Ecology of the Cascades ( cascadae) and Interactions with Garter and Nonnative Trout in the Trinity Alps Wilderness,

By:

Justin M. Garwood and Hartwell H. Welsh Jr.

December 2007

Final Report To:

California Department of Fish and Game National Fish and Wildlife Foundation Conservation Planning Branch Bring Back The Natives Grant Program 1416 Ninth Street, Suite 1280 and 1120 Connecticut Avenue NW, Suite 900 Sacramento, CA 95814 , DC 20036

Amphibian Specialist Group i Ecology in California

CoverPhotos:AdultfemaleCascadesfrog( Rana cascadae ),aquaticgarter( Thamnophis atratus )capturedin EchoLakebasinregurgitatinganEasternbrooktrout( Salvelinus fontinalis ),surveyingAtlantismeadowswestof RedMountainsummit,TrinityAlpsWilderness,California.( Photos: J. Garwood )

ii Cascades Frog Ecology in California

ECOLOGY OF THE CASCADES FROG ( RANA CASCADAE ) AND INTERACTIONS WITH GARTER SNAKES AND NONNATIVE TROUT IN THE TRINITY ALPS WILDERNESS, CALIFORNIA

December 2007

FINAL REPORT TO THE CALIFORNIA DEPARTMENT OF FISH AND GAME AND NATIONAL FISH AND WILDLIFE FOUNDATION

DFG CONTRACT NO. P0385107

NFWF CONTRACT NO. 2004-0075-000, Bring Back The Natives Grant

Administered By: Humboldt State University Sponsored Programs Foundation P.O. Box 1185 Arcata, CA 95518-1185

PRINCIPAL INVESTIGATORS: JustinM.Garwood and HartwellH.Welsh,Jr. USDAForestService PacificSouthwestResearchStation RedwoodSciencesLaboratory 1700BayviewDr.Arcata,CA95521 STATE OF CALIFORNIA CONTRACT MANAGER BetsyBolster StaffEnvironmentalScientist DepartmentofFishandGame WildlifeBranch 1416NinthStreet,Suite1280 Sacramento,CA95814

iii Cascades Frog Ecology in California

ECOLOGY OF THE CASCADES FROG ( RANA CASCADAE ) AND INTERACTIONS WITH GARTER SNAKES AND NONNATIVE TROUT IN THE TRINITY ALPS WILDERNESS, CALIFORNIA 1/ December,2007 By JustinM.Garwood2,3/ HartwellH.Welsh,Jr. 2/

1/ FinalReportfortheCaliforniaDepartmentofFishandGameContractNo.P0385107andNationalFish andWildlifeFoundationContractNo.20040075000 2/ CurrentAddress: USDA Forest Service Pacific Southwest Research Station Redwood Sciences Laboratory 1700 Bayview Dr. Arcata, CA 95521 3/ CorrespondingAuthor : [email protected]

Report Citation: Garwood,J.M.,andWelsh,H.H.Jr.2007.EcologyoftheCascadesfrog( Rana cascadae )andinteractionswith gartersnakesandnonnativetroutintheTrinityAlpsWilderness,California.FinalreportpreparedfortheCalifornia DepartmentofFishandGameandtheNationalFishandWildlifeFoundation.Arcata,CA87pp.

iv Cascades Frog Ecology in California

ABSTRACT Thisstudy combinedbothintensiveandlongtermsampling components at multiple spatialscalestoprovideinformationonCascadesfrog( Rana cascadae )ecologyintheTrinity AlpsWildernessofNorthernCalifornia.Weusedmarkrecaptureandradiotelemetryfrom2003 to2007todeterminekeyecologicalcomponentsofCascadesfroglifehistory,habitatuse,spatial patterns,migrationsanddispersalforallageclasses.WefoundCascadesusedavarietyof forbreeding,summerforagingandoverwintering,butitwascommonforthesehabitats tobespatiallyortemporallyseparatedandfrogswereobservedtomoveseasonallyamongthem. Migrationsanddispersaleventswerecommonamongisolatedhabitatsindicatingthat,inmany cases, single sites are not likely to be selfsustaining, but contribute to a matrix of required resourcesacrossapatchylandscape.Furthermore,basedonextensivemigrationsanddispersal wefoundthepopulationdynamicsofCascadesfrogstobeoperatingacrossawholebasin,so conservationofthiswillrequiremakingdecisionsthatreflectthisscale. WealsostudiedtheroleofCascadesfrogsinlocalfoodwebdynamics,includingtheir relationshipswithbothnaturalandintroducedpredators.Thisincludedtwonativegartersnakes (Thamnophis spp.)andintroducedtrout.Weusedmarkrecaptureandcollectednonlethaldiet samplesonbothgartersnakespeciesduringregularvisualencountersurveystodeterminethe density, diet, distribution and movement patterns of each species. We also determined distributionanddensityofintroducedtroutatabasinwidescale.Ourresultsindicateonespecies of garter snake (T. atratus )wasfoundtooccurinhighdensitiesinareaswithtrout,andhas adopted eating introduced trout as a subsidized food source. This species also feeds on . Conversely, the other garter snake species (T. sirtalis ) foraged exclusively on amphibians and had lower overall densities across the landscape. These observations suggest introduced trout could be impacting native amphibians indirectly through altered foodweb dynamics. The results from this study fill important knowledge gaps with regard to the life history of the Cascades frog, and its role in a community with both native and introduced predators. We provide recommendations to assist stakeholders in designing management strategies more tailored to the ecological requirements of Cascades frogs which will benefit futuregenerationsofthisdeclining.

i Cascades Frog Ecology in California

ACKNOWLEDGEMENTS Thisinvestigation,includingallinformationprovidedinthisreport,istheresultofa collaborationbetweentheCaliforniaDepartmentofFishandGame(DFG),theNationalFishand WildlifeFoundation,HumboldtStateUniversitySponsoredProgramsFoundation,TheUSforest Service,PacificSouthwestResearchStation,RedwoodSciencesLaboratory,TheWorld ConservationUnion,AmphibianSpecialistGroup(FormallytheDecliningAmphibian PopulationsTaskForce)andtheUSGSAmphibianResearchandMonitoringInitiative.This largecollaborationcouldnothavesucceededwithoutthesupportandinitiationofmatching fundsprovidedbyDFG;wesincerelythankBetsyBolsterforherpivotalroleinestablishingand managingthiscontractprofessionallyfromstarttofinish.WealsokindlythankTerryRoelofsat HumboldtStateUniversityforhelpingestablishthesecontracts.WeareindebttoClara Wheeler,RyanBourque,andMontyLarsonfortheirsubstantialassistanceandexpertisewith datacollectionandstudydesignaswellasgeneralsupportthroughoutthisproject.Theyareall exceptionalecologistsandpreformedbeyondourexpectations.Otherindividualscontributed theirweekendsorvacationstoassistinthisprojectincluding:TerraFuller,NateNieto,James Bettaso,LauraBurkholder,RebeccaStudebaker,JoshuaDorris,WilliamWheeler,Abby Wheeler,KaraCox,JacobEhlerding,MollyAlles,JonStead,KarenPope,CherylBondi,Betsy Bolster,CaraMcGary,ErinHannelly,BrianJennings,CainAdams,andReubenKoontz.We thankLornaandPaulGarwoodforprovidingtheunofficialbasecampandcateringservice, especiallyafterlongtripsinthemountains.BeckyHowardprovidedinvaluabledatabase assistance.JimHotchkissandEricHaneyfromDFGprovidedessentialGPSequipmentand thoroughtrainingforaccuratemappingandspatialdatacollection.WealsothankBernard AguilarfromDFGforprovidingbackpackingequipmentandgeneralsupportofthisstudy throughout.GarthHodgson,KarenPope,DonAshton,ClaraWheeler,LukeGeorge,and MatthewJohnsonprovidedexpertknowledgeanddiscussiononanalysis.RebeccaStudebaker, ClaraWheeler,andKarenPopeimprovedsectionsofthisreport.Thisresearchwasin cooperationwithHumboldtStateUniversitySponsoredProgramsFoundationwhichreceived andmanagedthreeexternalgrants:CaliforniaDepartmentofFishandGamecontractagreement #P0385107;NationalFishandWildlifeFoundationgrant:CascadesfrogEcologyand Management#20040075000;andtheDecliningAmphibianPopulationsTaskForcegraduate seedgranttoJMG.WethankJulieDavyespeciallyforherexpertiseinsettingupandmanaging thesecontracts.

ii Cascades Frog Ecology in California

TABLE OF CONTENTS ABSTRACT...... i ACKNOWLEDGEMENTS...... ii TableofContents...... iii ListofTables ...... v ListofAppendices ...... viii INTRODUCTION ...... 1 SpeciesDescriptionsandBackgrounds ...... 2 CascadesFrog ...... 2 GarterSnakes...... 3 IntroducedBrookTrout ...... 4 SITEDESCRIPTIONANDBACKGROUND ...... 4 StudyAreaDescription...... 4 LandUseHistory...... 9 Grazing...... 9 IntroducedFishery ...... 10 STUDYMETHODS...... 11 SiteSelection ...... 11 StudyDuration...... 11 CaptureSurveys...... 11 MeasuringandMarking...... 12 RadioTelemetry...... 13 EggMassSurveys...... 13 GarterSnakeDiet...... 13 FishSurveys...... 13 BasinMapping...... 14 HabitatInventory ...... 14 Weather...... 14 AnalysisProcedures...... 15 CascadesFrogs...... 15 GarterSnakes...... 17 BrookTrout...... 17 SpeciesDensityandDistributions ...... 17 RESULTS:CASCADESFROGCAPTURESANDECOLOGY ...... 19 SurveysandFrogCaptures ...... 19 ResourceDynamicsandHabitatUse...... 21 BasinScale...... 21 ZoneScale...... 22 BreedingHabitats...... 23 SummerHabitats...... 24 Fall/WinterHabitats...... 24 MacrohabitatCharacteristics ...... 26 ImmatureAgeClasses ...... 26 Adults...... 27 SeasonalShiftsinMacrohabitatUse ...... 27 MicrohabitatCharacteristics ...... 28

iii Cascades Frog Ecology in California CascadesFrogSpatialEcology...... 30 AdultMovementsandPatchFidelity ...... 30 AdultMovementRates ...... 30 MigrationRoutes ...... 30 SeasonalMigrationsofAdults...... 34 BreedingMigrations ...... 34 SummerMigrations ...... 36 WinterMigrations...... 36 InterAnnualAdultMigrationPatterns...... 36 ImmatureAgeClassesMovementsandDispersal...... 37 YoungofPreviousYearMovements...... 37 JuvenileDispersal ...... 38 InterbasinDispersal ...... 39 PatchFidelity ...... 43 BreedingEcology...... 44 TimingandDurationofBreeding...... 44 AnnualEggMassProduction ...... 45 LarvalStageDevelopment...... 46 CascadesfrogMortalityandAbnormalities ...... 46 Mortalityand ...... 46 Abnormalities...... 47 RESULTS:GARTERSNAKES...... 48 GarterSnakeCaptures ...... 48 GarterSnakeDiets ...... 48 GarterSnakeSpatialPatterns...... 48 MacrohabitatUse...... 48 Movement ...... 51 RESULTS:TROUT,SNAKE,ANDFROGDISTRIBUTIONS...... 52 SpeciesDistributionsandDensities...... 53 NeighborhoodInfluences...... 54 StreamDensitiesofCascadesFrogs...... 54 DISCUSSION...... 55 CascadesfrogEcology...... 55 SurveysandCaptures...... 55 HabitatsandMovements...... 56 BreedingEcology...... 58 GarterSnakeEcology ...... 58 IntroducedBrookTrout ...... 58 MANAGEMENTRECOMMENDATIONS...... 61 REFERENCES ...... 63 APPENDICES ...... 70

iv Cascades Frog Ecology in California

LIST OF TABLES

Table1.SummaryofthetotalsurfaceareaofwaterbypatchandseasonforEchoLakebasin, TrinityAlpsWilderness,CaliforniafromJunetoOctoberof2003 ...... 22 Table2.SummaryofthetotalreproductiveoutputbyCascadesfrogswithinEchoLakebasin, TrinityAlpsWilderness,California,from2003to2007...... 25 Table3.MeanpercentofannualsummerCascadesfrogcapturesinEchoLakebasin,Trinity AlpsWilderness,California,2003to2006...... 26 Table4.Summaryofdispersalmovementsfrom2003to2007for17individualCascadesfrogs capturedinadjacentwatershedsfromwhereoriginallymarkedinthesoutheastTrinityAlps Wilderness,California ...... 42 Table5.SummaryofCascadesfrogsthatexhibitedannualsitefidelitytospecificpatcheswithin EchoLakebasin,TrinityAlpsWilderness,California,betweenone,twoandthreeyears.. 43 Table6.Dietcompositionoftwospeciesofgartersnakes,2003through2006,inUpperDeep Creekbasin,TrinityAlpsWilderness,California...... 49 Table7.EstimatedbrooktroutabundanceinDeepCreekMeadows(DPM)calculatedfrom boundeddivecountsduringthesummerof2005,TrinityAlpsWilderness,California...... 52

v Cascades Frog Ecology in California

LIST OF FIGURES

Figure1.PhotographsofthreeCascadesfrogs( Rana cascadae )capturedinUpperDeepCreek basin,TrinityAlpsWilderness,California...... 2 Figure2.Mapofsurveysiteswithin,andproximalto,theUpperDeepCreekdrainagelocatedin thesoutheastTrinityAlpsWilderness,California...... 5 Figure3.MapdisplayingthedistributionofallaquatichabitatpatcheswithinEchoLakebasin, TrinityAlpsWilderness,California...... 7 Figure4.ExamplesofhabitatpatchessurveyedforCascadesfrogsfrom2003to2007inEcho Lakebasin,TrinityAlpsWilderness,California...... 8 Figure5.ExampleoftemporalvariationinaquatichabitatatSMP(SnowmeltPond)duringthe summerof2003inEcholakebasin,TrinityAlpsWilderness,California...... 9 Figure6.TotalnumberofCascadesfrogscapturedin32censusperiodsforyears2003to2005 inEchoLakebasin,TrinityAlpsWilderness,California...... 19 Figure7.Lengthtoweightrelationshipofindividualadultmale( n=187)andadultfemale( n= 137)CascadesfrogsinEchoLakebasin,TrinityAlpsWilderness,California,from2003to 2006...... 20 Figure8.EstimatedeffectofJuliandayontheprobability(includingapproximate95% confidenceintervals)ofcapturinganadultfemalerelativetoanadultmaleCascadesfrog from2003to2006inEchoLakebasin,TrinityAlpsWilderness,California...... 21 Figure9.MapofEchoLakebasin,TrinityAlpsWilderness,California,displayingseasonal hydrologicalpropertiesofhabitatzonesusedbyCascadesfrogsfrom2003to2007...... 23 Figure10.MeanpercentofannualeggproductionandcapturesofCascadesfrogs(separatedby sexandageclass)foundineachmacrohabitatcategorywithinEchoLakebasin,Trinity AlpsWilderness,California,from2003to2006...... 27 Figure11.EstimatedeffectofJuliandayontheprobability(includingapproximate95% confidenceintervals)offindingpostmetamorphicCascadesfrogsinlotichabitatsfrom 2003through2006inEchoLakebasin,TrinityAlpsWilderness,California...... 28 Figure12.Substrate( N=933)andcovermicrohabitats( N=394)usedby51radiotelemetered Cascadesfrogsfrom2003to2004inEchoLakebasin,TrinityAlpsWilderness,California...... 29 Figure13.MapsofEchoLakebasin,TrinityAlpsWilderness,California,showingcapture points(opencircles)andconnectinglinesof279individualadultmale(A)and143

vi Cascades Frog Ecology in California individualadultfemale(B)Cascadesfrogscapturedtwoormoretimesfrom2003to2006...... 31 Figure14.Examplesofmigrationroutesandtimingofmigrationbetweenseasonalresourcesfor 9telemeteredCascadesfrogsduringthesummersof2003and2004inEchoLakebasin, TrinityAlpsWilderness,California...... 32 Figure15.Examplesoflongtermannualmigrationpatternsforsevenadultmale(A)andsix adultfemale(B)CascadesfrogsinEchoLakebasin,TrinityAlpsWilderness,California, from2003to2007...... 33 Figure16.Frequencyofmigrationdistancestraveledbyadultfemale(leftcolumn)andadult male(rightcolumn)Cascadesfrogs betweenbreeding,summerandwinterseasonsfrom 2003to2007inEchoLakebasin,TrinityAlpsWilderness,California...... 35 Figure17.PercentofallimmatureCascadesfrogcaptures,separatedbyageclass,thatwere capturedatvariousdistances(25meterbins)frombreedingsitesinEchoLakebasin, TrinityAlpsWilderness,California...... 38 Figure18.MapofupperEchoLakebasin,TrinityAlpsWilderness,California,showingcapture points(opencircles)andconnectinglinesof471individualjuvenileCascadesfrogs capturedtwoormoretimesfrom2003to2006...... 39 Figure19.Netdispersaldistancefor540juvenileCascadesfrogscapturedtwoormoretimesin EchoLakebasin,TrinityAlpsWilderness,California,from2003to2006 ...... 40 Figure20.ConnectinglinesofseventeenindividualCascadesfrogsthatdispersedbetweenfour neighboringwatershedsinthesoutheastTrinityAlpsWilderness,California...... 41 Figure21.ProportionofindividualCascadesfrogs,separatedbyageclassandgender,that exhibitedannualsitefidelitytoaspecifichabitatpatchbetweenone,twoandthreeyearsin EchoLakeBasin,TrinityAlpsWilderness,California...... 44 Figure22.Breedingseasontiminganddurationbasedonsnowpack,forCascadesfrogsatfour siteswithdifferingelevationsinUpperDeepCreekBasin,TrinityAlpsWilderness, California,from2003to2007 ...... 45 Figure23.MeanPercentofcaptures,2004to2006,fortwospeciesofgartersnakeby macrohabitatinupperDeepCreekbasin,TrinityAlpsWilderness,California ...... 50 Figure24.MeanPercentofannualgartersnakecaptures(2003to2006)foundinhabitatzones withandwithoutspecificprey(fishoramphibianlarvae),inupperDeepCreekbasin, TrinityAlpsWilderness,California...... 50 Figure25.Fixedkernelutilizationdistributions(bandwidth=100)forCascadesfrog,common gartersnake,andaquaticgartersnakelocationswithinDeepCreekBasin,TrinityAlps Wilderness,California...... 53

vii Cascades Frog Ecology in California Figure26.BoxplotscomparingCascadesfrogcapturesattwostreamreaches(190mlong),one withtroutandonewithouttroutinEchoLakebasin,TrinityAlpsWilderness,California. ...... 54 Figure27.Empiricalmodeldisplayingtiminganddurationofspecificlifehistoryattributesfor allageclassesofCascadesfrogsfrom2003to2007inEchoLakebasin,TrinityAlps Wilderness,CA...... 55

