Download Our Coloboma Factsheet In

Total Page:16

File Type:pdf, Size:1020Kb

Download Our Coloboma Factsheet In Coloboma Factsheet Contents 3 What is Coloboma? 3 How do we see with our eyes? 3 Which parts of the eye can coloboma affect? 3 Iris 4 Lens zonules 4 Retina and choroid (chorioretinal) 4 Optic disc 4 Eyelids 4 What causes coloboma to form inside the eye? 5 Does coloboma affect vision? 5 Iris coloboma 5 Lens coloboma 5 Chorioretinal coloboma 6 How is coloboma diagnosed? 7 What is the treatment for coloboma? 7 Can coloboma lead to other eye health problems? 7 Glaucoma 8 Retinal detachment 8 Choroidal neovascularisation (new blood vessels) 8 Cataract 9 What other health problems can affect some children with coloboma? 9 Coping with sight problems relating to coloboma 10 Further help and support 10 Sources of support 11 Other useful organisations 12 We value your feedback 2 What is Coloboma? Coloboma means that part of one or more structures Choroid inside an unborn baby’s eye does not fully develop Iris during pregnancy. This underdeveloped tissue is Optic nerve normally in the lower part of the eye and it can be Optic Cornea small or large in size. A coloboma occurs in about 1 in disc 10,000 births and by the eighth week of pregnancy. Macula Lens Coloboma can affect one eye (unilateral) or both eyes zonules Pupil (bilateral) and it can affect different parts of the eye. As coloboma forms during the initial development of Choroid the eye, it is present from birth and into adulthood. Lens Retina How do we see with our eyes? Iris Light enters our eyes by passing through our cornea, our pupil, (the hole in the middle of the iris), and Diagram of cross section of eye (labels cornea, lens, iris, our lens so that it is sharply focused onto the retina vitreous humour, macula, retina, choroid, optic nerve) lining the back of our eye. The retina is made up of light sensitive cells that convert light into electrical impulses which then travel along the optic nerve to our brain. Our brain processes these signals so that we are able to “see” the world around us. Which parts of the eye can coloboma affect? Opposite is a diagram of the eye showing the main structures that can be affected by coloboma Iris Iris Coloboma can affect the iris, the tissue that gives Pupil you your eye colour. Your pupil may look oval if the Coloboma coloboma is partial but if more of the lower iris is missing, your pupil will look more keyhole shaped. Photo and diagram of iris coloboma 3 Lens zonules folds round, it should join together at the bottom from Coloboma can also affect the supporting fibres of the the back to the front along a seam-like structure called lens, which are called the lens zonules. The zonules hold the embryonic fissure. If this seam doesn’t join completely, your lens in place, just behind your iris. If a section of there will be tissue missing at the bottom of the structures zonules is defective or missing, the lens is not held as being formed, leading to coloboma. The structure in the strongly all the way round. This alters its shape and as eye that is affected by coloboma relates to the part of the a result, there will be a notch or dent in the lens. This is embryonic fissure that didn’t close properly. Coloboma may often referred to as lens coloboma, despite the fact that only affect the front of a baby’s eye if most of the fissure none of the lens tissue itself is missing to form the notch. closed up. However, it may also affect structures further back in the eye too, if less of the fissure closed properly. Retina and choroid (chorioretinal) Most cases of coloboma appear without any previous At the back of your eye, the retina and the choroid family history, although in some families coloboma can can be affected by coloboma. This is known as be inherited, or could be caused by environmental factors a chorioretinal coloboma. The choroid is the such as certain drugs or infections during pregnancy. layer of tissue behind your retina and it contains A fault in the gene PAX6 has also been found to cause blood vessels that keep your retina healthy. coloboma. If a child is found to have a coloboma, the Optic disc ophthalmologist (hospital eye doctor) may ask to examine Coloboma can also affect the optic nerve where it leaves both parents’ eyes too. This is because either one of them the back of your eye, an area known as the optic disc. may have a coloboma as well but be unaware of it because they have no visual problems. If there is coloboma in Eyelids your family, you may wish to talk with the hospital staff Eyelid coloboma is less common. Although gaps in or your GP about genetic testing and speak to a genetic the eyelids are still known as coloboma, they are not counsellor about the genetic inheritance of the condition. caused by the same development problem in pregnancy Some families find out about the genes involved in their that leads to coloboma of structures inside the eye. child’s coloboma, while others do not. This is because not all the genes relating to coloboma have been identified What causes coloboma to form inside the eye? yet. Research is going on to find out more about these Coloboma forms during pregnancy while a baby is genes. There is more information about this research developing. During the second month of pregnancy, the on the MACS (Microphthalmia, Anophthalmia and buds that become the eyes develop and fold round to form Coloboma Support) website listed in the further help the shape and structures of the eye. As the developing eye and support section at the end of this information. 