern context of 20 these institutions as conservation hubs, it is crucial that displays are ecologically sustainable. Elasmobranchs 21 (sharks and rays) are of particular conservation concern and a higher proportion of threatened species are 22 exhibited than any other assessed vertebrate group. Many of these lack sustainable captive populations, so 23 comprehensive assessments of sustainability may be needed to support the management of future harvests and 24 safeguard wild populations. -
Captive Breeding Genetics and Reintroduction Success
Biological Conservation 142 (2009) 2915–2922 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Captive breeding genetics and reintroduction success Alexandre Robert * UMR 7204 MNHN-CNRS-UPMC, Conservation des Espèces, Restauration et Suivi des Populations, Muséum National d’Histoire Naturelle, CRBPO, 55, Rue Buffon, 75005 Paris, France article info abstract Article history: Since threatened species are generally incapable of surviving in their current, altered natural environ- Received 6 May 2009 ments, many conservation programs require to preserve them through ex situ conservation techniques Received in revised form 8 July 2009 prior to their reintroduction into the wild. Captive breeding provides species with a benign and stable Accepted 23 July 2009 environment but has the side effect to induce significant evolutionary changes in ways that compromise Available online 26 August 2009 fitness in natural environments. I developed a model integrating both demographic and genetic processes to simulate a captive-wild population system. The model was used to examine the effect of the relaxation Keywords: of selection in captivity on the viability of the reintroduced population, in interaction with the reintro- Reintroduction duction method and various species characteristics. Results indicate that the duration of the reintroduc- Selection relaxation Population viability analysis tion project (i.e., time from the foundation of the captive population to the last release event) is the most Mutational meltdown important determinant of reintroduction success. Success is generally maximized for intermediate project duration allowing to release a sufficient number of individuals, while maintaining the number of generations of relaxed selection to an acceptable level. -
Unit 5 Ex-Situ Conservation
UNIT 2 EX-SITU CONSERVATION Structure 5.0 Introduction 5.1 Advantage of Ex-situ Conservation 5.2 Objectives 5.3 Ex-situ Conservation : Principles & Practices 5.4 Conventional methods of ex-situ conservation 5.4.1 Gene Bank 5.4.2 Community Seed Bank 5.4.3 Seed Bank 5.4.4 Botanical Garden 5.4.5 Field Gene Bank 5.5 Biotechnological methods of ex-situ conservation 5.4.1 In-vitro Conservation 5.4.2 In-vitro storage of germplasm and cryopreservation 5.4.3 Other method 5.4.4 Germplasm facilities in India 5.6 General Account of Important Institutions 5.4.1 BSI 5.4.2 NBPGR 5.4.3 IARI 5.4.4 SCIR 5.4.5 DBT 5.7 Let us sum up 5.8 Check your progress & the key 5.9 Assignments/ Activities 5.10 References/ Further Reading 44 5.0 INTRODUCTION For much of the time man lived in a hunter-gather society and thus depended entirely on biodiversity for sustenance. But, with the increased dependence on agriculture and industrialisation, the emphasis on biodiversity has decreased. Indeed, the biodiversity, in wild and domesticated forms, is the sources for most of humanity food, medicine, clothing and housing, much of the cultural diversity and most of the intellectual and spiritual inspiration. It is, without doubt, the very basis of life. Further that, a quarter of the earth‟s total biological diversity amounting to a million species, which might be useful to mankind in one way or other, is in serious risk of extinction over the next 2-3 decades. -
Conservation Without Nature: the Trouble with in Situ Versus Ex Situ Conservation
University at Buffalo School of Law Digital Commons @ University at Buffalo School of Law Journal Articles Faculty Scholarship 2014 Conservation without Nature: the Trouble with In Situ Versus Ex Situ Conservation Irus Braverman University at Buffalo School of Law Follow this and additional works at: https://digitalcommons.law.buffalo.edu/journal_articles Part of the Law Commons, and the Natural Resources and Conservation Commons Recommended Citation Irus Braverman, Conservation without Nature: the Trouble with In Situ Versus Ex Situ Conservation, 51 Geoforum 47 (2014). Available at: https://digitalcommons.law.buffalo.edu/journal_articles/333 © 2013 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. This Article is brought to you for free and open access by the Faculty Scholarship at Digital Commons @ University at Buffalo School of Law. It has been accepted for inclusion in Journal Articles by an authorized administrator of Digital Commons @ University at Buffalo School of Law. For more information, please contact [email protected]. Conservation without Nature The Trouble with In Situ versus Ex Situ Conservation Dr. Irus Braverman What is it that we want? Much of what conservation biology must do is confused by notions of animal “wildness,” and “freedom,” and even by the belief of a few that when a species’ historical home is altered, that species is no longer worthy of interest. --William Conway, in Ballou et al. Population Management for Survival or Recovery, xix Strange as it may sound, the idea of nature is getting in the way of properly ecological forms of culture, philosophy, politics, and art. -
News Release
News Release Contact: Sondra Katzen, Chicago Zoological Society, 708.688.8351, [email protected] John Bradley, U.S. Fish and Wildlife Service, 505.248.6279, [email protected] Regina Mossotti, Endangered Wolf Center, 636.938.5900, [email protected] Tom Cadden, Arizona Game and Fish Dept., 623-236-7392, [email protected] October 24, 2016 Mexican Wolf Recovery Program Finds Evidence of Cross-Fostering Success Phoenix, AZ.— In their native habitat of the southwestern United States, the success of cross- fostered pups among the Mexican wolf population is being documented due to dedicated and collaborative efforts among several agencies and organizations, including the Arizona Game and Fish Department, the Chicago Zoological Society (CZS), the Endangered Wolf Center (EWC), and the U.S. Fish and Wildlife Service (USFWS). The organizations are working together to reintroduce the species to its native habitat in the American Southwest and Mexico. In April 2016, five Mexican wolf pups were born at Brookfield Zoo in Illinois. As part of the Mexican Wolf Recovery Program, two of the pups were placed in the den of the Arizona-based Elk Horn Pack of wild wolves with the intention that the pack’s adults would raise the two with its own litter. In this process, known as “cross-fostering,” very young pups are moved from a captive litter to a wild litter of similar age so that the receiving pack raises the pups as their own. The technique, which has proven successful with wolves and other wildlife, shows promise to improve the genetic diversity of the wild wolf population. -