LIST OF APPENDICES

AppendixA.InclusivedatesbycensusforCascadesfrogvisualencountermarkrecapture surveysincludingthenumberofnewlymarkedtotaledbycensusfromyears2003 to2007inupperDeepCreekBasin,TrinityAlpsWilderness,California.Censusdurations varied,withspringandfallhavingtheshortesttimeintervals...... 70 AppendixB.SummaryofallCascadesfrogcapturesbyyear,site,andcensusperiodfrom2003 to2007inEchoLakebasin,TrinityAlpsWilderness,California.Dashesindicateasitewas notsurveyedduringaspecificcensus...... 71 AppendixC.Summarytableofattributes,movement,andfateof51Cascadesfrogsmonitoredby radiotelemetryforyears2003and2004inEchoLakebasin,TrinityAlpsWilderness, California...... 72 AppendixD.NontargetherpetofaunadetectedduringthisstudyinthesoutheastTrinityAlps Wildernessfrom2003to2007...... 74

viii Cascades Frog Ecology in California

INTRODUCTION Theglobaldeclineofamphibianshasbecomeaconcernoverthelasttwodecadeswith theranidfrogsofwesternNorthAmericaamongthemostseriouslyimpactedofallspecies.In lightofinvestigationsdocumentingrapiddeclinesofCascadesfrogs( Rana cascadae )in California(FellersandDrost1993,JenningsandHayes1994,Davidsonetal.2002,Welshetal. 2006,Fellersetal.2008)renewedattentionhasbeenplacedontheconservationofthisspecies. OnecentralproblemregardingthemanagementofCascadesfrogpopulationsinCaliforniaisthe lackofinformationongenerallifehistoryrequirementsofthespecies,aswellasitsroleinthe ecologicalcommunity.Understandingaspecies’naturalhistoryisessentialforsuccessful conservationandmanagementofthespecies(Bury2006).Althoughanumberofpublished studieshaveconcentratedonvariousaspectsofCascadesfrogecologyandreasonsfordeclines, (seeJenningsandHayes(1994),PearlandAdams(2005),andFellersetal.(2008)forareview), considerableknowledgegapsremainregardingthegeneralecologyoftheCascadesfrogin California. MoststudiesrelevanttoCascadesfrogecologyhavebeenconcentratedinthenorthern portionsoftheirrangeincludingOregonandWashington.RecentgeneticworkbyMonsenand Blouin(2003)revealedsubstantialdivergenceinthegenomeofCascadesfrogspopulationsin CaliforniacomparedtothosefoundOregonandWashington.ThisworksuggestsCalifornia populationshavebeenseparatedfromOregonandWashingtonsincethebeginningofthelast glacialmaximum(approximately2mya)andrecognizeCaliforniapopulationsasadistinct populationsegment(DSP).PopulationsofCascadesfrogsinOregonandWashingtonmayalso differfromCaliforniapopulationsbecausetheyoccupylandscapesthatarelikelydifferent(both physicallyandbiologically)thanthosewithinCalifornia.Basedongeneticandpotential landscapedifferences,populationsonregionalscalescanhavedistinctlydifferenthabitat associations,phenologies,androlesinthecommunity. ThefocusofmanystudiespreviouslyconductedonCascadesfrogscenteredon reproduction,includingvariousenvironmentalfactorsaffectingeggandlarvaeoccurrenceand survival.Studiesfocusingonreproductionarevaluable,howeverunderstandingthefull complimentofaspecieslifehistorydependsonathoroughinvestigationoveritsentireannual activityperiodwhileaccountingforspecificdemographicparameterssuchasageandsex. Recentstudiesonotheranuranselucidatethispoint,indicatingmanyspecieshavethetendency tousemultipleresourcesannually(Sinsch1990,Popeetal.2000,PopeandMatthews2001, Pilliod2002).Theseresourcesareoftenspatiallyseparatedwithinapatchylandscape,sosingle siteinvestigationslackdemographicindependence(Petrankaetal.2004).Alloftheprevious detailedlifehistoryinformationonCascadesfrogsislargelylimitedtosingleisolatedhabitats. Forexample,theonlystudyonCascadesfrogpopulationdynamicsoccurredatonesmall isolatedpondintheOregonCascadesRange(BriggsandStorm1970).Althoughvaluable, insightsfromstudiesatisolatedsitescannotbeusedtomanagepopulationsoccupyingpatchily distributedhabitatsincloseproximity(<1kmapart). ManypreviousstudiesonCascadesfrogshavefocusedonlargescale,shortterm distributionalrelationshipsofthespeciesinOregonandWashington(Brown1997,Buryand Major1997),aswellasCalifornia(FellersandDrost1993,Fellers1998,Kooetal.2004,Stead etal.2005,Welshetal.2006,SteadandPope2007).Thesestudieswereconductedusing

1 Cascades Frog Ecology in California snapshotvisualencountersurveyswithanemphasisonregionaldistributionsandlargescale habitatassociations.Althoughtheseeffortshavebeencrucialforidentifyinggrosshabitat associationsandtimelyregionaldistributions,theyprovidenoinformationontemporaluseof habitatsbydifferentageclassesofCascadesfrogsatscalesrelevanttothepopulationsasa whole. ThesignificanceCascadesfrogshaveonlocalfoodwebdynamicshasbeenoverlooked withnoinformationavailablebeyondbriefobservationalnotes.Studiesonotheranuranspecies emphasizetherolefrogshaveincommunitystructure,bothaspredators(Bull2003,Finlayand Vredenburg2007)andprey(Kephart1982,GregoryandIsaac2004,Matthewsetal.2002). UnderstandingtheroleCascadesfrogshaveinfoodwebdynamicsisanessentialcomponentto theirconservation.InthisstudywefocusedonnativeandintroducedpredatorsofCascades frogs.OtherongoingstudiesinCaliforniaarealsodefiningspecificrolesCascadesfrogshavein thecommunity;theseincludeadetailedexperimentalfieldstudybyKarenPope( USFS/ UC Davis )andadietstudyonCascadesfrogsbyMontyLarson( USFS/ Humboldt State University ). ThisstudyprovidesamuchneededdetailedecologicalstudyonCascadesfrogsin California.TheprimaryobjectivesofthisprojectweretodeterminekeyaspectsofCascadesfrog lifehistoryatapopulationscale,aswellastodetermineitsroleinacommunitywithbothnative andnonnativepredators.Wespecificallyfocusedonagebasedseasonalhabitatuse,movement patterns,andreproductiveecologyofanentirepopulationofCascadesfrogs.Inaddition,we studiedtheroleCascadesfrogshaveinlocalfoodwebdynamicsincludingnovelassociations withnonnativebrooktrout.

Species Descriptions and Backgrounds

Cascades Frog TheCascadesfrogwasfirstidentifiedasauniquespeciesamongthewesternranidfrog complexbySlater(1939).Cascadesfrogscanbeidentifiedfromotherwesternranidsbywell defined,inkyblackdorsalspotsandayellowupperjawstripethatextendsalmosttotheshoulder (Olson2005)(Figure1).TheCascadesfrogisconsideredtobemediumsizedamongwestern ranidfrogs.Inthisstudy,wefoundfemalesupto81mmsnouturostylelength(SUL)and weighingasmuchas56gwhengravid.Malesgrewupto67mmSULandweighedasmuchas 28g.

Figure 1.PhotographsofthreeCascadesfrogs( Ranacascadae )capturedinUpperDeepCreekbasin, TrinityAlpsWilderness,California.Leftindividualisajuvenile,middleindividualwasanadultmale( Photo credit:JamieBettaso ),rightindividualwasagravidadultfemale.

2 Cascades Frog Ecology in California

CascadesfrogsrangefromthenorthernSierraNevadaMountains,norththroughoutthe CascadesRangesofCalifornia,Oregon,andWashington.Twoisolatedpopulationsoccurwest oftheSierraNevada/CascaderangeintheOlympicPeninsulainWashingtonandtheKlamath mountainsinNorthernCalifornia.InCalifornia,Cascadesfrogdistributionisassociatedwith montaneandsubalpinelandscapes.KnownextantCaliforniapopulationsappeartoberestricted toelevationsabove1220m(Welshet.al2006,SteadandPope2007,J.Garwoodpers.obs.). Thiscreatesahighlyfragmented“island”distributionforthisspeciesinNorthernCalifornia.In theKlamathMountains,wherethisstudytookplace,themajorityoftheCascadesfrogs distributioniswithin779,400acresofprotectedlands,whichincludetheTrinityAlps,Russian, andMarbleMountainWildernessareas(Welshetal.2006).DisjunctpopulationsofCascades frogsintheKlamathProvincearealsodistributedthroughoutMountEddyandbothslopesofthe ShastaTrinityDivide.IntheShasta/Lassenregion,smallremnantpopulationsofCascadesfrogs appeartobeextremelyisolatedfromoneanother(Fellersetal.2008). Acrosstheirrange,Cascadesfrogsreproduceonceannually,immediatelyaftersurface watersbegintothaw(Sype1975,Briggs1976,Nussbaumetal.1983, this study ).Eggmasses containing300500ovaaretypicallyovipositedonshallowbenchesoralcovesoflenticwater bodies(Briggs1976,Nussbaumetal.1983, this study ).Althoughunobservedduringhundredsof sitevisitsintheKlamathMountains,Cascadesfrogeggmasseswerediscoveredinslowflowing meadowstreamsatthreelocationswithintheLassenregionin2007(J.Garwood,pers.obs.). Cascadesfrogshaveasingleyearlarvaldevelopmentperiod,withtadpolesmetamorphosinginto frogsbylatesummer(Sype1975,Nussbaumetal.1983,Briggs1987, this study ).Thisisunlike theMountainandSierraYellowLeggedfrogs( R. muscosa andR. sierra )whichareclosely relatedspeciesthatretainlarvalstagesforuptothreeyears(Vredenburgetal.2005).Although individualmovementpatternsofadultCascadesfrogsarepoorlyknown,adultsandjuveniles havepreviouslybeendocumentedusingawidervarietyofhabitatsthanthoseusedforbreeding. BuryandMajor(1997)( in Washington ),Brown(1997)(in Oregon )andWelshetal.(2006)( in California )observedCascadesfrogsinalltypesofaquatichabitatsincludingponds,meadows, deeplakes,andcreeks.TheseobservationsdemonstrateCascadesfrogsuseavarietyofhabitats andsuggestsindividualsmaymoveseasonallydependingonspecificlifehistoryattributessuch asbreeding,summerandwintering. TheCascadesfroghasbeenlistedasaCaliforniaspeciesofspecialconcernsince1994 (JenningsandHayes1994)andhasbeenconsidered“sensitive”throughoutUSDAForest ServiceRegion5since1998(USDAForestService).TheCascadesfrogisalsolistedas“near threatened”ontheglobalIUCNRedListin2007(www.iucnredlist.org).

Garter Snakes Theregionhastwospeciesofgartersnakes:thecommongartersnake( Thamnophis sirtalis )andthePacificcoastaquaticgartersnake( Thamnophis atratus hydrophilus )(hereafter aquaticgartersnake).Thecommongartersnakehasbeendescribedasthemostsuccessful speciesinNorthAmericaandisthemostwidespreadofallintheregion(Rossmanetal. 1996,St.John2002).Theaquaticgartersnakehasamuchnarrowerdistribution,occurringin northwesternCaliforniaandsouthwesternOregon(St.John2002),whereitisconsideredtobe closelytiedtostreamhabitats(St.John2002,Lindetal.2005).Basedonexistingliteraturefor NorthernCalifornia,bothspeciesaredependentonaquaticprey.Commongartersnakes regionallypreyprimarilyonamphibians(Kephart1982,Rossmanetal.1996),whereasaquatic

3 Cascades Frog Ecology in California gartersnakespreyonbothamphibiansandfish(LindandWelsh1994),usinguniquelyderived foragingtechniques(WelshandLind2000).SimilartothehighSierraNevada,weconsider gartersnakesinthemontanetosubalpineKlamathBioregiontobethetopnativepredatorin theseaquaticecosystems(see:Jenningsetal.1992,Matthewsetal.2002).

Introduced Brook Trout Brooktrout( Salvelinus fontinalis )*arenativetoEasternNorthAmerica,thoughtheyare themostwidelystockedtroutinhighmountainlakesoftheWesternUnitedStates(Bahls1992), especiallyinNorthernCalifornia(Welshetal.2006).Brooktroutareespeciallyadaptedto montaneandsubalpineenvironmentsandareamongthemostcoldtolerantofsalmonids,having theabilitytoreproduceinlakes,andreachingreproductivematurityatayoungage(Moyle 2002).Theselifehistorytraitsmakebrooktroutparticularlysuccessfulinhighelevationlakes withpopulationspersistingyearsafterstockinghasceased(Bahls1992,Knapp1996). Establishedbrooktroutpopulationsinheadwaterlakeshavealsoallowedthisspeciestoinvade streamnetworksassociatedwiththeselakes,increasingtheiroveralldistributionsbeyond managedportionsofthesewatersheds(Adamsetal.2001,Welshetal.2006,J.Garwood,pers. obs.).Brooktroutareconsideredopportunisticpredators,feedingonavarietyofavailable invertebrates(Moyle2002)aswellaspalatableamphibians(Resetarits1991,Bradford1989, Vredenberg2004,Welshetal.2006). *Technically a char because they are members of the Salvelinus. Based on current and historic naming, we will refer to them here as trout.

SITE DESCRIPTION AND BACKGROUND

Study Area Description ThisstudywasconductedwithintheheadwatersofDeepCreek,locatedatthe southeasternportionoftheTrinityAlpsWilderness,KlamathProvince,California(UTM, NAD27CONUS;509208E,4530371N)(Figure2).Theentirewatershediswestfacingand drainsintotheStuart’sFork,amajortributaryoftheupperTrinityRiver.Theupperportionof DeepCreek,wherethestudytookplace,isamediumsizedglacialcirquebasin(601ha) encompassedbysteepjaggedpeaksreachingelevationsupto2497m,whichareamongsomeof thehighestintheKlamathProvince.Thebasinisfurtherdissectedintotwosmallersubbasins (hereafterEchoLakeandSiligobasins)ofsimilarsizebyawesttrendingjaggedarête(Figure 2).ThegeologyofthestudyareaisdominatedbytheserpentinerichTrinityultramaficpluton whichisthoughttohaveformedinthelateJurassicperiod(Lipman1964).Otherrockspresent inlesseramountsincludevarioussmallgraniteintrusions,gabbro,andschist’s.Themajorityof thebasins’topographyconsistsofsteepelevationalgradientscomposedofbarerockoutcrops andexpansivetalusfields.UpperDeepCreekhasbeenfurthercharacterizedbyperiodic glaciation,thoughtmostrecentlyfromtwoseparateeventswithinthePleistoceneepoch(Sharp 1960).Asaresult,superficialglacialdepositsandmorainesarescatteredthroughoutthearea, addingtothecomplextopography.Thisterrainistypicalwhencomparedtootherbasinsinthis isolatedandruggedregion. ThefloraoftheTrinityAlpshasbeendescribedindetailbyFerlatte(1974).Floristic zoneswellrepresentedinDeepCreekbasinincludeopensubalpineforest,montanechaparral, andsubalpinemeadowwhicharecomposedofserpentinetolerantplantspecies.Thinpatchesof