4 Does coloboma affect vision? Chorioretinal coloboma The effect that coloboma has on vision Someone with chorioretinal coloboma, where the choroid depends on which structures of the eye are and the retina are involved, may not be aware of any involved and how much tissue is missing. visual symptoms. However, the more retinal tissue that is missing, the more their sight is likely to be affected, Iris coloboma usually in the upper region of their field of vision. Both children and adults with only iris coloboma will If the chorioretinal coloboma is large or there is optic disc probably have fairly good vision. However, iris coloboma is coloboma, they are likely to have poor central vision. This likely to cause light sensitivity, (also called photophobia), will make activities such as reading, writing and watching in bright conditions. This is because the iris is made television more difficult. If both eyes are affected by optic of muscle that controls the amount of light entering disc coloboma, they may also have nystagmus, meaning the eye by changing the size of the pupil. If too much that their eyes move constantly and uncontrollably. light enters the eye because some of the iris is missing Vision that is affected by these types of coloboma and not working effectively, the glare that results can cannot be corrected with glasses or contact lenses. cause discomfort and affect the quality of vision. Tinted glasses, sun hats or sun blinds in cars can help to relieve You can find out more about nystagmus from light sensitivity. Your optometrist (also known as your our website rnib.org.uk/eyehealth or by optician) will be able to offer further advice about this. calling our Helpline on 0303 123 9999. You can find out more about light sensitivity It may be hard to tell what effect coloboma will have from our website rnib.org.uk/eyehealth on a child’s sight until they are older when they will or by calling our Helpline on 0303 123 9999. be able to say more accurately how well they can see. Some children with coloboma may also have focusing Lens coloboma problems that aren’t caused by the coloboma itself, If the lens of the eye is affected by coloboma, vision is such as being short-sighted or long-sighted, so their affected because of the change in lens shape caused optometrist may advise that they need to wear glasses. by the notch or dent. There may also be some degree Although glasses and contact lenses are unable of cataract in the affected eye, which means the lens is to improve any sight problems that are caused by cloudy instead of being clear. The treatment for cataract coloboma, it’s important for children to have any can be found in the “Can coloboma lead to other eye focusing problems corrected to allow their sight to health problems?” section further on in this information. develop as fully as possible. Therefore, it’s important 5 that children continue to have regular eye examinations How is coloboma diagnosed? as often as is advised by their optometrist. Coloboma is normally diagnosed when a baby is born or Where coloboma affects a person’s sight, there are specialist in a very young child. Iris coloboma can usually be seen support services which can help them. If they still have as a keyhole shaped pupil when looking at their eyes. difficulty seeing detail with their glasses or contact lenses, Some people with iris coloboma also have differently they would benefit from having an assessment in a low coloured eyes which is called iris heterochromia. This vision clinic where a low vision specialist can prescribe means that there is a different amount of pigment magnifiers to use to make the most of the sight that that determines eye colour on the iris of each eye.
Recommended publications
  • Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors
    pharmaceutics Article Permeability of the Retina and RPE-Choroid-Sclera to Three Ophthalmic Drugs and the Associated Factors Hyeong Min Kim 1,†, Hyounkoo Han 2,†, Hye Kyoung Hong 1, Ji Hyun Park 1, Kyu Hyung Park 1, Hyuncheol Kim 2,* and Se Joon Woo 1,* 1 Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] (H.M.K.); [email protected] (H.K.H.); [email protected] (J.H.P.); [email protected] (K.H.P.) 2 Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; [email protected] * Correspondence: [email protected] (H.K.); [email protected] (S.J.W.); Tel.: +82-2-705-8922 (H.K.); +82-31-787-7377 (S.J.W.); Fax: +82-2-3273-0331 (H.K.); +82-31-787-4057 (S.J.W.) † These authors contributed equally to this work. Abstract: In this study, Retina-RPE-Choroid-Sclera (RCS) and RPE-Choroid-Sclera (CS) were prepared by scraping them off neural retina, and using the Ussing chamber we measured the average time– concentration values in the acceptor chamber across five isolated rabbit tissues for each drug molecule. We determined the outward direction permeability of the RCS and CS and calculated the neural retina permeability. The permeability coefficients of RCS and CS were as follows: ganciclovir, 13.78 ± 5.82 and 23.22 ± 9.74; brimonidine, 15.34 ± 7.64 and 31.56 ± 12.46; bevacizumab, 0.0136 ± 0.0059 and 0.0612 ± 0.0264 (×10−6 cm/s).