U.S. Fish and Wildlife Service, Partners Starting Captive Breeding Program in Race Against Time to Prevent Extinction of Florida Grasshopper Sparrows
U.S. Fish and Wildlife Service, Partners Starting Captive Breeding Program In Race Against Time to Prevent Extinction of Florida Grasshopper Sparrows Vero Beach, Fla. -- In an effort to prevent extinction of the Florida grasshopper sparrow, the U.S. Fish and Wildlife Service (Service) and many partners are establishing a captive breeding program for this species. Many believe that if current population trends continue the species could go extinct in three to five years. The Rare Species Conservatory Foundation and the Service will be collaborative leaders of this captive breeding effort. The captive breeding program will consist of trained volunteers and staff from the Service, Florida Fish and Wildlife Conservation Commission (FWC) and the Department of Environmental Protection going into the field during April, May and June at specified locations looking for eggs in nests. When and if eggs are found, some of them will be collected and taken to the Rare Species Conservatory Foundation in Loxahatchee, Fla. There, they will be placed in incubators, where the hope is hatchlings will emerge in 11-13 days, after which around-the-clock care will be provided to facilitate their survival. Ultimately, the hatchlings will be kept in captivity in the hopes that they will mate and breed. “Captive breeding is labor intensive and challenging. It is generally done as a last resort and there are no guarantees. But we have to try,” said Larry Williams, the Service’s Florida State Supervisor of Ecological Services. “This is an emergency and the situation for this species is dire. This is literally a race against time.” “The FWC is working closely with the Service and other partners to prevent the disappearance of the Florida grasshopper sparrow,” said Thomas Eason, Director of the FWC’s Habitat and Species Conservation Division. -
Gray-Headed Chickadee Captive Flock and Propagation a Scoping Report
Gray-headed Chickadee Captive Flock and Propagation A Scoping Report Aaron Lang Dr. Rebecca McGuire Wildlife Conservation Society, Arctic Beringia Program 3550 Airport Way, Suite 5 Fairbanks, AK 99709 Photo Credit: Aaron Lang [email protected] A report to the Alaska Department of Fish and Game (ADF&G) in fulfillment of cooperative agreement 19-054 under State Wildlife Grant T-33 Project 10.0, April, 2020. ADF&G and the Wildlife Conservation Society have co-ownership of all content. Recommended Citation: McGuire, R. 2020. Gray-headed Chickadee captive flock and propagation: A scoping report. A report by the Wildlife Conservation Society to the Alaska Department of Fish and Game, in fulfillment of cooperative agreement 19-054, Fairbanks. Table of Contents 1.0 INTRODUCTION ..................................................................................................................... 1 2.0 TRIGGERS FOR MOVING FORWARD ................................................................................ 2 3.0 REVIEW OF SELECT (PRIMARY) LOCATIONS OF CAPTIVE CHICKADEES OR SIMILAR SPECIES ........................................................................................................................ 3 4.0 GENERAL REQUIREMENTS OF A CAPTIVE FLOCK FACILITY, INCLUDING CAPTIVE PROPAGATION ........................................................................................................... 7 5.0 OPTIONS FOR LOCATION OF CAPTIVE HOUSING ....................................................... 14 6.0 INITIAL STOCKING ............................................................................................................ -
Saving Seeds: Optimally Planning Our Ex Situ Conservation Collections to Ensure Species' Evolutionary Potential1
Gene Conservation of Tree Species—Banking on the Future Saving Seeds: Optimally Planning Our Ex Situ Conservation Collections to Ensure Species' 1 Evolutionary Potential Sean M. Hoban2,3 In the face of ongoing environmental change, conservation and natural resource agencies are initiating or expanding ex situ seed collections from natural plant populations. Seed collections have many uses, including in provenance trials, breeding programs, seed orchards, gene banks for long-term conservation (live plants or seeds), restoration, reforestation, and scientific study of plant germination or other plant ecology studies. Well-known examples of ex situ collections include the Millennium Seed Bank Partnership, Australian Seed Bank Partnership, United Kingdom National Tree Seed Program, United States National Plant Germplasm System, and South African Regional Seed Bank. Some collections focus on rare species, species with relevance to agriculture or forestry, or regional flora. Other collections are in response to immediate threats, such as damaging insects and pathogens (e.g., emerald ash borer). In this talk I will discuss how to sample seeds to most optimally conserve the evolutionary potential of a species to ensure its long-term survival. A useful seed collection captures as much phenotypic and genetic diversity from natural populations as possible. Choices for a collector include how many populations, maternal plants, and seeds per plant to collect. A collector wishes to achieve efficiency—to not waste limited time, resources, personnel, and storage space, but also to achieve effectiveness—to be as complete as possible in case important genetic variants are lost from natural populations. In a series of papers starting in 1975, Brown and Marshall (1975) proposed some solutions to this general sampling problem.