4 Cascades Frog Ecology in California

Figure 2.Mapofsurveysiteswithin,andproximalto,theUpperDeepCreekdrainagelocatedinthe southeastTrinityAlpsWilderness,California.Blackhatchlinesrepresentcatchmentboundariesforboth EchoLakeandSiligosubbasins.Majorelevationcontoursrepresent100meterintervals. 5 Cascades Frog Ecology in California westernwhitepine( Pinus monticola ),foxtailpine( P. balfouriana )andjeffreypine( P. jeffreyi ) dominatethesparseforestcanopy,whichcontainsatotalofsixconiferspeciesoverall. Huckleberryoak( Quercus vaccinifolia ),angelica( Angelica arguta )dominatedryexposed slopesofmontanechaparral.Meadowpatchescontainavarietyfloweringplants,butare dominatedbysedges( Cyperaceae )andgrasses( Poaceae ),alongwithcornlily( Veratrum californicum ),whitefloweredschoenolirion( Schoenolirion album ),Californiapitcherplant (Darlingtonia californica ),meadowgoldenrod( Solidago canadensis elongata ),andmountain spiraea( Spiraea densiflora ). TheclimateoftheKlamathMountainsismediterranean,characterizedbywet,cool wintersanddry,warmsummers.However,thelocalexpressionofthisclimateregimeis remarkablyvariableduetoastrongwesttoeastmoistureandtemperaturegradientcausedby proximitytothePacificOcean.Steepelevationalgradientsfurtherthisinfluenceontemperature andthespatialpatternofprecipitation,throughorographiceffects(Skinneretal.2006).During thisstudy,whenCascadesfrogswereactive(MaytoOctober),airtemperaturesrangedfrom 11.1to31.6ºC(mean:12.7ºC)atthenearestweatherstation(RedRockMountain,Elevation: 2042m).Incontrast,airtemperatureswhenfrogswereoverwintering(NovembertoMay)were muchcoolerrangingfrom19.4to24.4ºC(mean:0.9ºC). ThedominantsourceofprecipitationfromNovemberthroughMayfallsassnowwiththe May1averageequaling210cm(CCSS2007).From2003to2007,regionalsnowpackwas 170%,125%,120%,251%,and38%respectivelyoftheMay1average(CaliforniaDepartment ofWaterResources,onlinereports:http://cdec.water.ca.gov).Precipitationduringtheactive periodofCascadesfrogsusuallyfallsasrain.Rainfalleventsduringthesemonthsoccurlargely intheformofisolatedthunderstormsandareusuallysparse.Duringthisstudy,totalrainfall fromJunethroughOctoberrangedfrom0.4to5.5cm(mean:2.6cm)annually. AlthoughsomelargepondsandonelakearepresentinUpperDeepCreek,aquatic featuresaredominatedbysubalpinewetmeadowcomplexes(Figure2).Thesefragilemeadows collectivelycontainhundredsofsmallpondsandstreamsegmentsalongwithscattered Darlingtoniafens.WelimitedourstudytoquantifyhabitatsinEchoLakebasinsincethe majorityofworkwasconcentratedthere,butseeFigure2foramapofaquaticfeaturesproximal toEchoLakebasin.TheaquaticfeaturesinEchoLakebasinincludetwelvemeadows,twolarge semipermanentponds(SMPandEDN),andEcholake,amediumsizedtarn.Duringeach spring,EchoLakebasincontainsanestimated3.12hectaresofsurfacewaterincluding:onelake, 588pondsand13.9kmofstreams.Theseaquaticfeaturesrangeinelevationsfrom1960to2279 mandarelocatedonslopesrangingfrom048%(mean:15.5%).Collectively,thesefeatures createamatrixofpatchy“island”aquatichabitatsthroughoutthebasin(Figures3and4).In total,thesehabitatsaccountfor3.5%oftheareainthebasinandaresurroundedbyinhospitable dryrockyslopes,steeptalusfieldsandpostglacialmorainepiles. Theaquaticresourcesinthisregionarehighlydiverseinbothmorphologyandtheir respectiveannualhydrologiccycles.Waterhereisderivedfromthreemainsources:snowpack, groundwater,andrainfall;allofwhichprovidespatialandtemporalvariationinwatersource contributiontoaquaticfeatures.Assnowmeltsinthespring,meltwaterfillsthelake,ponds,and streamstomaximumcapacity.Duringthistime,mosthabitatpatchesareconnectedthrougha complexnetworkoftemporaryandpermanentstreams.Assummerprogresses,groundwater becomestheprimarywatersource,withmanysnowmeltderivedfeaturescompletelydryingup (Figure5).

6 Cascades Frog Ecology in California

Figure 3.MapdisplayingthedistributionofallaquatichabitatpatcheswithinEchoLakebasin,TrinityAlpsWilderness,California.Habitatpatchesandsurvey zonesarerepresentedbya4lettercodewithineachzone:ThefirstthreelettersrepresentthepatchID,thelastletterrepresentsthezoneIDwithinaspecific patch;patcheswithonlyonezonehaveathreelettercodeidentifyingthepatchname.Stream,pond,andlakezonesareseparatedbyblackhatchlines.Elevation contoursrepresent100meterintervals. 7 Cascades Frog Ecology in California

Figure 4. ExamplesofhabitatpatchessurveyedforCascadesfrogsfrom2003to2007inEchoLake basin,TrinityAlpsWilderness,California.Topleft:smallisolatedspringfedmeadow.Topright:large meadowcomplexwithsemiisolatedpatchesconnectedthroughastreamnetwork.Middleleft:small isolatedpermanentpond.Middleright:EchoLake,amediumsizedisolatedtarn.Bottomleft:stream drainingalargeportionofthebasin(notethickpeatheadwalltotheleftofthefalls).Bottomright:large isolatedmoderateslopingmeadow.

8 Cascades Frog Ecology in California

Figure 5.ExampleoftemporalvariationinaquatichabitatatSMP(SnowmeltPond)duringthesummerof 2003inEcholakebasin,TrinityAlpsWilderness,California.Thistemporarypondwasusedfor reproductionbyCascadesfrogsfrom2003to2007.frogsconductedextensivemigrationstothissite annually.Amongothers,thissitedriedupcompletelyeachyearbylateOctober,forcingallagesof Cascadesfrogstomovetodistantoverwinteringhabitatpatches. Weidentified63individualgroundwaterspringsourcesofvaryingdischargeandtenure. Mostgroundwatersourcesremainedthroughoutthesummers,thoughsomedriedinthefall seasons,especiallyduringdrieryears.Furthermore,wehavefoundasannualvegetationdiesin thelatesummer,someaquaticfeaturescorrespondinglyrefillwithwaterviasoilpercolation. Basedonthisstudy,isolatedsummerraineventshadlittletonoeffectonhydroperiodoron rechargingdryingwaterbodiesduringthesummermonths.Wesuspectraintohaveamuch largereffectonsnowpacktenureduringrainonsnowevents.

Land Use History

Grazing ThemeadowsofupperDeepCreekbasinweregrazedbycattlethroughaUSFSgrazing allotmentwhichwasterminatedafter1978.USFSrecordsindicatethatbetween1947and1978 anywherefromfiveto132headofcattlegrazedthemeadowsofStuartsForkdrainagefromJune throughOctobereachyear.Priorto1947,grazingintheTrinityAlpsbybothsheepandcattle waslargelyunregulatedandgoesbackasfarasthelate1800swhenmajorgoldminingwasstill

9 Cascades Frog Ecology in California occurringinthearea.Potentiallongtermeffectsofgrazing,especiallyonmeadowsystem hydrologyanderosion,havenotbeenstudied.

Introduced Fishery BasedonCaliforniaDepartmentofFishandGame(DFG)regiononestockingrecords, theearliestwrittenrecordofnonnativetroutintroducedintoEchoLakeoccurredin1930(B. Aguilar,perscomm.).Thisrecordindicatesthat10,000easternbrooktroutand5,000rainbow trout( Oncorhynchus mykiss )wereplantedduringthisevent,representingdensitiesof1.3fish/m 2 oflakesurfacearea.Duringthesummerof1942,threestockingeventsoccurredatEchoLake, whichtotaledanimpressive18,400brooktrout,or1.6fish/m 2.Inthefollowingdecades, stockingnumberswerereduceddrastically,rangingfrom780to4,000fishperyear,thoughthe lakewasnotstockedonanannualbasis.Thevastmajorityoffishplantedwerebrooktrout; rainbowtroutwerestockedononlyafewoccasions.In1999,EchoLakewaspulledoffthe stockingrotationbyDFGafterbeingassessedmultipletimesasapoorfishery(B.Aguilar,pers. comm.)thoughaselfsustainingpopulationofbrooktrouthassincepersisted.Basedonour recentsnorkelsurveys,andgillnetsurveysconductedbyKarenPope,rainbowtroutappearbe extirpatedfromEchoLakebasin.Unlikebrooktrout,itappearsrainbowtroutareunable maintainaselfsustainingpopulationinDeepCreekbasinwithoutperiodicstockingefforts.

10 Cascades Frog Ecology in California

STUDY METHODS

Site Selection UpperDeepCreekBasinwasselectedforthisstudyduetoacombinationofunique characteristics.Priortothisstudy,in2002,apersistentpopulationofCascadesfrogswasfound toexisthere,withmanybreedingsitesdistributedthroughoutthearea.Uponfurther examination,theareawasalsofoundtohaveamosaicofpotentialaquatichabitats(lake,pond, streamandwetmeadow)forCascadesfrogs(Figure4),andthusallowforadetailedassessment ofresourceuseamongafullspectrumofpotentialhabitats.Also,nonnativebrooktrouthavea limiteddistributionintheBasin,sospeciescouldbestudiedinareaswithandwithoutfish.Last, thisregioncurrentlyhasminimalanthropogenicimpact.Theareaisfullyprotectedunder wildernessregulation,andisveryremote(nearesttrailhead~10km)withlimitedhumanimpact duetoitssteep,inhospitabletrailaccess.

Study Duration Thisstudyspannedfiveyearsfromthespringof2003tothespringof2007.Themajority offrogandsnakecensusworkoccurredfrom2003through2006,spanningtheentireannual activeperiodofbothCascadesfrogsandgartersnakes(MaythroughOctober).Thisstudyalso encompassedtheentireCascadesfrogbreedingseasonin2007(ApriltoJuly).Nogartersnake datawascollectedin2007.LongtermmarkrecaptureandreproductiondataonCascadesfrogs isanticipatedtobecontinuedbeyondthedurationrepresentedinthisreport.

Capture Surveys From2003through2006,systematicvisualencountersurveys(VES)forCascadesfrogs andgartersnakeswereconductedapproximatelyeverytwoweeksthroughouttheannualactive period.In2007,surveyswereconductedfromlateApriluntilJuly.Althoughsurveysfor CascadesfrogsoccurredthroughouttheentireupperDeepCreekbasin,themajorityofthestudy wasrestrictedtothesouthsubbasin(342.2ha),hereafterEchoLakebasin.Regularsurveys wereconcentratedatallfifteendesignatedhabitatpatcheswithinEchoLakebasin(Figure3). Thenorthsubbasin,hereafterSiligobasin,wassurveyedonalimitedbasisalongwithfourother isolatedpatchesadjacentto,thoughoutsideof,upperEchoLakebasin.Theseisolatedpatches includeRedMountainMeadows,BillyBeDamnedLake,DeerLake,andanunnamedmeadow systemandadjacentpond,hereafterreferredtoasAtlantis(Figure2).Oftheseproximalsites, RedMountainMeadowswassurveyedallyearsandreceivedthemosteffortforproximalsites. ThisisolatedmeadowsystemislocatedinStonyCreekbasinandisgreaterthan800mfromthe nearestCascadesfroghabitatinEchoLakebasin. Surveyswereconductedduringcalmandwarmconditions,whicharemosteffectivefor detectingdiurnalherpetofaunaintemperateregions(CrumpandScott1994,Thomsetal.1997). Mostsurveyswereconductedbetween1000and1900h,andoccurredonlywhenasitewas exposedtodirectsunlight.Adverseweatherconditionswereavoided,especiallywhenwindand rainlimitedvisibility,orwhenairtemperatureswereextremelylowforagivenseason.VES searchprocedureswereadaptedfromCrumpandScott(1994)andThomsetal.(1997)where onetotwoobserverswalkedtheperimeterofalllentichabitatsandthebanksofallstreams.The twolenticsitesinthebasinwithsurfaceareasgreaterthan0.2hectares(ECHandSMP),were surveyedutilizingtwosurveyorsintandemduetothecomplexirregularshorelinesandadjacent talusfields.Onesurveyorwalkedtheshallowlittoralzone,whileasecondsearchedonland

11 Cascades Frog Ecology in California withintwometersoftheshoreline.Streamsgreaterthan0.5mwidewerealsosearchedin tandem,withonesurveyorwalkingeachbank.Floodedportionsofmeadowsweresearched usingazigzagpattern(Thomsetal.1997)afterallconfinedlenticandstreamhabitatswere searched.Aseachseasonprogressed,riparianvegetationinmeadowstreamsincreased dramaticallyinheight,limitingasurveyor’svisionofthechannelinsomeareas.While surveying,dipnetswereusedtosweepanydenseriparianvegetationawayfromtheconcealed channelinordertovisuallysearchthestreamforherpetofauna.Weattemptedtocaptureall juvenileandadultCascadesfrogs.However,youngoftheyearfrogswerenotcapturedto reducepossiblehandlingandmarkingstressonmetamorphosingindividualsgoingintotheirfirst winter.Allageclassesofgartersnakeswerecaptured.

Measuring and Marking AllCascadesfrogsandgartersnakeswerecapturedbyhandorwithadipnet.When captured,individualfrogswereplacedinnumberedpintsizeplasticfreezerbagsfilledwith water.Gartersnakeswereretainedincottonsacks.Capturelocationsweremarkedwitha numberedpinflagwhichcorrespondedtothenumberedbagsoindividualanimalscouldbe returnedtotheirexactcapturelocationafterprocessing.Allfrogswereweighed(g)witha60g Pesolaspringscale(accuracy±3%).Snouturostylelengths(SUL)weremeasuredtothenearest mmusingmetricdialcalipers(accuracy±1mm).MeasurementsofSULwerestandardizedby “maxingout”SULlengthsofindividualfrogs.Thiswasachievedbyplacingfrogsonaflat surfaceandapplyinggentlelateralandverticalpressureonthewhenmeasuring.This methodofmeasurementminimalizedSULlengthvariationbynotallowingfrogstocontract duringmeasurement.Sexofindividuals(≥45mmSUL)wasdeterminedbythepresenceor absenceofnuptialpadsthatexistonthethumbsofmaturingmales.Sincesomefrogsreceived PITtagspriortothesizethatsexcouldbedetermined(<45mmSUL),subsequentcapturesof manyindividualsrevealedthesexforalargesubsetofPITtaggedjuveniles.Gartersnakeswere alsoweighedwithPesolaspringscales,andmeasured(snoutvent)withafabrictapetothe nearestmm. ImmatureCascadesfrogs(<40mmSUL)weremarkedfrom10June2003to11October 2005usingabiocompatibleVisualImplantElastomer(NorthwestMarineTechnologies,Shaw Island,Washington,USA).VisualImplantElastomer(VIE)hasnoreportednegativeeffectson survival,growth,andbehaviorofotheramphibianspecies,andisrecentlypreferredovertoe clipping(Nauwelaertsetal.2000,Bailey2004,Wahbeetal.2004).Allnewcaptureswere cohortmarkedwithacoloranddigitcodesoindividualscouldbeidentifiedtoaspecifichabitat patch.Cohortmarksforeachsitewerechangedeachyearsofrogscouldbeidentifiedtothe patchandyearmarked.WedidnotmarkanyjuvenilefrogswithVIEafter2005duetologistic constraints. Cascadesfrogs≥40mmSULweremarkedindividuallywithPassiveIntegrated Transponder(PIT)tags(TX1400L,BiomarkInc.,Boise,Idaho,USA)throughoutthestudy period.PITtagshaverecentlybecomeamethodofchoiceformarkingmediumtolargesize anurans;seeFerner(2007)forareview.PITtagswereinsertedintoa2mmwide,Vshaped incisionthroughthedermaltissueusingstainlesssteeldissectingscissorssanitizedin90% ETOHpriortoeachmarking.Theincisionwaslocatedonthedorsalsurface,anteriorandlateral tothesacralhump.

12 Cascades Frog Ecology in California

Wemarkedgartersnakesbeginningin2004andcontinuingthrough2006.Gartersnakes ≤340mmweremarkedbyventralscaleclippingsimilartoBrownandParker(1976).Garter snakes>340mmSVLweremarkedusingPITtags.PITtagswereinsertedventrallyintothe bodycavitywithasterilized20gaugeinjectoronethirdthesnoutventlengthoftheanimalup fromthevent.Basedondissectionofpreservedspecimensofasimilarspeciesof Thamnophis , Keck(1994)suggestedthistobethebestpointofinjectiontoavoidpuncturingthestomachor gonadregionsoftheanimal.

Radio Telemetry Weusedradiotelemetryfrom2003to2004tostudymovementrates,migrationroutes, andmicrohabitatuseofadultCascadesfrogs.WeattachedBD2transmitters(HolohilSystems, Ltd.,Carp,Ontario,Canada)to30femaleand21maleCascadesfrogsfrom20Junethrough3 Octoberin2003,and18Junethrough10Octoberin2004.In2003,transmitterswerefittedto individualsusingapolyesterribbonasawaistbelt(Pilliodetal.2002).In2004,transmitters werefittedtoCascadesfrogsusingglassseedbeadsthreadedwithanelasticstringasawaistbelt (Muths2003).Transmittersrepresentedonaverage4.3±0.15gofthetotalbodyweight,which iswellunderthe10%ofbodyweightrecommendedbyRichards,etal.(1994).Individualswere trackedforvaryinglengthsoftime,butoverall,trackingsessionsoccurredwithinthemonthsof JunethroughOctober,encompassingtheentireannualactivityperiodforthestudyarea.

Egg Mass Surveys WeconductedweeklyeggmasssurveysduringeachspringthroughoutEchoLakebasin toidentifybreedinghabitatcharacteristics,totalbasinlevelreproductiveeffort,andtimingof ovipositionforeachyear(CrouchandPaton2000).Oncloudydays,searchersusedpolarized glassestoavoidsurfaceglareatsites.Individualeggmasseswerelabeledwithnumberedpin flagsorwithasmallinjectionofVIEinthecenterofthemasstoavoiddoublecountingon subsequentvisits.Inordertodescribemicrohabitatsusedforoviposition,variablesincluding surfacearea,depthandwaterbodytype(pond,springpondandlake)werecollectedaswellas attachmentsubstrate,depthofwaterandsubmergeddepthatindividualeggmasses.

Garter Snake Diet From2003to2006,gartersnakeswerepalpatedtoforceregurgitationoffoodintheir digestivetractsasdescribedbyFitch(1987).Thenumber,species,andlifestageofstomach contentswererecorded.Adultfemalesnakesthatshowedsignsofbeinggravidwerenot palpated.