    [Show full text]
  • National Study of Microphthalmia, Anophthalmia, and Coloboma (MAC
    16 ORIGINAL ARTICLE J Med Genet: first published as 10.1136/jmg.39.1.16 on 1 January 2002. Downloaded from National study of microphthalmia, anophthalmia, and coloboma (MAC) in Scotland: investigation of genetic aetiology D Morrison, D FitzPatrick, I Hanson, K Williamson, V van Heyningen, B Fleck, I Jones, J Chalmers, H Campbell ............................................................................................................................. J Med Genet 2002;39:16–22 We report an epidemiological and genetic study attempting complete ascertainment of subjects with microphthalmia, anophthalmia, and coloboma (MAC) born in Scotland during a 16 year period beginning on 1 January 1981. A total of 198 cases were confirmed giving a minimum live birth preva- lence of 19 per 100 000. One hundred and twenty-two MAC cases (61.6%) from 115 different fami- See end of article for lies were clinically examined and detailed pregnancy, medical, and family histories obtained. A authors’ affiliations simple, rational, and apparently robust classification of the eye phenotype was developed based on ....................... the presence or absence of a defect in closure of the optic (choroidal) fissure. A total of 85/122 Correspondence to: (69.7%) of cases had optic fissure closure defects (OFCD), 12/122 (9.8%) had non-OFCD, and Dr D FitzPatrick, MRC 25/122 (20.5%) had defects that were unclassifiable owing to the severity of the corneal or anterior Human Genetics Unit, chamber abnormality. Segregation analysis assuming single and multiple incomplete ascertainment, Western General Hospital, respectively, returned a sib recurrence risk of 6% and 10% in the whole group and 8.1% and 13.3% Edinburgh EH4 2XU, UK; in the OFCD subgroup.
    [Show full text]
  • The Distribution of Immune Cells in the Uveal Tract of the Normal Eye
    THE DISTRIBUTION OF IMMUNE CELLS IN THE UVEAL TRACT OF THE NORMAL EYE PAUL G. McMENAMIN Perth, Western Australia SUMMARY function of these cells in the normal iris, ciliary body Inflammatory and immune-mediated diseases of the and choroid. The role of such cell types in ocular eye are not purely the consequence of infiltrating inflammation, which will be discussed by other inflammatory cells but may be initiated or propagated authors in this issue, is not the major focus of this by immune cells which are resident or trafficking review; however, a few issues will be briefly through the normal eye. The uveal tract in particular considered where appropriate. is the major site of many such cells, including resident tissue macro phages, dendritic cells and mast cells. This MACRO PHAGES review considers the distribution and location of these and other cells in the iris, ciliary body and choroid in Mononuclear phagocytes arise from bone marrow the normal eye. The uveal tract contains rich networks precursors and after a brief journey in the blood as of both resident macrophages and MHe class 11+ monocytes immigrate into tissues to become macro­ dendritic cells. The latter appear strategically located to phages. In their mature form they are widely act as sentinels for capturing and sampling blood-borne distributed throughout the body. Macrophages are and intraocular antigens. Large numbers of mast cells professional phagocytes and play a pivotal role as are present in the choroid of most species but are effector cells in cell-mediated immunity and inflam­ virtually absent from the anterior uvea in many mation.1 In addition, due to their active secretion of a laboratory animals; however, the human iris does range of important biologically active molecules such contain mast cells.