Fish Surveys FishpresenceatEchoLakewasdeterminedbygillnetting(K.Pope,unpubl.data, USFS/UCDavis)Fishdistributionanddensitywerealsodeterminedutilizingboundedsnorkel countswithinallpermanentstreams(HankinandReeves,1988)duringthesummerof2005. Threecountswereconductedineachhabitatunit(riffles,runsandpools)bythreedifferent diverswith15minutesofinactivitybetweeneachcount.Watervisibilityduringdivesessions wasexceptionalandcarewastakentomoveslowlyintohabitatunitsfrombelowtoavoid startlingfish. AllanimalcareandhandlingproceduresmetrequirementsoftheHumboldtState UniversityIACUC(Protocols:02/03.W.106Aand03/04.W.66A).

13 Cascades Frog Ecology in California

Basin Mapping Importantspatialattributes,includingwaterbodyshorelineperimeters,wetmeadow perimeters,streamnetworks,springsourcelocationsandCascadesfrogindividualcapture locationsandbreedingsitesweremappedusingaglobalpositioningsystem(Tremble GeoExplorerIII®,Sunnyvale,California).Definedstreamchannelsweremappedbywalkinga singlepaththroughoutthelengthofeachchannel.Wetmeadowperimeterswerepredetermined byplacingpinflagsattheedgeofthewettedareaandthenwalkedwiththeGPStomap perimeters.Allpermanentstreamsandlargepondswithinthesemeadowperimeterswerealso mapped.Additionallyallindividualspringoriginsweremappedwithapointlocationatthe sourceofdischarge.Allspatialdatawasdifferentiallycorrectedusinganearbybasestationand furthergroundtruthedwithhighresolutionsatelliteimageryandsitevisitstomaximizemapping accuracy.

Habitat Inventory Inthisreport;wedefineabasinasaterminalheadwatercatchmentthatisseparatedfrom anotherbyaridge.ThesecriteriaaccountforamuchfinerwatershedscalethantheCalWaters scale(asdefinedbytheCaliforniaStateDepartmentofWaterResourcesCalWatersGIS coverage)usedcommonlybystateandfederalagencies.WeavoidedusingtheCalwaters definingcriteriabecausetheterminalportionsofUpperDeepCreekareactuallytwoseparate basins(Figure2)withphysicalbarriersthatlimitmigrationanddispersalofCascadesfrogs. Wecharacterizedandmeasuredalllenticfeaturesand83%ofallloticfeaturesinEcho Lakebasin.Wedidnotmeasure3.6kmofstreamsthatweremainlyisolatedsteepgullyfeatures awayfromthe15corehabitatfeatures.Thesemeasurementswerecollectedthreetimes(spring, summerandfall)withineachpatchandsummarizedbypreestablishedhabitatzones.Inmeadow systems,zoneswereapproximately50mlongbeltsofvaryingwidthsthatextendedupthe meadow.Streamandlakezoneswerebasedon50mtransectsalongthestreamorlakeshore. Pondswerecharacterizedasspringfedorrunoffpondsbasedontheirrespectivewatersources. Springfedpondsweredirectlyconnectedto,orformedby,anearbyspringsourcewhereas runoffpondsweredepressionsfilledbyspringsnowmeltmeltwaterorrainfall. Lenticsites(e.g.,springpond,runoffpondandlake)measurementsincludedsurfacearea andmaximumdepthforeachvisit.Forloticsites(e.g.,springsandstreams),measurements includedsurfacearea,meandepthandmeanwidthforeachvisit.Thespringseasonhabitat inventorywascollectedduringpeaksnowmeltrunoffandrepresentsthemaximumcatchment capacityofeachpatch.Summerandfallinventorieswereconductedduringthemiddleofeach seasonrespectivelytorepresentaverageconditionsduringtheseseasons.Habitatdatawas collectedin2003.Becausefouryears(20032006)hadaboveaveragesnowpack(170%,125%, 120%,and251%respectively),thesemeasurementsrepresentconditionsformoderatetowet wateryears.

Weather Airtemperaturewascontinuouslyrecordedthroughouteachseasonfrom2003through 2006byanautomatedweatherstation(OnsetInc.)setup1.5mabovegroundinameadowat midbasinelevation(2070m).Airtemperatureswererecordedonceperhourthroughouteach season.Precipitationwascollectedbyanautomatedtippingbucketfrom2003to2005.

14 Cascades Frog Ecology in California

Vandalismtothestationbyablackbearkeptusfromcollectingprecipitationdatain2006and 2007.

Analysis Procedures WeusedSPLUSv.4.5(SPlus1997)andNCSSv.2004(Hintze2001)toperformall statisticaloperations.Errorcalculationsreportedwithmeanvaluesrepresent±1standarderror. Allstatisticaltestswereconsideredsignificantatα<0.05.Allspatialapplicationsincluding kernelanalysiswerecompletedinageographicinformationsystem(ArcGIS9.0,ESRI2004) usingspatialanalystandHawth’sTools,anArcGISspatialanalysisextension(Beyer2004).

Cascades Frogs Inordertoaddressecologicalquestionsbasedonseason(spring[breeding],summerand fall),seasonaldatecutoffsforCascadesfrogcaptureswereestablished.Duetowidegeographic variationinCascadesfrogreproductiontiminginEchoLakebasin(upto6weeks),we establishedcutoffdatesbetweenbreedingandsummerseasonsindependentlyateachpatch. Controllingforpatchspecificreproductiontimingallowedustomoreaccuratelydescribeshifts inbehaviorandhabitatuseacrossanelevationalgradient.SinceCascadesfrogsareexplosive breeders(<10days)atindividualpatches,thebeginningofsummerateachpatchwasdefinedas oneweekafterthelasteggmasswaslaid.Anycapturesatindividualpatchespriortothistime wereconsideredwithinthebreedingseason.Alternatively,acutoffdatedefiningseparate summerandfall/winterseasonswasnotdefinedatindividualpatches.Weestablishedthe fall/winterseasonasSeptember15 th annually.Bythisdate,mostseasonalsummerhabitatswere dry,airtemperatureswerecool,andmostfrogswerestagingatoverwinteringlocations. Individualfrogswereplacedintooneofthreeageclasses,andweresexedwhenpossible, soageandgendercouldbeaddressedintheanalysis.Agecategoriesincluded:youngofprevious year(YOPY),juveniles,andadults.WedefinedYOPYasfrogsthathavesurvivedtheirfirst winterandarelivingintheirsecondyearoflife.SinceyoungCascadesfrogsgrowrelatively fast,sizecutoffsseparatingYOPYfromjuvenilesweregeneratedusingdataonlengthfrequency histogramsofcapturesforeachseasonseparately.Likemanyotheranuranspecies,Cascades frogsexhibitsexualsizedimorphismasadults(MonnetandCherry2002),withfemalesattaining largersizesthanmales.AlthoughmaleCascadesfrogsdevelopednuptialpadsat45mmSULin thisstudyarea,weconsideredthisasasecondarysexualcharacteristicandusedreproductive behaviortodetermineageclassinstead.Duringeachbreedingseason(20032006)onlyactive adultfrogsexhibitingcourtshipbehaviorcongregatedaroundbreedingsites.Basedonminimum sizesoftheseanimals,wedeterminedthesmallestsizeofadultfrogstobe50mmSULformales and58mmforfemales.Furthermore,allmeasuredamplexingindividuals( n=66)aswellasfall femalesshowinggravidity,exceededourminimumsizecutoffs. Basedoncaptures,femaleCascadesfrogswerecapturedmuchlessthanmalesinthe spring,butbecamemoreactiverelativetomalesduringmidtolatesummer.Toinvestigatethe relationshipbetweendateandtheprobabilityofcapturinganadultfemalefrogweusedasingle variablelogisticgeneraladditivemodel(GAM).AGAMwasusedbecausetherelationship betweentheindependentvariableandtheresponsevariablewasnonlinear.GAMsrelaxthe assumptionthattherelationshipsbetweenthedependentvariableandindependentvariableare linierbyestimatinganonparametricsmoothfunction(loess)todescriberelationships(Cleveland andDevlin1988,HastieandTibshirani1991).Inaddition,weusedasimilarGAMtodetermine

15 Cascades Frog Ecology in California ifallagesofCascadesfrogswerefoundusingstreamsindifferentproportionsrelativetolentic habitatsthroughouttheactiveperiod(MaytoOctober)bybasinghabitatsatindividualcaptures asabinaryvariable(loticorlentic). Wesummarizedthetotalsurfaceareaofwaterineachofthe15patchesinEchoLake Basintodeterminehowmuchwaterwasavailableforbreeding,summerandwinterseasons.We alsodeterminedtheproportionofwateravailableforthesummerandwinterseasonrelativeto themaximuminthespring.Maximumdepthsbypatchweredeterminedforthewinterseason andrepresentthedeepestwaterfeatureavailableinapatchforoverwintering. Werankedeachhabitatzonewithinpatchesasbreeding,summerforaging,orover winteringhabitats.Thesecategorieswerebasedonseasonalhydrology,thepresenceofegg masses,andthepresenceoffrogsduringagivenseason.Manyzoneswereusedformultiple seasonssorankingswerebasedonthetotaluseofeachzoneoverallseasons. Linierregressionwasusedtoexploretherelationshipbetweenannualsnowpackand initiationofbreedingforCascadesfrogsatbothlowelevation(DPM),andhighelevation(ECH) sites.WeusedtheMay01averageinsteadofthetraditionalApril01averagebecauselatespring snowaccumulationcouldgreatlyinfluencereproductivetimingforCascadesfrogs. Wesummarizedmicrohabitatvariablesforradiotelemeteredfrogs.Theseincluded substrateandcoverobjects,aswellasmaximumwaterdepthwithinonemeterofthefrog,and minimumdistancetowater.Toavoidpseudoreplication,proportionsofsubstrateandcover,and meanvalueswaterdepthanddistancetowaterwerecalculatedforeachindividual.Thesevalues werethenaveragedacrossallindividuals. MovementratesofadultCascadesfrogswerebestdescribedbycomparingdaily locationsoftelemeteredindividuals.Sincemostradiotrackingintervalswereoncedaily, calculatedmigrationratesarelikelyanunderestimateofthefrogstruetravelbutreflectdaily activity.Wetestedaveragedailymovementratesbetweenseasons(spring,summerandfall)and sexusinganalysisofvariance(ANOVA).Posthoccomparisonsofgroupswereperformedusing theTukeyKramermultiplecomparisons(Zar1999). Wedefinedmigrationasaseasonalorannualmovementpatternbyadultfrogsbetween twoormorehabitatpatchesseparatedbydistances≥100m.Totestifmeanmigrationdistances byadultfrogsdifferedbyseason(breeding,summerandfall),weusedtheKruskalWallis analysisofvariance(ANOVA)onrankstest.Differencesbetweengroupsweredeterminedby theBonferronicorrectedKruskalWallis Ztest.WethenusedMannWhitney U tests,to determineifmeanmovementbyseasondifferedbetweenmaleandfemalefrogs.The leptokurtoticnatureofourmovementdatawarrantedtheuseofthesenonparametrictests(Zar 1999). Inthispaperwedefinedispersalasapermanentdirectedmovementbyjuvenilefrogstoa separatehabitatpatchgreaterthan100maway.Wedeterminednetdispersalofjuvenilefrogsby usingtheirfirstcapturelocation,andcalculatedthedistancetotheirfurthestrespectivecapture awayfromtheinitiallocation.Netdispersalisaconservativedisplacementestimatebecauseit eliminatesvariationbasedonmultiplecaptureeventsthatinflateactualdistancestraveled betweeninitialandfurthestlocations.Meandispersalwascalculatedusingonlyanimalsthat moveddistances≥100m.Wetestedthedifferenceinelevationforinterbasindispersingfrogs usingapairedttest.

16 Cascades Frog Ecology in California

Sitefidelitywasindicatedusinganimalsthatwerefoundinthesamepatchindifferent years.ProportionsforCascadesfrogsshowingannualsitefidelityweredeterminedfromoneto threeyearsforbothageandgenderfrom2003to2006.Oneyearofsitefidelityequaledoneyear betweencaptures(e.g.,20032004).Twoyearsofsitefidelityequaledtwoyearsbetween captures(e.g.,20032005).Threeyearsofsitefidelityequaledthreeyearsbetweencaptures(e.g., 20032006).Toavoidpseudoreplication,individualanimalswereonlycountedoncepertime category.Forexample:ifthesamefrogwascapturedfourstraightyears,itwasonlyincludedin each1,2,and3yearcategoriesonce.WeusedChisquareteststodetermineiftheproportionof adultandjuvenileanimalsexhibitingsitefidelitychangedfromonetothreeyears.2007datawas omittedfromthisanalysis.

Garter Snakes Wecomparedtheoverallnetdisplacementofbothgartersnakespeciesbycalculatingthe minimumstraightlinedistancebetweeninitialandfurthestlocationsofsnakescapturedtwoor moretimes.Ourgartersnakemovementdatawashighlyleptokurtotic,soweusedthe nonparametricMannWhitney Utest(Zar1999)totestfordifferencesinmovementbetween species.Dietsampleswerekeyeddowntospeciesandcategorizedintorespectivelifestages.

Brook Trout WecalculatedbrooktroutabundanceinDeepCreekMeadow(DPM)usingthebounded countsformula(Dolloffetal.1996).Theestimatednumberoffishpresent, Nˆ iscalculated accordingtotheformula: ˆ N = ∑(2Nm − Nm−1 ) where Nmisthelargestand Nm-1thesecondlargestcountinaseriesofpassesthroughthesample unit.Allsampleunitabundanceestimateswerethensummedfortotalfishabundance.Wethen calculatedthedensityoffishpermeterofstreambydividingthetotalestimatedabundanceby thetotallengthofstreamsurveyed.

Species Density and Distributions Partofthisstudy’sfocuswastoaddresshownonnativefishmaypotentiallyimpacta Cascadesfrogpopulationatthewholebasinscale.Wesummarizedfishdistributionsrelativeto Cascadesfrogsbycalculatingthenumberofuniquelymarkedfrogsthatmovedbetweensites withandwithoutbrooktrout. SinceCascadesfrogsusedstreamsoftenduringsummerforaging,wecomparedtheir summercapturedensitiesbetweentwostreamreaches(each190minlength);onewithadense populationofbrooktroutandonewithoutanyfish.Bothstreamswerelocatedwithin100m,had similarslopes,dischargesandriparianvegetationcharacteristics.Eachstreamwasalsolocated within50mofestablishedCascadesfrogbreedinghabitats. Tocomparespeciesoverlapforbrooktrout,gartersnakes,andCascadesfrogswe calculated100%fixedkernelutilizationdistribution(UD)estimates(bandwidth:100)foreach species.AkernelUDestimatorproducesanonparametricdistributionrepresentingthelikelihood offindingananimalandtheintensityofusebythatanimalatanyparticularlocation(Worton, 1989;Marzluffetal.,2004).Althoughkernelestimatesaremostcommonlyusedtoapproximate anindividualanimal’shomerange(Worton,1989;Millspaughetal.,2006),weappliedthem

17 Cascades Frog Ecology in California heretoalllocatedindividualsofaspeciestovisuallyrelatethespecies’UDtopreydistribution. Weincludedonlytheinitialobservationofanindividualperyeartoremovespatialdependence relatedtomultiplelocationsofthesameindividual(aquaticgartersnakes: N=69,common gartersnakes: N=87).Toquantifythespatialassociationofgartersnakesandprey,wemapped Cascadesfrogsandbrooktroutlocationsinthebasin.ForCascadesfrogsweusedthesameUD analysisasusedforthesnakes.Utilizationdistributionswerenotcalculatedfortroutbecause troutdistributionscouldbemoreaccuratelydisplayedusingabargraph,giventhattheywere foundonlyinashortstreamsegmentwithdistinctphysicalbarriers.Weused2X2contingency tablestocomparetheoverlapofthe95%distributionkernelsofthegartersnakespecieswiththe distributionsoftheprey.Forthisanalysisweused95%kernelsinsteadof100%tobetterrestrict thedistributionfitclosertotheactualcoreuseareas(Millspaughetal.,2006).TheBonferroni correctionwasappliedformultiplecomparisons.

18 Cascades Frog Ecology in California

RESULTS: CASCADES FROG CAPTURES AND ECOLOGY

Surveys and Frog Captures Atotalof568systematicvisualencountersurveysover44censusperiodswere conductedinEchoLakebasin(AppendixA).Thesesurveysencompassedtheentireannual activeperiodofCascadesfrogs(MaythroughOctober)from2003through2006andduringthe springof2007.Overall,thestudyresultedin6685capturesoverthefiveyearperiod(Appendix B).Ofthe6,685captures,atotalof1,758individualswereidentifiedandmarked(AppendixA): 1,098withPITtags,and1,016withVIE.Furthermore,356individualstaggedwithVIEreceived PITtagsafterattaininglargersizes.Overall,thenumberofannualCascadesfrogcaptureswas consistentlyhigherduringthemidsummerthanspringorfall;mostcapturesoccurredfrommid JulytomidAugustwhendailyaveragetemperatureswerehighestandthefrogsweremostactive (Figure6).

300 20 2003 2004 250 2005 18

200 16

150 14 #ofCaptures 100 12 MeanDailyAirTemperature(C) 50 10

0 8 140 160 180 200 220 240 260 280 300 JulianDay

Figure 6.TotalnumberofCascadesfrogscapturedin32censusperiodsforyears2003to2005inEcho Lakebasin,TrinityAlpsWilderness,California.All2006and2007countswereomittedduetounequal surveyeffort.Censusdatewascalculatedasthemediansurveydateofagivencensusperiod.Only completeregularsurveysarerepresented;incidentalandpartialsurveycaptureswereomitted.Solid blacklinerepresentstheestimatedregressionlineforcapturesusingaloessnonparametricsmoothing function.Dottedlinerepresentsthemeanairtemperaturefrom2003to2005summarizeddailyfrom sevendayrunningaverages.