    [Show full text]
  • The Proteomes of the Human Eye, a Highly Compartmentalized Organ
    Proteomics 17, 1–2, 2017, 1600340 DOI 10.1002/pmic.201600340 (1 of 3) 1600340 The proteomes of the human eye, a highly compartmentalized organ Gilbert S. Omenn Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA Proteomics has now published a series of Dataset Briefs on the EyeOme from the HUPO Received: November 2, 2016 Human Proteome Project with high-quality analyses of the proteomes of these compartments Accepted: November 4, 2016 of the human eye: retina, iris, ciliary body, retinal pigment epithelium/choroid, retrobulbar optic nerve, and sclera, with 3436, 2929, 2867, 2755, 2711, and 1945 proteins, respectively. These proteomics resources represent a useful starting point for a broad range of research aimed at developing preventive and therapeutic interventions for the various causes of blindness. Keywords: Biomedicine / Biology and Disease-driven Human Proteome Project / End Blindness by 2020 / Eye proteome / EyeOme / Human Proteome Project See accompanying articles in the EyeOme series: http://dx.doi.org/10.1002/pmic.201600229; http://dx.doi.org/10.1002/pmic.201500188; http://dx.doi.org/10.1002/pmic.201400397 Proteomics has now published a series of four papers on compartments of the eye as shown in Fig. 1. As was noted [5], the human eye proteome [1–4]. Under the aegis of the Hu- it was not feasible to assess the quality of the data or estimate man Proteome Organization Biology and Disease-driven Hu- numbers of likely false positives in the heterogeneous studies man Proteome Project (HPP), the EyeOme was organized by from which these findings were summarized.
    [Show full text]
  • The Influence of Pupil Responses on Subjective Brightness Perception
    1 The influence of pupil responses on subjective brightness perception I. K. Wardhania, b, C. N. Boehlera, and S. Mathôtb, ∗ aDepartment of Experimental Psychology, Ghent University, Henri Dunantlaan 2, 9000 Ghent, Belgium bDepartment of Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, the Netherlands Abstract When the pupil dilates, the amount of light that falls onto the retina increases as well. However, in daily life, this does not make the world look brighter. Here we asked whether pupil size (resulting from active pupil movement) influences subjective brightness in the absence of indirect cues that, in daily life, support brightness constancy. We measured the subjective brightness of a tester stimulus relative to a referent as a function of pupil size during tester presentation. In Ex- periment 1, we manipulated pupil size through a secondary working-memory task (larger pupils with higher load and after errors). We found some evidence that the tester was perceived as darker, rather than brighter, when pupils were lar- ger. In Experiment 2, we presented a red or blue display (larger pupils following red displays). We again found that the tester was perceived as darker when pu- pils were larger. We speculate that the visual system takes pupil size into account when making brightness judgments. Finally, we highlight the challenges associ- ated with manipulating pupil size. In summary, the current study (as well as a recent pharmacological study on the same topic) are intriguing first steps towards understanding the role of pupil size in brightness perception. Keywords: pupillometry, pupil light reflex, psychosensory pupil reflex, pupil size, luminance, subjective brightness perception ∗Corresponding author.
    [Show full text]
  • 98796-Anatomy of the Orbit
    Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.
    [Show full text]
  • Congenital Ocular Anomalies in Newborns: a Practical Atlas
    www.jpnim.com Open Access eISSN: 2281-0692 Journal of Pediatric and Neonatal Individualized Medicine 2020;9(2):e090207 doi: 10.7363/090207 Received: 2019 Jul 19; revised: 2019 Jul 23; accepted: 2019 Jul 24; published online: 2020 Sept 04 Mini Atlas Congenital ocular anomalies in newborns: a practical atlas Federico Mecarini1, Vassilios Fanos1,2, Giangiorgio Crisponi1 1Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy 2Department of Surgery, University of Cagliari, Cagliari, Italy Abstract All newborns should be examined for ocular structural abnormalities, an essential part of the newborn assessment. Early detection of congenital ocular disorders is important to begin appropriate medical or surgical therapy and to prevent visual problems and blindness, which could deeply affect a child’s life. The present review aims to describe the main congenital ocular anomalies in newborns and provide images in order to help the physician in current clinical practice. Keywords Congenital ocular anomalies, newborn, anophthalmia, microphthalmia, aniridia, iris coloboma, glaucoma, blepharoptosis, epibulbar dermoids, eyelid haemangioma, hypertelorism, hypotelorism, ankyloblepharon filiforme adnatum, dacryocystitis, dacryostenosis, blepharophimosis, chemosis, blue sclera, corneal opacity. Corresponding author Federico Mecarini, MD, Neonatal Intensive Care Unit, Azienda Ospedaliero-Universitaria Cagliari, University of Cagliari, Cagliari, Italy; tel.: (+39) 3298343193; e-mail: [email protected].