19 Cascades Frog Ecology in California

Thesexratioof647PITtaggedadultfrogswasbiastowardmales(1.6males:1female; 399:248respectively).Thisbiaswaslargelyattributedtosizedifferenceatsexualmaturity,with malesmaturingyoungerandatamuchsmallersize(50mm)thanfemales(58mm)(Figure7). Themeanlengthofadultfrogswas56mmformalesand68mmforfemales.Themeanweight ofadultfrogswas18.5gformalesand30gforfemales.Amongadults,theprobabilityof

60

Males AdultFemaleRange Females 50

40

30 Weight(g)

20

10

AdultMaleRange

0 45 50 55 60 65 70 75 80 85 SUL(mm) Figure 7. Lengthtoweightrelationshipofindividualadultmale( n=187)andadultfemale( n=137) CascadesfrogsinEchoLakebasin,TrinityAlpsWilderness,California,from2003to2006.Minimum lengthcutoffsforeachsexwereestablishedbasedonreproductiveconditionandactivity.Adultmale sizesrangedfrom50to67mmwhereadultfemalesrangedfrom58to81mm. capturingamalevs.femalefrogchangedsignificantlythroughouttheannualactiveperiod (Figure8).Duringthespring,themajorityofcaptureswereadultmalesfoundtobeconcentrated aroundbreedingsites.Adultfemalesremainedcrypticthroughoutthebreedingseason,withmost capturesfoundeitherinamplexusorasspentanimalsleavingbreedingsites.Incontrast,female frogswerecapturedduringthefallatsignificantlygreaterproportions,withadultmales becominglargelyinactiveatoverwinteringlocations.Theseresultssuggestthat,duetotheir size(manygravidfemalefrogsweighedovertwicethatofmales),gravidfemalesremained activelateintothefall(lateSeptember/October)duetohigherenergydemandsforegg productionandoverwintersurvival.

20 Cascades Frog Ecology in California lo(Julian,span=0.8) 0.5 0.0 0.5

140 160 180 200 220 240 260 280 JulianDayJulian

Figure 8. EstimatedeffectofJuliandayontheprobability(includingapproximate95%confidence intervals)ofcapturinganadultfemalerelativetoanadultmaleCascadesfrogfrom2003to2006inEcho Lakebasin,TrinityAlpsWilderness,California.Zerolineindicatesmeaneffectlevelwhere95%bounds aboveorbelowthelineindicatessignificance.Boundsbelowtheeffectlineindicateasignificantlylower probabilityofcapturingadultfemales.Boundsabovetheeffectlineindicateasignificantlyhigher probabilityofcapturingadultfemales.Hatchlinesatthebottomofgraphrepresentindividualdatapoints.

Resource Dynamics and Habitat Use

Basin Scale TheavailabilityofaquaticresourcesinEchoLakebasinchangedconsiderably throughouttheactiveperiodofCascadesfrogs(Table1).Duringspring,thetotalsurfaceareaof waterwas2.58squarehectares,withatotalof588pondsand10.4kmofstreamsmeasured. EchoLakecontained1.14haofwaterrepresenting44%oftheavailableaquatichabitat.After thesnowpackdisappearedinmidsummer,theamountofavailableaquaticresourcesreducedto 1.80squarehectares,with253pondsand5.8kmofstreammeasured.EchoLakecontained64% oftheaquatichabitatavailableinthebasininmidsummer.Asfrogsstagedatwinteringareasin thefall,aquatichabitatfeaturesreducedfurtherto1.57squarehectaresofsurfacewater,with 146pondsand2.9kmofstreammeasured.EchoLakecontained78%oftheaquatichabitat availableinthebasinduringthefallseasons.

21 Cascades Frog Ecology in California

Table 1. SummaryofthetotalsurfaceareaofwaterbypatchandseasonforEchoLakebasin,Trinity AlpsWilderness,CaliforniafromJunetoOctoberof2003. Season: Breeding Summer Winter

Maximum Water %of Water %of MaxWinter WaterSA SA Maximum SA Maximum Feature Patch Patch 2 a 2 b c 2 b c d Id. Type (m ) (m ) SA (m ) SA Depth(m) BLB Meadow 487 221 45 149 31 0.25 CAS Meadow 822 397 48 204 25 0.88 CLM Meadow 430 157 37 0 0 ─ DPM Meadow 3553 2240 63 1145 32 1.24 EVM Meadow 1391 446 32 361 26 0.62 GSP Meadow 794 568 72 178 22 0.36 LVM Meadow 646 265 41 256 40 0.62 MOS Meadow 433 271 63 89 21 1.15 MVM Meadow 1294 333 26 191 15 0.5 UVM Meadow 581 381 65 168 29 0.34 PTH Meadow 388 217 56 186 48 0.7 ECH Lake 11,698 11,527 99 11,465 98 5.1 EDN Pond 278 215 77 140 50 0.8 SMP Pond 2483 489 20 0 0 ─ VMC Stream 477 255 53 201 42 0.31 Mean: 1717 1199 53 982 32 1.0 TotalSABySeason: 25,755 17,982 70 14,735 57 TotalSABySeason 14,057 6455 46 3270 23 withoutECH: aTotalsurfaceareaofwaterfeaturesbypatchduringthebreedingseasonwhenwaterbodieshavemaximum catchmentsandstreamsareflowingatbankfullcapacity. bTotalsurfaceareaofwaterfeaturesbypatchduringthemidsummerandlatefallseasons. cPercentofthespringmaximumsurfaceareaofwaterfeaturesbypatchinthemidsummerandlatefallseasons. dMaximumdepthofthedeepestwaterfeaturebypatchduringthelatefallseason. Basedonthesemeasurements,thetotalsurfaceareaofwaterinthebasinwasreducedby 43%betweenthespringandfall.However,whenEchoLakeissubtracted,theamountof availableaquatichabitatinthebasinreducedby77%overthisperiod.Furthermore,individual habitatpatchesexperiencedvariablelossesofwater,with50to100%ofallpatchareasdrying (Table1).Twopatches(CLM,SMP)driedcompletely.Finally,sixof15formallyconnected patchesbecameisolatedduetothecompletedryingofconnectingstreams.

Zone Scale Overall,56%ofallhabitatzoneswereclassifiedasperennial,andcontainedaquatic featuresyearround.Theremaininghabitatzones(44%)wereephemeral,withallfeaturesdrying completelybythefall.Outof73zones,23(32%)wereusedforbreeding,73(100%)wereused duringthesummerand41(56%)wereusedforwintering(Figure9).Sincemanyzonesdried

22 Cascades Frog Ecology in California completelybythefall,overwinteringhabitatsweresometimeslimitedtofeaturesinisolated zoneswithinpatches(Figure9).

Figure 9. MapofEchoLakebasin,TrinityAlpsWilderness,California,displayingseasonalhydrological propertiesofhabitatzonesusedbyCascadesfrogsfrom2003to2007.Crosshatchedzonesanddotted streamsegmentsdriedcompletelybylatesummersotheywereunavailableforwinteringuse.Areas withingreencoloredzonesandsolidlinestreamswereusedforbothsummerandwinteringhabitats. Areaswithinsolidbluezoneswereusedyearround.Yellowdiamondsindicatewheregroundwater springsemerge.OrangecirclesrepresenttraditionalbreedingareasusedbyCascadesfrogs.

Breeding Habitats From2003to2007,38individuallenticsiteswereusedforreproductionbyCascades frogsthroughoutEchoLakebasin,including28springfedponds,ninerunoffponds,andone lake.Thesebreedingsiteswerelocatedin12distinctareas(closeaggregationsofbreeding featureswithin50m)throughoutthebasincontainingfromonetonineindividualsites(Figure 9).Inmeadows,manybreedingpondswereincloseproximityorevenhydrologicallyconnected

23 Cascades Frog Ecology in California duringthespring;whereas,ECH,SMP,andEDNwererelativelyisolatedandlackedadjacent breedinghabitats.Theminimumdistanceseparatingbreedingareasrangedfrom114to528m (mean=245m). Themeanmaximumdepthofthe35meadowbreedingpondswas0.48±0.03m,(range 0.150.87m).Thethreelargeisolatedsiteshadgreatermaximumdepths:EDN(1.3m),SMP (1.47m),andECH(5.1m).Surfaceareaofmeadowbreedingpondsvariedwidely,rangingfrom 2.5to183m2,mean=22±5.8m 2.Wecollectedsubstratedatafor239eggmasses.Mostof theseeggmasseswereattachedtodeadgrassorsedge(80%).Weobservedfewereggmasses attachedtoothersubstrates:deadwood(6%)androck(4%).Twentythree(10%)eggmasses werenotattachedtoanysubstrate.Atotalof92(33%)eggmasseswereovipositedcommunally inclusterscontainingasmanyasnineindividualmasses.Mosteggmasseswereovipositedin shallowalcovesoronshallowbenchfeatureswithinthebreedingsite.Meanwaterdepthat ovipositionlocations( N=121)was10.3±0.5cm.Themeandeptheacheggmasswasfound belowthesurfaceattheselocationswas1.6±0.3cm.Althoughthirtyeightindividualsiteswere usedforbreeding,197(72%)eggmasseswerefoundin11sitesusedforbreedingallfiveyears (Table2).Conversely,only4%(13)ofthetotaleggmasseswereovipositedin12sitesusedonly oneyear.

Summer Habitats Cascadesfrogsweremostwidelydistributedduringthesummer.Duringthistimethey utilizedallavailablehabitatsinEchoLakebasin.Inadditiontoperennialhabitats,somefrogs utilizedareasduringthesummerthatcompletelydriedbyfall,requiringfrogstomovetoand awayfromthesehabitatsannually.Captures,byageclassandsex,atbothperennialand ephemeralhabitatsaresummarizedinTable3.AnnualsummercapturesofYOPYfrogswere stronglyassociatedwithhabitatzonescontainingperennialfeatures(upto85%oftotalannual captures).Thiswasespeciallyevidentforhabitatzoneswithbreedingsites,whichaccountedfor 59%ofannualYOPYcaptures.Incontrast,only24%ofjuvenilefrogswerecapturedin perennialbreedingzonesduringthesummer.Juvenilefrogsweremostlyfoundinnonbreeding perennialzones(46%)andephemeralsummeronlyzones(26%)duringthesummer.Summer capturesofbothadultmaleandfemalefrogsweresimilar,withmostcapturedinperennial habitatzones(76%and84%ofthetotalsummercaptures,respectively).Themajorityofadult maleandfemalecapturesoccurredatnonbreedingperennialhabitats,indicatingdirected movementawayfrombreedingsites.

Fall /Winter Habitats FrommidSeptemberthroughOctober,astemperaturescooledandephemeralsummer habitatsdisappeared,mostCascadesfrogswerefoundconcentratedinareaswithadequatewater astheystagedforoverwintering.Atsomeareas,thiswouldconsistofasingleisolatedspring pondthatmeasuredlessthanonesquaremeterofsurfaceareaandweregreaterthan50mfrom thenearestwater.Otherwinteringareascontainedmultiplehabitatsincloseproximity,orwere hydrologicallyconnected.Basedonlatefallsurveys(20032006),69%ofallfrogswere observedusinglenticand31%usinglotichabitats( N=548).Thehighestpercentageofcaptures werefoundinspringponds(38%±8.4)followedbyEchoLake(26%±9.0)andrunoffponds (5%±3.2).Inlotichabitats,overallcaptureswereslightlyhigherinsurfacestreams(16%±4.4) thanspringfedstreams(15%±2.7).

24 Cascades Frog Ecology in California

Table 2. SummaryofthetotalreproductiveoutputbyCascadesfrogswithinEchoLakebasin,TrinityAlps Wilderness,California,from2003to2007.Percenttotalsarethenumberofeggmassesfoundineach breedinghabitatdividedbythetotalnumberofeggmassesproducedatallsitesandyears.Hydrologyof breedingfeatures:Pondsealedbottom,noimmediategroundwaterspringinfluence,SpringPond immediategroundwaterspringinfluenceatsource,Lakesurfacearea>0.5hectares.SAissurfacearea. Max Pond Years MaxSA Elev. %of Hydrology Depth 2003 2004 2005 2006 2007 Total Id. Used (m) (m) Total (m) CAS3 1 SpringPond 3.00 0.25 2118 1 0 0 0 0 1 0.36 CAS4 1 SpringPond 3.10 0.58 2118 1 0 0 0 0 1 0.36 CLM1 1 SpringPond 3.96 0.15 2008 1 0 0 0 0 1 0.36 DPM5 1 SpringPond 12.33 0.70 1976 1 0 0 0 0 1 0.36 DPM8 1 Pond 9.46 0.70 1978 0 0 1 0 0 1 0.36 PTH4 1 SpringPond 6.60 0.38 2182 1 0 0 0 0 1 0.36 UVM3 1 SpringPond 10.00 0.26 2046 0 0 1 0 0 1 0.36 UVM4 1 Pond 17.40 0.43 2045 0 1 0 0 0 1 0.36 DPM9 1 Pond 7.59 0.27 1976 0 0 0 1 0 1 0.36 CAS6 1 SpringPond 8.76 0.60 2118 0 0 0 0 1 1 0.36 DPM10 1 SpringPond 9.68 0.71 1978 0 0 0 0 1 1 0.36 PTH5 1 SpringPond 12.09 0.44 2182 0 0 0 0 2 2 0.73 Total (1 Year): 5 1 2 1 4 13 4.73 DPM7 2 SpringPond 5.67 0.65 1976 0 1 0 1 0 2 0.73 EVM1 2 SpringPond 3.24 0.46 2037 1 0 0 0 1 2 0.73 MVM4 2 SpringPond 12.26 0.28 2036 0 0 0 1 1 2 0.73 CAS5 2 SpringPond 5.72 0.40 2118 1 0 0 0 1 2 0.73 MOS1 2 SpringPond 20.00 0.25 1998 1 0 0 0 1 2 0.73 Total (2 Year): 3 1 0 2 4 10 3.64 MVM1 3 SpringPond 38.90 0.55 2014 2 0 1 0 1 4 1.45 GSP1 3 Pond 44.40 0.61 2108 1 1 0 0 1 3 1.09 PTH3 3 SpringPond 6.61 0.48 2182 1 1 0 0 2 4 1.45 DPM4 3 SpringPond 69.85 0.52 1976 1 1 0 0 2 4 1.45 DPM3 3 SpringPond 77.84 0.83 1976 2 0 0 5 3 10 3.64 MVM3 3 SpringPond 6.70 0.28 2031 1 1 1 0 0 3 1.09 Total (3 Year): 8 4 2 5 9 28 10.18 MOS2 4 SpringPond 10.58 0.28 2000 0 1 2 1 2 6 2.18 PTH2 4 SpringPond 8.85 0.80 2182 1 1 0 1 1 4 1.45 CAS1 4 SpringPond 26.19 0.38 2118 2 0 1 1 4 8 2.91 DPM2 4 SpringPond 5.70 0.35 1976 2 1 3 3 0 9 3.27 Total (4 Year): 5 3 6 6 7 27 9.82 DPM1 5 SpringPond 7.54 0.58 1976 2 3 2 2 7 16 5.82 PTH1 5 SpringPond 2.47 0.32 2182 1 1 1 2 2 7 2.55 DPM6 5 SpringPond 8.76 0.87 1976 1 1 3 5 3 13 4.73 GSP2 5 Pond 23.39 0.40 2108 1 2 2 3 2 10 3.64 SMP1 5 Pond 2314.84 1.47 2226 14 14 7 4 19 58 21.09 CAS2 5 SpringPond 6.77 0.52 2118 1 1 1 1 2 6 2.18 EDN1 5 Pond 278.00 1.30 2132 2 2 4 4 7 19 6.91 MVM2 5 Pond 11.11 0.62 2013 1 2 2 1 1 7 2.55 UVM1 5 Pond 183.07 0.51 2044 2 5 8 4 4 23 8.36 UVM2 5 SpringPond 71.18 0.45 2046 2 3 4 4 3 16 5.82 ECH1 5 Lake 11381.29 5.10 2215 5 6 3 2 6 22 8.00 Total (5 Year): 32 40 37 32 56 197 71.64 Total Egg Mass Production: 53 49 47 46 80 275 100.00

25 Cascades Frog Ecology in California

Table 3.MeanpercentofannualsummerCascadesfrogcapturesinEchoLakebasin,TrinityAlps Wilderness,California,2003to2006.Dataweresummarizedbyhabitatzonehydrologiccategories. ZoneClassifications Perennial( N=41zones) Ephemeral( N=32zones) Breeding Summer Breeding Summer Summer and and Only AgeClass/Sex Winter* Winter Summer (n=19zones) (n=22zones) (n=4zones) (n=28zones) YOPY MeanAnnual%±SE 59.2±8.2 25.7±9.1 5.11±2.9 9.9±3.5 Range 49.875.6 8.539.2 0.610.5 5.416.7 Juvenile MeanAnnual%±SE 24.3±1.4 45.9±3.3 3.9±0.8 25.9±2.2 Range 20.827.0 38.753.1 2.96.3 21.330.7 AdultMale MeanAnnual%±SE 35.2±1.0 41.0±1.5 15.3±2.3 8.5±2.2 Range 33.037.4 38.244.2 9.720.0 4.914.4 AdultFemale MeanAnnual%±SE 38.8±6.1 45.2±10.1 5.8±1.6 10.2±3.0 Range 30.357.0 30.352.1 4.58.2 4.118.2 *IncludesallEchoLakezonesandcaptures. Thedeepestavailablewinteringhabitatinthebasin,besidesEchoLake,was1.24mor less.Onlythreeofthe13patchescontainingwinteringhabitatshadmaximumdepthsexceeding onemeterdeep(Table1).Sincemanybreedingareasofferedperennialhabitats(Figure9),many frogsalsousedtheseareasforoverwintering.Forexample,atDPM(zoneC)wecaptured34 adultfrogsduringlatefallfrom2003to2006.Insubsequentspringseasons,from2004to2007, werecaptured18(50%)oftheseanimalsengagedinbreedingcourtshipatthesesites.Atanother site(MOS),whichbecomeshydrologicallyisolatedby~50m,onlytwospringpondsremainby thefall.Wesearchedoneofthesespringpondson8October2006andfoundtwojuvenilefrogs 0.5and0.6mdowna15cmdiameterhole.Thisspringpondwasdenselysurroundedbyathick mossmatandthetwofrogswerefoundpartiallyburrowedintothesemosses.

Macrohabitat Characteristics

Immature Age Classes Overall,macrohabitatusebyCascadesfrogsinEchoLakebasinvariedwidelyforboth ageandsex(Figure10).Themajorityofeggmassesproducedannuallyinthebasinwere depositedinsmallshallowponds(5578%)followedbylargedeepponds(1733%).Incontrast, veryfeweggmassesweredepositedannuallyinEchoLake(412%)andnonewereobservedin streams.Similartothedistributionofeggmasses,themajority(5878%)ofannualYOPY captureswerefoundinsmallshallowpondssuggestingstrongsitefidelitytonatalpondsduring thefirstyearaftermetamorphosis.However,wecaptured2033%YOPYsinstreamsindicating somemovementawayfromnatalsitesdoesoccurafterthefirstwinter.LikeYOPYs,many juveniles(4044%)werealsofoundatsmallshallowponds,thoughslightlymorecaptureswere foundinstreams(4352%)thaninanyotherhabitat.

26 Cascades Frog Ecology in California

Adults Adultfrogshadthehighestdiversityofmacrohabitatuseoutofallageclasses(Figure 10).Incontrasttoimmaturefrogs,adultswerefoundregularlyatEchoLakeandinlargedeep pondsaswellassmallpondsandstreams.Amongadults,femalesusedstreamstwiceasmuchas males(Figure10).Basedonannualcaptures,adultmaleCascadesfrogswerefoundinlentic habitatsmoreoften(7087%)thananyotherpostmetamorphicgroup.Adultfemaleswere capturedatstreamhabitatsonaverage40%(2357%)ofthetimecomparedto21%(1330%)of males.

80 EggMasses YOPY 70 Juvenile

60 AdultMale AdultFemale

50

40

Captures(%) 30

20

10

0 0 EchoLake LargeDeepPonds SmallShallowPonds Streams Figure 10. MeanpercentofannualeggproductionandcapturesofCascadesfrogs(separatedbysex andageclass)foundineachmacrohabitatcategorywithinEchoLakebasin,TrinityAlpsWilderness, California,from2003to2006.The“LargeDeepPond”categoryrepresentsSnowmeltandEdenponds. Useproportionsarebasedon275eggmassesand4,838frogcaptures.TheYOPY(youngofprevious year)ageclassisrepresentedfrom2003to2005,althoughpresent,nonewerecapturedin2006.

Seasonal Shifts in Macrohabitat Use AlthoughCascadesfrogsappearedtousehabitatsindifferentproportionsbasedonage andsex(Figure10),overallusevariedfromlentictolotichabitatsthroughouttheannualactive periodforallpostmetamorphicageclasses.Forexample,frogs werecapturedatsignificantly higherproportionsinstreamhabitatsduringthesummerthaninthespring(Figure11).During thespring,themajorityofcaptureswereassociatedwithlenticsitesusedforbreedingandover wintering.Assummerprogressed,manyfrogsmovedtostreamhabitats.Fallcapturesshowedno significantpreferenceforeitherlenticorlotichabitats.SinceCascadesfrogsareconsideredstrict lenticbreedersinthisregion,thisshiftinhabitatusefromlentictoloticsitesduringthesummer

27 Cascades Frog Ecology in California furthersuggeststhatpostmetamorphicfrogsuseavarietyofhabitatsduringthesummerwhen habitatavailabilityisatispeak. lo(Julian,span=0.8) 1.0 0.5 0.0

140 160 180 200 220 240 260 280 JulianDayJulian Figure 11. EstimatedeffectofJuliandayontheprobability(includingapproximate95%confidence intervals)offindingpostmetamorphicCascadesfrogsinlotichabitatsfrom2003through2006inEcho Lakebasin,TrinityAlpsWilderness,California.Zerolineindicatesmeaneffectlevelwhere95%bounds aboveorbelowthelineindicatessignificance.Hatchlinesatthebottomofgraphrepresentindividualdata points.

Microhabitat Characteristics NonmigratingadultCascadesfrogswerefoundtobehighlyaquaticandstrongly associatedwithriparianareas.Utilizingdailytelemetrylocations,wefoundindividualsinwater 55%ofthetime( N=51,970locations).In2004,waterdepthsrecordedwithinameterofeach froglocationaveraged0.29±0.03mandrangedfrom0.13to0.78mdeep( N=30,482 locations).Alsoduringthisyear,theaveragemeandistanceterrestrialfrogswerefoundfrom waterwas0.54±0.23m( N=30,509locations).Only14locationsforeightindividualswere founduplandgreaterthanthreemfromwater( N=970locations),allofwhichwereduring overlandmigrationevents.Thefarthestlocationfromwaterthataradioedfrogwasobservedwas 75mwhichoccurredduringanAugustrainevent(seemovementsectionbelow).Substrateand coverusebytelemeteredfrogsissummarizedinFigure12.Substratesusedbytelemeteredfrogs wasdominatedbygrassandsedge(40%)followedbysilt(21%)andboulders(14%).Mostfrogs weredifficulttofindandhiddenundervariouscoverobjects.Forexample,uponvisually locatingfrogsduringeachtrackingsession,weobservedthemanaverageof42±0.03%ofthe timewithoutlookingunder,in,ordisturbingcoverobjectstoreceiveavisualontheindividual. Themajorityoffrogsthatwerehiddenfromviewusedgrassesandsedges(58%)followedby

28 Cascades Frog Ecology in California boulders(14%)andundercutbanks(8%)ascoverobjects.Fiveradioedfrogswerefoundusing undergroundrodentburrows0.7to20mfromwaterforaperiodofonetothreedays. Destructionofoneburrow(duetosuspectedsnakepredation)revealedahealthyinactivefrogat 0.55mfromtheburrow’sopening.

70

60 Substrate Cover

50

40

30

20 AveragePercentofLocations

10

0 le d w d k e nk l er Silt bb oc d Ba ravel Sno San dr bb ul edge t Pe Shrub Woo G o S u Be C Bo erc d n Grass/ U MicrohabitatCatagory

Figure 12. Substrate( N=933)andcovermicrohabitats( N=394)usedby51radiotelemetered Cascadesfrogsfrom2003to2004inEchoLakebasin,TrinityAlpsWilderness,California.Barsrepresent theaveragemeanproportionsbyhabitattypeforallradioedCascadesfrogs.

29 Cascades Frog Ecology in California

Cascades Frog Spatial Ecology

Adult Movements and Patch Fidelity Althoughsomeadultfrogsexhibitedstrongseasonalandannualsitefidelitytospecific patches,othershaddistinctmigrationpatternsamongseparatebreeding,summerforagingand winteringhabitats.OverthedurationofthisstudyasubstantialproportionoftheadultCascades frogpopulationinEchoLakebasincompletedextensivemovementsamongandbetween differenthabitatpatches(Figure13).Thissectionsummarizesmovementrates,routes,and annualmigrationpatternsbetweenseasonalhabitatpatchesofadultfrogsfrom2003to2007,as wellasannualpatchfidelityforbothjuvenileandadultfrogs.

Adult Movement Rates Mostdailymovementswereshortandlocalizedaroundimmediatehabitatfeatures (Figure14).Dailymovementratesofadultmale( n=35)andfemalefrogs( n=51)didnotdiffer significantlyANOVA( F =0.31, P =0.74).However,movementratesofbothsexescombined differedbyseason( F =4.07, P =0.02),withdailyratessignificantlyhigherinthespring(mean: 9.9±1.3m)thaninthefall(mean;4±1.8m).Summermovementratesofadults(mean:6.9± 1.3m)werenotsignificantlydifferentfromthespringorfall(TukeyKramermultiple comparisonstest). Mostradiotrackedindividualscompletedatleastonelongdistancemigrationbetween twohabitatpatches.Wecalculatedmovementratesforeightradiotaggedfrogsthatexhibited10 seasonalmigrationsfrom114to334mbetweenhabitatpatches.Mostmigrationswererapid(3.9 to15.3m/hourwithin24hours.Thefastestoverallmovementrateobservedwas30.3m/hour withina1.75hourperiod.However,Figure14showstwofrogs(#8and#13)whichtookupto fivedaystomoveoverlandbetweenpatchesduringthespring.Twoofthe10migrationswere observedbetween20:00and10:00,suggestingthesefrogsconductedtheirmigrationsatnight. Furthermore,bothofthesemigrationsoccurredoverlandduringAugust,showingCascadesfrogs willmakerapidmovementsoverdrylandduringdryperiods.Thefastestlongrangemovement rate(>500m)detectedwasanadultmalethattraveledfromDPMtoECH,aminimumdistance of839m,witha238melevationgain,inlessthan4.6days(Figure15A,#7).Thisdispersal eventwasdeterminedfromamarkrecapturebasincensus,sotheactualmovementratewas likelyunderestimated.

Migration Routes ExamplesofmigrationroutesusedbyradioedCascadesfrogsaredisplayedinFigure14. Overall,Cascadesfrogsappearedtochoosetheshortestandmostdirectrouteswhilemoving withinandbetweenhabitatpatchesinEchoLakebasin.ThroughouttheCascadesfrogactive period,manyhabitatpatcheswerehydrologicallyconnectedthroughthebasinsexpansivestream network.Manyradioedfrogsusedthesestreamsascorridorsbetweenhabitats(e.g.,Figure14A, #6).However,overlandmigrationsofradioedfrogswerecommon,especiallywhenpatcheswere completelyisolatedorasstreamcorridorsdried. Overlandroutessometimesoccurredoverdifficultterrainwithsteepinclines.Two radioedfrogswerefoundnavigatingthroughsteep,tonearvertical,terrestrialinclinesduringan Augustraineventin2003.Oneindividual(Figure14A,#6),climbed20mupastreambank(70º slope)composedofbaresoilandembeddedboulders.Thisfrogremainednearthetopofthis

30 Cascades Frog Ecology in California

Figure 13.MapsofEchoLakebasin,TrinityAlpsWilderness,California,showingcapturepoints(open circles)andconnectinglinesof279individualadultmale(A)and143individualadultfemale(B) Cascadesfrogscapturedtwoormoretimesfrom2003to2006.OrangecirclesrepresentCascadesfrog breedingsitesusedallfiveyearsofthestudy.Notethatanindividualfrogcanberepresentedbymore thanoneline.MappropertiesfollowthoseinFigure2.

31 Cascades Frog Ecology in California

Figure 14.Examplesofmigrationroutesandtimingofmigrationbetweenseasonalresourcesfor9telemeteredCascadesfrogsduringthesummersof 2003and2004inEchoLakebasin,TrinityAlpsWilderness,California.BoxdetailinmapinsetrepresentstheareawithinEchoLakebasinthatis displayed.MappropertiesfollowthoseinFigure2.

32 Cascades Frog Ecology in California

Figure 15. Examplesoflongtermannualmigrationpatternsforsevenadultmale(A)andsixadultfemale (B)CascadesfrogsinEchoLakebasin,TrinityAlpsWilderness,California,from2003to2007.All subsequentcapturelocationsofindividualsatspecifichabitatpatcheswerewithin25moforiginal capturelocations.Orangecirclesrepresentbreedinglocationsusedallfouryears.Mappropertiesfollow thoseinFigure2.

33 Cascades Frog Ecology in California bankwithinarodentburrowforthreedayspriortoreturningtothestreamdirectlybelow. Anotherindividual(Figure14D,#9),navigated220moverlandwhichincludedadescentdowna steep(>70ºslope)couloirinarockyoutcropsouthofEchoLake.Thisfrogwasfoundon2 Augustperchedmidwayupanearverticalcliffsectionapproximatelyfourmetershigh,and subsequentlynavigateddownthefollowingday. Overlandmigrationsusuallyshortenedthedistanceandelevationgradientstraveled betweenpatchesconsiderably.Forexample,thestreamdistancebetweenECHandSMPis760 m,whereastheoverlanddistanceis~250m.Furthermore,ifindividualsweretousethestream routetomigratebetweenthesesitesitwouldrequireasteepdecentof112mfollowedbyasteep 125mclimb.Intheearlyspringtheoutletsofbothsites,aswellastherockyknollseparating them,arecompletelysnowcoveredwithdepthsreachingupto3.5m.Throughtelemetry,we determinedCascadesfrogsmigratedpriortobreedingbetweenthesepatchesindeepsnowpack alonganarrowsnowmeltcrackbetweenarockoutcropandsnowfield(<1.5mwide)(Figure 14D,#8).TheextenttowhichfrogsmigratedoverlandbetweenECHandSMPisevidentin Figure13whereatleast161roundtripmigrationsoccurredfrom2003to2007.

Seasonal Migrations of Adults Manyadultfrogscompletedseasonalmigrations(>100m)betweenbreeding,summer andwinteringhabitats(Figure13and15).Ofthefrogsthatmigrated( n=315),distances traveledtobreedinghabitatsweresignificantlygreater(mean:319±19m)thanthoseto winteringhabitats(mean:231±17m)(KruskalWallisonewayANOVAonrankstest: H = 19.8, P <0.001).Incontrast,migrationdistancestraveledtosummerhabitats(mean:251±11 m)werenotsignificantlydifferentfromthosetobreedingoroverwinteringareas(Kruskal Wallis Ztest,Bonferronicorrection: Z =2.39).

Breeding Migrations Duringthebreedingseason,mostadultCascadesfrogcaptureswerenarrowlydistributed andhighlyconcentratedaroundbreedingsites.Manyoftheseindividualswinteredwithin,orin closeproximity(<100m),tobreedinghabitats( n=76).However,almosthalf(47%offemales and45%ofmales)completedspringmigrations(>100m)eachyeardirectlyafterspring emergencebetweenseparatewinteringandbreedinghabitatpatches(Figure16).Ofthefrogs thatmigrated,femalesmovedsignificantlyfartherthanmalestoreachbreedingareas(Mann Whitney Utest: Z=2.84, P=0.004).Femalesmovedupto1001m(mean:491±79m),while malesmovedupto844m(mean:266±17m). Thelargestroundtripmigrationobservedforanadultfemalebetweenbreedingand winteringhabitatswas1980m(Figure15B,#3).Thisfemalewinteredinastream239mbelow herbreedingsiteontheoppositesideofthebasinfortwoconsecutiveyears.Remarkably,all otherestablishedbreedingsitesinthebasinwereclosertowherethisfrogwinteredthanwhere shechosetobreed.Thisdemonstratesthatsomefrogswilloverlookmuchcloseravailable breedinglocationstoreachspecific,possiblynatalbreedingareasuptoonekilometeraway. Thefarthestroundtripmigrationcompletedbyamalebetweenbreedingandwintering habitatswas1607m(Figure15A,#7).Thismalewascapturedatanactivebreedingsite(DPM) inthespringof2003.FivedayslaterthismalewasrecapturedatEchoLake,adistanceof886m and240melevationabovehisfirstcapturepoint.Remarkably,thisrapidmovementwas completedwhenmostofthebasinwascoveredindeepsnowandthesteepoutletofEchoLake

34 Cascades Frog Ecology in California

55 55 Female Male 50 N=32 50 N=108 45 45

40 40

35 35

30 30

25 25

20 20

15 15

10 10

5 5

0 0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 MigrationDistancefromWinteringtoBreedingHabitats(m)

55 55 Female Male Male 50 N=79 50 N=255 N=256 45 45 40 40 35 35 30 30 25 25 20 20 15 15

Percentofmigrations 10 10 5 5 0 0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 MigrationDistancefromBreedingtoSummerForagingHabitats(m)

55 55 Female Male 50 N=73 50 N=176 45 45 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 MigrationDistancefromSummerForagingtoWinteringHabitats(m)

Figure 16. Frequencyofmigrationdistancestraveledbyadultfemale(leftcolumn)andadultmale(right column)Cascadesfrogs betweenbreeding,summerandwinterseasonsfrom2003to2007inEchoLake basin,TrinityAlpsWilderness,California.Eachmigrationrepresentsamovementthatoccurredbetween twosuccessiveseasonsforeachannualactivitycycle.Barwidthsrepresent40meterbins.Individual frogsmayhavebeencountedmorethanoncebetweendifferentyears.

35

wascompletelycoveredbysnowfor250m.Thismalewasthenrecaptured30dayslateratSMP duringintensebreedingactivity.Shortlyafterthis,themalewasagaincapturedatEchoLake whereheoverwintered.In2007,anotheradultmalemovedbetweentwoactivebreedingsites (CAStoSMP)within19days.ThismalewascapturedatCASduringactivebreedingactivityon 8Mayandthen19dayslateratSMP,duringactivebreedingactivity.Thesemovementpatterns clearlydemonstratemultiplebreedingsites,upto1kmaway,canbeusedbyindividualmale frogsduringthesamebreedingseasonbymovingtonewbreedingsitesassnowmeltsatvarious elevations.

Summer Migrations Duringthesummer,Cascadesfrogswerewidespreadandoccupiedthegreatestareaand varietyofhabitatsinEchoLakebasin.Manyadultfrogscompletedmigrations(>100m)directly afterbreedingtootherareasforsummerforaging.Only40%offemales( n=32)and50%of males(n=127)werecapturedwithin100moftheirspringbreedinghabitatsduringthesummer. Ofthefrogsthatmigrated,therewasnosignificantdifferencebetweenadultmalesandfemale migrationdistances(MannWhitney U test: Z=0.48, P =0.63).Females(n=47)movedupto 989m(mean:279±24m),whilemales(n=128)movedupto591m(mean:241±8m)to reachsummerhabitats(Figure16).During,anddirectlyafter,thebreedingseason,muchofEcho Lakebasinremainedsaturatedfromrecedingsnowpack,sosoilsremaineddampandmost streamswerestillflowing.Basedontheseconditions,andradiotelemetryresults,itappeared frogswereleastrestrictedinmovingtootherpatchesduringthistime.Forexample,six individuals(Figure14,#4,6,8,11,13and29)demonstratedrapidmigrationsfrombreeding sitesdirectlyafterbreedingsubsided.