    [Show full text]
  • Case Notes Hernia of the Choroid Treated by Scleral Grafting Followed by Direct Suturing of the Sclera* by P
    Br J Ophthalmol: first published as 10.1136/bjo.38.2.126 on 1 February 1954. Downloaded from Brit. J. Ophihal. (1954) 38, 126. CASE NOTES HERNIA OF THE CHOROID TREATED BY SCLERAL GRAFTING FOLLOWED BY DIRECT SUTURING OF THE SCLERA* BY P. SIVASUBRAMANIAM AND T. HOOLE Eye Clinic, Civil Hospital, Jaffna, Ceylon Case Report A young man aged 18 had had a bluish-black lump on the " white " of the left eye for 8 years. He did not recall any injury to this eye and had had no inflammation. Examination.-A bluish-black sessile swelling was seen on the superonasal side of the left eyeball about 4 mm. from the limbus (Figure). The lump measured 6 x 4 mm., the long axis being more or less tangential to the limbus. The swelling was cystic, tense, slightly reducible, nonpulsatile, and non-transluminant. It was not movable over the globe, the conjunctiva over it was stretched and tenuous. Biomicroscopy revealed a deposit of fine iris pigment on the lens capsule at the lower part. There was no sign of active uveitis. Visual acuity was 6/6 in each eye. Digital tonometry indicated that the tension was equal in both eyes. The fundi were normal. The region of the ectasia was not accessible ophthalmoscopically. Wassermann reaction negative. Operations.-Scleral grafting and direct suturing of the scleral hiatus were performed copyright. at different times. The reports of Lister (1951) on scleral grafting prompted us to try this operation. (1) January 21, 1953.-Under retro-ocular novocaine and local anaesthesia the conjunc- tiva over the lump was neatly dissected and an upper flap was raised.
    [Show full text]
  • Presumptive Unilateral Anophthalmia Recorded in Coronella Austriaca Laurenti, 1768
    Herpetology Notes, volume 8: 459-460 (published online on 13 August 2015) Presumptive unilateral anophthalmia recorded in Coronella austriaca Laurenti, 1768 Daniel Jablonski* and Peter Mikulíček Different kinds of morphological anomalies were specimens of C. austriaca and other snake species recorded in snakes, most of them in captive-bred (Natrix natrix, N. tessellata, Zamenis longissimus) individuals (Mulder, 1995). According to this author, the have been previously found on the same locality, but all main cause of anomalies seemed to be wrong incubation were without ocular anomaly or other deformities (pers. temperature conditions during embryo development. observation). According to our best knowledge, this is However, little is known about variety of anomalies the first report of presumptive unilateral anophthalmia from snakes born in the wild probably due to their high observed in C. austriaca in nature. mortality rate during early life (Mulder, 1995). Smooth As for reptiles, several kinds of ocular abnormalities snake, Coronella austriaca Laurenti, 1768, is a small, are known: microphthalmia, cystic globe, cyclopia/ viviparous, nonvenomous colubrid snake occurring synophthalmia, coloboma or aphakia (Sabater and in the most of Europe and some parts of Asia (Arnold Pérez, 2013), but their etiology is difficult to explain and Ovenden, 2002). It lives in heathlands, hedgerows, (Da Silva et al., 2015). Anophthalmia, either unilateral wood-edges, open woods and bushy and rocky slopes or bilateral, is defined as the congenital total absence of (Arnold and Ovenden, 2002). Except several types of ocular tissue and results from a failure of the primary colour anomalies (see Lauš and Burić, 2012), no other optic vesicle to develop or from a complete regression anomalies or deformities have been recorded so far in of the optic vesicle (Millichamp, Jacobson and Wolf, this species.
    [Show full text]
  • An Intracameral Pupil-Dilating Technique
    AN INTRACAMERAL PUPIL-DILATING TECHNIQUE No devices are needed with this reversible method. BY MOHAMMAD IDREES, FRCS(EDIN) CATARACT SURGERY CATARACT In cataract surgery, a sufficiently dilated associated with glare. Moreover, chances of damage to pupil is necessary to allow the surgeon to the capsular margin are increased due to poor visibility. safely remove the cataract and replace it Emulsification risks damage to the posterior lens capsule, with an appropriate IOL. When the pupil which opens the door to other complications later. is not sufficiently dilated, it obstructs the It is difficult to get a sufficient red fundus reflex with a surgeon’s view and makes each step more poorly dilating pupil. Implanting the IOL poses its own set difficult, increasing the risk of complications of potential complications, such as decentration and subse- during surgery and unfavorable outcomes quent malpositioning of the IOL. postoperatively. Operating through a small pupil can result in iris bleeding, These increased risks can be avoided if the pupil is dilated iris prolapse into the wound, or incomplete evacuation of well before starting surgery. This article describes a reversible cortical material. Additionally, iris chafing can contribute to method that I call the Idrees intracameral pupil-dilating technique increased postoperative inflammation and iris defects that and presents the rationale for its use. can create cosmesis concerns. SURGICAL RISKS WITH SMALL PUPILS PUPIL DILATION: MECHANISM AND TECHNIQUE Among the most prominent challenges with a narrow In order to achieve a satisfactorily dilated pupil in every case, pupil, performing capsulorrhexis or anterior capsulotomy of you must have a number of approaches at your disposal; some sufficient diameter is not possible.