Winter Migrations Bythefall,themajorityofadultfrogs(73%offemales[ n =53]and68%ofmales[ n= 120])werecapturedwithin100moftheirsummerlocations,suggestingmanysummerhabitats awayfrombreedingsitesweresuitableandusedforoverwintering.However,manyhabitats driedupasthefallapproached,causingfrogstomovetoareaswithsufficientwaterforover wintering.Ofthefrogsthatmigratedfromsummertowinterhabitats(>100m),therewasno significantdifferenceindistancemovedbetweenmalesandfemales(MannWhitney U test: Z= 0.93, P =0.35).Migratingfemales( n=20)movedupto1158m(mean:317±67m)while migratingmales(n=56)movedupto427m(mean:200±10m)toreachoverwinteringhabitats (Figure16).

Inter-Annual Adult Migration Patterns Duringthisstudy,manyadultCascadesfrogsexhibitedstrongmigrationpatterns betweenseasonalresourcesthroughoutEchoLakebasin.Furthermore,manyindividuals repeatedsimilarmigrationpatternsbetweenpatchesformultipleyears.Figure15demonstrates someexamplesofthesepatternsbybothadultmaleandfemalefrogs.Thesefrogscompleted similarannualmigrationpatternsforuptofiveyears.Basedonrecapturesuccess,thebestcase exampleofannualmigratorypatternswasbetweenECHandSMP.Thispatternisapparent becauseSMPdriedcompletelybylatesummer(Figure3),whichforcedfrogstofindpermanent waterbodiesforoverwintering.ECHhadthestrongestinfluenceonSMPwith75%ofalladult SMPcapturesderivedfromECH.Theremaining25%ofadultSMPcapturescamefrompatches furtherawayandfromlowerelevations.AlthoughECHandSMPareincloseproximity(~250m

36 Cascades Frog Ecology in California roundtrip),themajorityofthedistancebetweenthetwositesisoverlandthattraversesa rugged,rockyknoll.Duringtheearlyspring,adultfrogsmigratedoverlandfromECHtoSMP priortobreeding(Figure7,CandD).MostfrogsreturnedtoECHdirectlyafterthebreeding seasonforsummerforagingandoverwintering.Ninetyoutof156(58%)individualadults capturedatECHcompletedatleastoneroundtripbreedingmigrationbetweenthesepatches.Of thefrogsthatmigrated,atleast48%completedannualmigrationstwice,21%threetimes,and 9%fourtimes.Onlyoneadultmalefrog(~1%)wasdetectedtocompletethisannualmigration forfivestraightyears(Figure15A,#7).Wesuspect,basedonpassivemarkrecapturesampling, theseareminimumestimatesofinterannualmigrationpatternsbetweentwoisolatedpatches. Althoughmanyfrogsexhibitedconsistentbreedingmigrationpatternsbetweenspecific patches,variationinannualmigrationstrategiesforfrogswithlongcapturehistorieswasalso apparent.Basedoncapturehistoriesof34gravidadultfemalesinamplexus,wecapturedonein amplexusatSMPin2003andthenagaininamplexusatECHin2004.Wealsofoundfivemale frogshadstayedatECHduringanentireyearbuthadcompletedbreedingmigrationstoSMPin priorandsubsequentyears.ThesemaleswereallcapturedattheECHduringthebreeding season,andwereactivelyengagedinbreedingactivitieswhenwewouldhaveexpectedthemto bebreedingatSMP.Alternatively,anotheradultmalefrog(Figure15A,#5)exhibitedastrict migrationpatternbetweenDPMandLVMforthreestraightyears.Duringthebreedingseasonin thefollowingyearthismaledispersedtoCAS,adifferentbreedingsite570mawayfromhis previousbreedingsite.Finally,afewfrogsshowedanomadicdistribution,withnoapparent migrationpatternbetweenyears.Forexample,anadultfemale(Figure15B,#6)movedbetween fivedifferenthabitatpatchesoverthreeyears,allofwhichcontainedactivebreedingsites.A malefrog(Figure15A,#3)alsohadanomadicdistributionandvisitedthreedifferentsitesover fouryears.Theseirregularmigrationpatternsareevidencethatsomeadultfrogschoosetobreed atdifferentsitesindifferentyears.

Immature Age Classes Movements and Dispersal Unlikeadults,YOPYandjuvenileCascadesfrogsdidnothavereproductivebehavioras partoftheirannuallifehistory.Althoughthebreedingseasonhadprofoundannualandseasonal effectsonadultspatialpatterns,immatureageclassesofCascadesfrogsdisplayedremarkably differentspatialandmovementpatternsthanadults.Thissectionsummarizesmovementsof immatureageclassesoverthecourseofthestudy.

Young of Previous Year Movements TheYOPYageclassofCascadesfrog’shaddistinctspatialpatternsthatdifferedfromall otherageclasses.MostYOPYwerecapturedinassociationwithbreedingsites.Forexample, 69%ofYOPYcaptureswerewithin25m,followedby94%within100mofbreedingsites (Figure17).ThefurthestcaptureofaYOPYawayfromabreedingsitewas312m.Because YOPYweremarkedwithabatchVIEmark,wecouldonlydeterminedispersalbehaviorfora limitednumberofindividuals.WecapturedatleastnineuniqueYOPYoutof544marked individualsthatdisperseddistancesgreaterthan100mbetweentwoormorehabitatpatches withinthesameyear.Theseindividualsmovedatleast130to439m(mean:238±38m) betweenhabitatpatches.Basedontheseresults,itappearsthisageclasshasstrongfidelityto natalsiteswithonlyafewmovingawayfrombreedingareastheirfirstyearaftermetamorphosis.

37 Cascades Frog Ecology in California

70.0 YOPY 63.0 N=1077

56.0

49.0

42.0

35.0

28.0

21.0

PercentofTotalCaptures 14.0

7.0

0.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0

70.0 Juveniles 63.0 N=2198

PercentofTotalCaptures 56.0

49.0

42.0

35.0

28.0

21.0

PercentofTotalCaptures 14.0

7.0

0.0 0.0 50.0 100.0 150.0 200.0 250.0 300.0 DistanceFromBreedingSite(m) Figure 17. PercentofallimmatureCascadesfrogcaptures,separatedbyageclass,thatwerecaptured atvariousdistances(25meterbins)frombreedingsitesinEchoLakebasin,TrinityAlpsWilderness, California.YOPYcapturesrepresentyears2003through2005,juvenilecapturesrepresentyears2003 through2006.

Juvenile Dispersal IncontrasttoYOPY,juvenileCascadesfrogcapturesweredistributedfartherawayfrom breedingsites.Only31%ofjuvenileswerecapturedwithin25mofabreedingsiteand78% within100m(Figure17).Juvenilefrogswerefoundusingavarietyofhabitats,especially streamsandephemeralsites(Table3,Figure10).However,unlikeadults,juvenilefrogsdidnot displaydistinctseasonalorannualmigrationpatterns,butmovedmoreinarandomdiffused manner.Mostnoticeably,unlikeadultmovementpatterns(Figure13),dispersalpathsofjuvenile

38 Cascades Frog Ecology in California frogswerelesscenteredaroundbreedinglocations(Figure18).Ofthe540juvenilefrogs capturedmorethanoncebetweentheyearsof2003and2006,55%dispersedgreaterthan100m

Figure 18. MapofupperEchoLakebasin,TrinityAlpsWilderness,California,showingcapturepoints (opencircles)andconnectinglinesof471individualjuvenileCascadesfrogscapturedtwoormoretimes from2003to2006.OrangecirclesrepresentbreedingsitesusedbyCascadesfrogsforallfiveyearsof thestudy.Notethatanindividualfrogcanberepresentedbymorethanoneline.Mappropertiesfollow thoseinFigure2. fromtheiroriginallocations(Figures18and19).Themeannetdispersaldistanceforjuvenile frogsthatmovedgreaterthan100mwas338±12.5m(n=296).Furthermore,ofthe121 juvenilefrogsthathadthreeyearsbetweenlocations,70%hadnetdispersaldistancesgreater than100m.Themeannetdispersalforthisgroupofjuvenileswas447±29.2m.Finally,53 juvenilefrogsdispersedgreaterthan500m,andsevendisperseddistancesgreaterthan1000m. MaximumnetdispersaldistanceforajuvenilefrogwithinEchoLakebasinwas1171m.

Inter-basin Dispersal Perhapsthemostunexpectedmovementinformationgatheredfromthisstudywasthe dispersalofindividualCascadesfrogsbetweenneighboringbasins.Wedocumentedinterbasin dispersalof17individualfrogsthatwererecapturedinoneoffourneighboringbasins(Stony Creek,Echo,SiligoandDeerbasins)(Figure20,Table4).Minimumairdistancestraveledby theseindividualsbetweensuccessivecapturesrangedfrom769to1558m.Themajorityof distancestraveledwereoversteepandrockyterrainlackingpermanentaquaticfeatures,withat least12individualsmovinggreaterthan500moverland.Althoughdispersalmovementsof thesefrogsoccurredbetween03Julyand14September,theshortesttraveltimecapturedwasa

39 Cascades Frog Ecology in California

1200

1000

800

600

DispersalDistance 400

200

0 0 100 200 300 400 500

ActiveDaysSinceFirstCapture Figure 19.Netdispersaldistancefor540juvenileCascadesfrogscapturedtwoormoretimesinEcho Lakebasin,TrinityAlpsWilderness,California,from2003to2006.Alldistancesweredeterminedasthe minimumairdistancebetweenthefirstandfinalcapturesofeachindividualfrog.Inactivedays(winters) wereomittedfromthetotaldaysbetweencapturessincenomovementswereassumedduringwinter dormancy. movementwithin19days(03Julyand22July).Thismovementisevidencethatinterbasin movementsmayhavebeenfacilitatedinearlytomidsummerwhenthegroundwasstill saturatedfromsnowmelt.Routesmostlikelyfollowedlowpointsinsaddlesassociatedwith mountainpassesandavoidedsteepjaggedridgesandpeaks(Figure20). Finalcapturelocationsofinterbasindispersingfrogswerehigherinelevation(paired t: t =1.86, P=0.04)thaninitialcapturelocationssuggestingapositivebiasinelevationwith dispersal.Themaximumverticalgainwas308mfromafrogthatleftlowerSiligobasinand climbeduptoEchoLake,thesecondhighesthabitatpatchinEchoLakebasin.Aminimumof eightindividualsdispersedasjuvenilesandthreeasadults.Theremainingsixfrogsgrewfrom juvenilestoadultsbetweencaptures,soageclasscouldnotbedeterminedduringtheactual movementevent.Sexratiosofthefrogs( n=17)wereequal(8females,8males,1unknown) suggestingunbiasedgenderdispersal.Destinationsfor15outof17animalswerewithin50mof traditionalCascadesfrogbreedingsites(Figure20)whichindicatesahighpotentialforinter basingeneflow.Althoughwecouldnotdetermineifthesedispersaleventsresultedinsuccessful reproduction,potentialgeneflowfromtheseanimalsvia“leapfrogging”spannedanairdistance of5.2kmoverall(Figure20).

40 Cascades Frog Ecology in California

5.2 km 1 2 Stony Creek 1 Basin Echo Lake Basin 5

EL: 2213m 1 3 Siligo Basin 1 1 1

1

Deer Creek 1 Basin * EL: 1954m Deer Lake

Drainage Confluence

Luella Lake

Figure 20. ConnectinglinesofseventeenindividualCascadesfrogsthatdispersedbetweenfour neighboringwatershedsinthesoutheastTrinityAlpsWilderness,California.Arrowsattheendofdotted linesrepresentmovementdirection.Numbersaboveconnectinglinesrepresentthenumberofindividuals thatmovedaparticularpattern.OrangecirclesrepresenttraditionalbreedingsitesusedbyCascades frogsthroughoutthestudyperiod.Theoverallairdistancelinkinghabitatpatchesacrossthelandscape viadispersalwas5.2km,whichrepresentstheminimumpotentialgeneflowinthislandscape. *frogdidnotmovebetweenapassormajordrainage,butthismovementaddstooverallpotentialgeneflowthroughpatch connectivity,(K.Pope,unpubl.data,USFS/UCDavis).

41 Cascades Frog Ecology in California

Table 4.Summaryofdispersalmovementsfrom2003to2007for17individualCascadesfrogscapturedinadjacentwatershedsfromwhere originallymarkedinthesoutheastTrinityAlpsWilderness,California. Start/End Basin Days Stream Start Max End Max Net InitialCapture Recovery MinDist. frogID Sex SUL Movement Between Dist. c Elev. Elev. Elev. Change Elev. Date Date (m) (mm) Direction Captures a (m) b (m) d (m) e (m) f (m) g (m) h 395B F 47/48 7/3/2004 7/22/2004 EchotoStony 19 28645 1087 2035 2243 2127 208 92 6467 F <40/46 6/25/2003 6/17/2004 EchotoRMM 358* 28660 1143 2034 2243 2117 209 83 481F F ─/54 7/9/2005 7/12/2006 SiligotoEcho 368 3636 931 2130 2262 2093 132 37 1368 F 43/53 5/26/2004 7/19/2005 EchotoSiligo 418 4137 1558 2091 2262 2180 171 89 2137 F ─/46 7/9/2005 10/6/2006 SiligotoEcho 450 3773 769 2135 2262 2115 147 20 1020 F 41/63 6/10/2003 10/9/2004 SiligotoEcho 487 3063 1505 1954 2262 2213 308 259 0A64 F 57/64 7/23/2004 6/2/2007 EchotoSiligo 1044 4094 883 2213 2262 2129 133 84 8186 F <40/41 7/9/2005 6/9/2007 SiligotoEcho 700 3505 1074 2132 2262 2013 130 119 0C71 M ─/55 7/9/2005 8/10/2005 SiligotoEcho 32 4241 734 2130 2262 2224 132 94 5643 M ─/44 7/9/2005 8/30/2005 SiligotoEcho 52 4134 968 2135 2262 2213 127 78 2C1F M 51/55 9/4/2004 8/22/2005 EchotoRMM 351 28846 978 2075 2243 2124 168 49 2462 M 47/57 7/15/2005 5/8/2007 EchotoRMM 662 28867 945 2078 2243 2119 165 41 6C33 M <40/56 7/10/2003 6/29/2005 EchotoRMM 719* 28987 823 2113 2243 2116 130 3 9912 M 64/67 7/15/2003 7/11/2005 DeertoSiligo 726 21890 1229 2173 2306 2148 133 25 7A43 M 59/66 6/11/2003 7/28/2005 SiligotoEcho 777 2511 1218 1957 2017 2017 60 60 5C69 M 41/63 7/24/2003 5/8/2007 EchotoRMM 1383 28240 1534 1975 2243 2119 268 144 0A11 U ─/43 7/9/2005 9/14/2005 SiligotoEcho 67 3786 806 2133 2262 2117 129 16 Mean 507 13589 1070 2088 2243 2128 162 41 (SE) (±90) (±2985) (±64) (±18) (±15) (±14) (±14) (±22) aDurationbetweencaptures,*recaptureofanindividualwithonlyaVIEsite/yearbatchmark;initialcapturedatewasdeterminedasthefirstday VIEwasusedattheinitialcapturesitetoavoidbiasingmovementtotheshortesttimeintervals. bMinimumstreamdistanceinmetersbetween initialandfinalcaptures. cMinimumstraightlinedistancemovedbetweeninitialandfinalcapturelocations. dElevationinmetersatinitialcapture location. eLowestelevationatridgesaddlesseparatingtwoadjacentbasins. fElevationinmetersatfinalcapturelocation. gMaximumelevation differencebetweenthelowestandhighestpoints. hNetelevationchangebetweeninitialandfinalcapturelocation.

42 Cascades Frog Ecology in California

Patch Fidelity AproportionofadultCascadesfrogsshowedseasonalandannualpatchfidelityanddid notmigratebetweenpatcheswithinorbetweenyears.Furthermore,mostadultsthatunderwent seasonalmigrationsshowedstrongfidelitytooneormorespecificpatchesannually.Basedon thesetwopatterns,adultfrogsexhibitedstrongannualpatchfidelity.Forexample,78%ofadults exhibitedannualpatchfidelityfromoneyeartothenext(Table5,Figure21;1year)and83%of adultscapturedin2003wererecapturedwithinwithsamepatchin2006(Table5;3years). However,thisslightincreaseinpatchfidelitywasinsignificant(χ 2=0.27,df=1P =0.61). Withinadults,femalesexhibitedthehighestsitefidelity,with79%offemalescapturedinthe samepatchfromoneyeartothenext(Table5,Figure21;1year)and91%offemalescaptured andrecapturedinthesamepatchin2003and2006(Table5,Figure21;3years).