    [Show full text]
  • Use of Next Generation Sequencing for Isolated and Syndromic Anophthalmia, Microphthalmia and Coloboma (MAC): a New Approach to Molecular Genetic Diagnosis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza Use of Next Generation Sequencing for isolated and syndromic Anophthalmia, Microphthalmia and Coloboma (MAC): a new approach to molecular genetic diagnosis Department of Cellular Biotechnologies and Hematology PhD in Human Biology and Medical Genetics XXX° cycle 2014-2017 Candidate Dr. Iapichino Giuseppe 1235269 Supervisor Correlator Prof. Pizzuti Antonio Prof. Novelli Antonio A/A 2016/2017 1. INTRODUCTION 1.1 Eye embryogenesis 1.2 MAC: Mixed group of diseases 1.2.1 Microphthalmia, Anophthalmia and Coloboma 1.2.2 Syndromic diseases: CHARGE syndrome Cornelia de Lange syndrome Axenfeld-Rieger syndrome Lenz’s Microphtalmia Papillorenal syndrome 1.3 Molecular Diagnosis: Next Generation Sequencing 2. AIM OF THE STUDY 3. MATERIALS AND METHODS 3.1 Patients Recruitment 3.2 Molecular Analysis 3.2.1 Blood collection, DNA extraction and quantification 3.2.2 NGS panel construction: Design Studio 3.2.3 NextSeq-500: features and workflow Libraries preparation: Nextera Rapid Capture Custom Enrichment Cluster generation Sequencing 3.2.4 Sanger Sequencing 3.2.5 Data Analysis 4. RESULTS 5. DISCUSSION 6. CONCLUSION 7. BIBLIOGRAPHY 1. INTRODUCTION 1.1 The eye: embryogenesis Eye development begins around the 4th week of gestation and can be summarized in four main stages [Zagozewski J.L. et al.; 2014]: Optic vesicle formation Induction of crystalline lens Retinal tissue formation Optic fissure closure Each of these events is highly regulated and coordinated by various transcription factors and circulating molecules [Adler R. et al.; 2007].
    [Show full text]
  • SOX2 Anophthalmia Syndrome
    SOX2 anophthalmia syndrome Description SOX2 anophthalmia syndrome is a rare disorder characterized by abnormal development of the eyes and other parts of the body. People with SOX2 anophthalmia syndrome are usually born without eyeballs ( anophthalmia), although some individuals have small eyes (microphthalmia). The term anophthalmia is often used interchangeably with severe microphthalmia because individuals with no visible eyeballs typically have some remaining eye tissue. These eye problems can cause significant vision loss. While both eyes are usually affected in SOX2 anophthalmia syndrome, one eye may be more affected than the other. Individuals with SOX2 anophthalmia syndrome may also have seizures, brain abnormalities, slow growth, delayed development of motor skills (such as walking), and mild to severe learning disabilities. Some people with this condition are born with a blocked esophagus (esophageal atresia), which is often accompanied by an abnormal connection between the esophagus and the trachea (tracheoesophageal fistula). Genital abnormalities have been described in affected individuals, especially males. Male genital abnormalities include undescended testes (cryptorchidism) and an unusually small penis (micropenis). Frequency SOX2 anophthalmia syndrome is estimated to affect 1 in 250,000 individuals. About 10 percent to 15 percent of people with anophthalmia in both eyes have SOX2 anophthalmia syndrome. Causes Mutations in the SOX2 gene cause SOX2 anophthalmia syndrome. This gene provides instructions for making a protein that plays a critical role in the formation of many different tissues and organs during embryonic development. The SOX2 protein regulates the activity of other genes, especially those that are important for normal development of the eyes. Mutations in the SOX2 gene prevent the production of functional SOX2 protein.
    [Show full text]