Table 5.SummaryofCascadesfrogsthatexhibitedannualsitefidelitytospecificpatcheswithinEcho Lakebasin,TrinityAlpsWilderness,California,betweenone,twoandthreeyears. 1Year 2Years 3Years # % # % # % N Fidelity Fidelity N Fidelity Fidelity N Fidelity Fidelity Juveniles Female 176 105 59.7 135 58 43.0 48 16 33.3 Male 177 124 70.1 122 62 50.8 74 31 41.9 Totals: 353 229 64.9 257 120 46.7 122 47 38.5 Adults Female 66 52 78.8 34 29 85.3 11 10 90.9 Male 175 137 78.3 101 72 71.3 31 25 80.6 Totals: 241 189 78.4 135 101 74.8 42 35 83.3 All 594 418 70.4 392 221 56.4 164 82 50.0 Juvenilesshowedasignificantdecreaseinannualpatchfidelityovertime(χ 2=24.8,df= 1, P =<0.01,Table5,Figure21).Sixtyfourpercentofjuvenilesexhibitedannualpatchfidelity fromoneyeartothenext(Table5,Figure21;1year),whereasonly38%werecapturedwithina specificpatchin2003andrecapturedwithinwithsamepatchin2006(Table5,Figure21;3 years).Patchfidelitybyjuvenilemalesdecreasedovertime,with70%ofjuvenilemaleshaving patchfidelityfromoneyeartothenext,butonly42%capturedandrecapturedinthesamepatch in2003and2006.Juvenilefemaleshadthelowestannualpatchfidelity,with59%having fidelitytoapatchfromoneyeartothenextand33%capturedandrecapturedinthesamepatch in2003and2006.Thedifferencebetweenadultandjuvenilepatchfidelityindicatesthat juvenilesaretheprimarydispersersinthispopulation,likelyexhibitingrelativelylowphilopatry tonatalsitesastheymaturetoadults.Incontrast,adultfrogsshowstrongannualfidelityto specifichabitats,evenwhentheyseasonallymigratebetweenpatches.

43 Cascades Frog Ecology in California

AdultMale 100 AdultFemale JuvenileFemale JuvenileMale 90

80

70

60 PatchFidelity%

50

40

30 1Year 2Years 3Years

YearsSinceFirstCapture

Figure 21. ProportionofindividualCascadesfrogs,separatedbyageclassandgender,thatexhibited annualsitefidelitytoaspecifichabitatpatchbetweenone,twoandthreeyearsinEchoLakeBasin, TrinityAlpsWilderness,California.Individualfrogswereonlyincludedoncewithineachtimeelapsed category.

Breeding Ecology

Timing and Duration of Breeding Breedingactivityatindividualsiteswithinthebasinwasexplosivewithactualegg depositionoccurringoveraperiodlessthan10days.However,theoveralldurationofbreeding activitythroughouttheentirebasinwasprolongedduetodifferencesinindividualsite elevations,whichrangedfrom1976to2226m.Forexample,durationofbreedingaveraged58± 3.4daysbasinwide,rangingfrom49to69daysoverfiveyearsstudied.Furthermore,annual variationinsnowaccumulationaffectedtheinitiationdateanddurationofbreedingseasons. Onsetofbreedingactivityoccurredmuchlaterinheavysnowyears.Forexample,wefound initiationofannualovipositiontobehighlydependentonannualsnowaccumulationatbothlow elevation(DPM;df=3, P = 0.02, R2 =0.88)andhighelevation(ECH;df=3, P = 0.04, R2 = 0.92)sites(Figure22).Atthelowestelevationsite(DPM),thedifferenceinbreedinginitiation datebetweenthelightest(38%)andtheheaviest(251%)yearsofsnowaccumulationwas43 days.Therewereonlysixdaysofoverlapbetweenthesetwobreedingseasons(Figure22).

44 Cascades Frog Ecology in California

250 2007 2006 2005 2004 200 2003 DPM ECH SMP UVM 150

100 May1Snowpack(%ofNormal)

50

01Apr 01May 01Jun 01Jul 01Aug

Date Figure 22.Breedingseasontiminganddurationbasedonsnowpack,forCascadesfrogsatfoursites withdifferingelevationsinUpperDeepCreekBasin,TrinityAlpsWilderness,California,from2003to 2007.Barsextendfromthebeginningofovipositionatthelowestelevationsiteinthebasin(DPM)tothe endofovipositionatthehighestelevationsitesinthebasin(SMP,ECH);UVMrepresentsamidelevation site.Thearrowonthe2005barrepresentsthedateoftheonlylatesnowfalleventthatoccurredduring thestudy,whichdelayedbreedingatthemidandhighelevationsites. Although2005snowpackwasonlyslightlyaboveaverage(120%),alatesnowstormin themiddleofJuneeffectivelymadeitthelongestbreedingseasonoverthefiveyears.Snow, surfaceice,andcoldweatherfromthislatestormwerelikelyresponsiblefordelaying reproductionathigherelevationsites.The2005breedingseasonlasted13dayslongerthanthe 2004season(125%snowpack)and20dayslongerthan2007(38%snowpack),theshortest breedingseason(seearrowinFigure22).Timinginreproductionmayhavealsobeeninfluenced bywatertemperature.Forexample,atSMPfrom2003through2007,eggswerenotdeposited untilwatertemperaturesreachedaminimumof7ºC,eventhoughsufficientshorelineandpond surfaceareawasavailable(snowandicefree).Thisminimumtemperaturethresholdwasslightly higherthanthe6ºCminimumobservedbySype(1975)andsimilartothe7.1ºCminimum observedbyBriggs(1987).

Annual Egg Mass Production Weobservedatotalof275individualCascadesfrogeggmassesfrom2003to2007in EchoLakebasin(Table2).From2003to2006,reproductiveoutputwassimilar,withameanof 49(range4653)eggmassesobservedannually.Duringthe2007breedingseason,weobserved

45 Cascades Frog Ecology in California

80eggmasses,a63%increaseinproductioncomparedtothepreviousfouryearaverage.Atthe patchlevel,SMPandDPMproducedthemosteggmassesannually,witheachaccountingfor 21%(42%combined)ofthefiveyeartotal.UVMandEchoLakeaccountedfor15%and8%, respectively,ofthefiveyeartotal.

Larval Stage Development Likeoviposition,thedurationofCascadesfrogslarvalstagevariedbysiteandyear.We didnotfindanyevidenceofoverwinteringtadpolesoverthelengthofthisstudy.In2007,when snowpackwas38%ofnormal,wefoundfrogsmetamorphosingasearlyas02August.In contrast,duringourlastsurveyin2006,whensnowpackwas251%ofnormal,weobserved tadpolesatsixsiteson08October.Onthisdate,weobservedtadpolesinthreepondsatPTHand atEchoLakewithGosnerstagesrangingfrom3439,whicharepriortofrontlegemergence (Gosner1960).BasedontheseGosnerstages,andfallwatertemperatures,it’shighlyunlikely tadpolessuccessfullymetamorphosedatthesesites.Weconducteddipnetsurveysinthespring of2007andfailedtodetectsuccessfuloverwinteringoftadpolesatthesesites.Furthermore,in 2007,wefailedtofindanyYOPYindividualsatEchoLake,andonlysawamaximumoftwo YOPYindividualsduringasurveyatPTHinthe10surveysconductedatthatsite.Asimilar patternoccurredin2005,withonly120%snowpack,whenalatesnowstormcausedhigher elevationbreedingsitestohavedelayedavailability.On10October,wefoundmetamorphosed frogsatlowerelevationsites,butfoundtadpolesatfourofthehighelevationsites.Thelongest larvalperiodweobservedwasin2005atacoldspringpondinDPM.Threeeggmasseswere depositedinthispondbetween21and30May.Westillobservedtadpolesinthispondon11 Octoberwhichrepresentedaminimumofafourmonthlarvalperiod.

Cascades frog Mortality and Abnormalities

Mortality and Predation Cascadesfrogmortalitieswereuncommonlyobserved.Nomassmortalityorlargewinter killeventsofpostmetamorphicCascadesfrogsweredetectedduringthisstudy.However,winter killratesmaybehardtodetectbecauseCascadesfrogstendtoburythemselvesintosubstrates duringwintermonthsmakingobservationsofmortalitiesdifficult(Briggs1987).Winterkill, causedbydepletionofoxygeninwaterbodies,canbecommonforMountainYellowLegged frogs(Bradford1983),acloserelativetotheCascadesfrogwhichoccupiessimilarhigh elevationenvironments.Atotalof17Cascadesfrogmortalities(14adultsandthreejuveniles), notattributabletopredation,wereobservedduringthestudy.Nineofthesemortalitieswere observedduringtheearlyspringandappeartobefromwinterkill,withthreedeadadults observedatonepondduringthesamesurvey.Oftheothernonpredatormortalitiesobserved duringtheearlyspring;apairofadultswerefounddeadinamplexusafteralatespringfreeze,an adultfemalewasfounddeadatabreedingsiteaftersheovipositedhereggsandoneadultfemale wasfounddeadinastreamwithalegentrappedinasmallbedrockcrevasse. Althoughinfrequent,eggmasses,tadpolesandrecentlymetamorphosedfrogssuffered mortalityfromdesiccationaspondsdried.Threeeggmassesoutof275(~1%)sufferedmortality fromdesiccation,allduetobeingplacedinshallowalcovesthatdriedrapidlyassnowmelt subsidedandpondelevationsdropped.Oneeggmassbecamedisplacedintoatemporarystream, hatchedout,andthetadpolessubsequentlydiedduetothestreamdryingup(Garwoodetal.

46 Cascades Frog Ecology in California

2007).Aminimumof23(8.4%)eggmasseswerefoundtobeinfectedwitha Saprolegnia sp. fungus,withtheproportionofeggsinfectedatdetectionrangingfromoneto100percent. EachyearSMPdriedinOctober,causingmassmortalityofCascadesfrogtadpoles.In addition,newlymetamorphosedCascadesfrogswereforcedtorespondbehaviorally(Figure5). Duringthisperiod,wefrequentlyobservedhundredsofrecentlymetamorphosedfrogstaking refugeinmudcracksandunderbouldersandwooddebrispilesaroundthedriedpond.On07 October2007,over100emaciatedmetamorphosedCascadesfrogswereobservedatSMPwhich hadbeendryforexactlyonemonth(31days).SMPisgreaterthan200mfromthenearestwater andissuspectedtobeamajorsourceoffallmortalityfornewlymetamorphosedfrogsbasedon poorsiterecruitment.Forexample,overfiveyears,thissiteaccountedfor21%ofthetotalegg massproductionofEchoLakebasinbutnoYOPYindividualswereobservedfromthislocation. DirectpredationonCascadesfrogswasnotcommonlyobserved,thoughitissuspectedto beamajorsourceofnaturalmortalityforbothtadpolesandfrogs.Avarietyofpredators includingbirds,snakesandinvertebratelarvaewereobservedfeedingonCascadesfrogs.Ofthe adultCascadesfrogsutilizedforradiotelemetry,16%(eightof50)frogswereeatenbygarter snakeswhilecarryingradiotransmitters(fivebycommongartersnakes,twobyaquaticgarter snakesandoneunknowngartersnake)(GarwoodandWelsh2005,andAppendixC).Both speciesofsnakealsoconsumedtadpolesaswellasmetamorphosedandjuvenileCascadesfrogs (seeSection7,Popeetal. in review ).Clark’sNutcrackersandAmericanRobinswereobserved feedingonbothCascadesandPacifictreefrogtadpoles(Garwood2006).J.Garwoodalsohad multipleobservationsofAmericanDippersfeedingonCascadesandPacifictreefrogtadpoles andnewlymetamorphosedindividuals.Adragonflylarva( Aeshna sp.)wasobservedpredatinga newlymetamorphosedCascadesfrogswhileitwasalive(GarwoodandWheeler2007).Potential predatorsnotobservedfeedingdirectlyonCascadesfrogsbutobservedat,orhadtracksaround breedingpondsinclude:SpottedSandpipercommonlyobservedaroundmanybreedingponds, CommonSnipeobservedatonebreedingpond,GreatBlueHerononeobservedflyingfroma breedingarea,Coyotetracksobservedfortwoyearsaroundaseriesofbreedingpondsduring thelatesummer,BlackBeartrackscommonattwobreedingpondsduringthelatesummerand Shrews( Sorex sp.)arecommonthroughoutthebasininmeadowpatches.Althoughnotseenin thisstudy,amallardduckwasobservedeatingaCascadesfrogintheTrinityAlpsatTangle Bluelakein2005(BernardAguilar,DFG,perscomm.).

Abnormalities ObservedabnormalitiesofpostmetamorphicCascadesfrogswererelativelyrare.From 2003to2006wecapturedandmarked1669individualCascadesfrogs andfound58individuals (48juveniles,10adults)or3.4%hadvariousabnormalities.Observedabnormalityratesfrom annualpopulationcapturesaveraged1.2%(SE±0.23,range0.68to1.65%).Allabnormalities wereobservedinthelimbs,with88%restrictedtothehindlimbs.Atotalof60%werederived frommissinglimbs(45%missingphalanges,17%missingentirefoot).Eighteenpercent appearedtobewoundsincludingswollentoes,openlacerationsorexposedbone(phalanges). Tenpercentappearedtobefrompreviousbrokenlegandtoebonesthatsubsequentlyhealed. Twoanimalshadlegbonesofunequallength.Lastly,twoanimalshaddislocatedjointsinoneof thehindlegs.ManyCascadesfrogsintheareabreedinpermanentspringfedponds.These permanentpondscontainavarietyofDragonflylarvae(Anisoptera),aknownpredatorof metamorphosingCascadesfrogs(GarwoodandWheeler2007).Wehaveobservedcomplete removaloflimbsonmetamorphosingCascadesfrogsbyAnisopterasuggestingtheycanbea

47 Cascades Frog Ecology in California majorsourceofobservedabnormalitiesintheseponds. Althoughwedidnotdistinguishthe causeoftheseabnormalities,whichcouldeitherbemalformations(developmental)or deformities(physicaltrauma),wesuspectthemajorityofcaseswerecausedbyphysicaltrauma frompredationattempts.Theseobservedabnormalityratesarebelow2%whichissuggestedas backgroundlevelsfornaturalamphibianpopulations(Ouellet2000).

RESULTS: GARTER SNAKES Thissectionsummarizesthediet,distributionandmovementpatternsofgartersnakes capturedinEchoBasinfrom2003through2006.Datapresentedherehavealsobeenincludedin amuchbroaderanalysisfocusingonpossibleecosystemlevelindirecteffectsoffishstockingon regionalnativeamphibians(see:Popeetal. in review ).

Garter Snake Captures Atotalof351gartersnakeobservationswererecordedfrom2003to2006.Duringthe markrecapturecomponentofthestudy(2004to2006),wemarkedatotalof95commongarter snakesand58aquaticgartersnakes.Overthethreeyearsthesemarkedindividualswerecaptured atotalof229times.Werecaptured24individualcommongartersnakesfromtwotofourtimes and27individualaquaticgartersnakesfromtwotosixtimes.Only10individualcommongarter snakeswererecapturedbetweentwoyears,andonebetweenthreeyears.Elevenindividual aquaticgartersnakeswererecapturedbetweentwoyears,andtwobetweenthreeyears.Overthe timesampled,thehighestnumberofuniqueindividualsfoundataspecificpatchwas17 commongartersnakesatSMPand49aquaticgartersnakesatDPM(Figure3).

Garter Snake Diets Wepalpated209gartersnakesinUpperDeepCreekbasinfrom2003through2006.Of thestomachssampled,38(35.2%)ofcommongartersnakesand43(42.6%)ofaquaticgarter snakesstomachscontainedfooditems(Table6).Thedietofcommongartersnakesconsisted entirelyofamphibianswith90%ofthestomachssampledcontainingCascadesfrogs.Incontrast, aquaticgartersnakesconsumedbothamphibians(44%)andbrooktrout(58%),with89%ofthe amphibianpreybeingCascadesfrogs.Bothspeciesofgartersnakesconsumedallageclassesof amphibians,includinglargeadultCascadesfrogs,butmostanuranpreyconsistedoflarvalor recentmetamorphosedstagesattraditionalanuranbreedingareas(Figure9).Oneaquaticgarter snakestomachcontainedaCascadesfrogtadpoleandabrooktroutindicatingindividualsnakes willmovefromfishbearingstreamstoamphibianbreedingpondstoforageforbothpreytypes. Thenumberofpreyitemsfoundinstomachsrangedfromoneto16forcommongartersnakes andoneto23foraquaticgartersnakes.

Garter Snake Spatial Patterns

Macrohabitat Use Capturesvariedgreatlybetweensnakespeciesbasedonhydrology.Commongarter snakeswerecapturedinlenticwaterbodies75%ofthetime,while69%oftheaquaticgarter snakecaptureswerecapturedinloticareas(Figure23).Fewcapturesofeitherspecieswere founduplandinareasgreaterthan10mfromwater.

48 Cascades Frog Ecology in California

Table 6. Dietcompositionoftwospeciesofgartersnakes,2003through2006,inUpperDeepCreek basin,TrinityAlpsWilderness,California.

CommonGarterSnake AquaticGarterSnake Age Frequency #ofPrey Frequency #ofPrey PreyCategories Class a F b %F c N d %N e F b %F c N d %N e NativePrey Amphibian 38 100 158 100 19 44.2 69 72.6 Anura L+J+A 36 94.7 156 98.7 19 44.2 69 72.6 Cascadesfrog L+J+A 34 89.5 79 50.0 17 39.5 50 52.6 L 16 42.1 41 25.9 13 30.2 46 48.4 J 11 28.9 29 18.4 1 2.3 1 1.1 A 9 23.7 9 5.7 3 7.0 3 3.2 PacificTreefrog L+J 9 23.7 77 48.7 4 9.3 19 20.0 L 6 15.8 45 28.5 3 7.0 18 18.9 J 3 7.9 32 20.3 1 2.3 1 1.1 Caudata A 2 5.3 2 1.3 0 0 0 0 LongtoedSalamander A 1 2.6 1 0.6 0 0 0 0 UnknownSalamander A 1 2.6 1 0.6 0 0 0 0 NonnativePrey Salmonidae J+A 0 0 0 0 25 58.1 26 27.4 brooktrout J 0 0 0 0 11 25.6 11 11.6 brooktrout A 0 0 0 0 15 34.9 15 15.8 Totalsnakessampled(N): 108 101 Totalstomachscontainingprey(n): 38(35.2%) 43(42.6%) aAgeclasscategoryofprey;Amphibian:L=Larvae(Tadpoles),J=Juvenile(<50mmSUL),A=Adult(≥ 50mmSUL);Salmonidae:J=Juvenile(<100mmTL),A=Adult(≥100mmTL). bFrequencyofstomachscontainingpreycategory. cPercentofstomachscontainingpreycategory. dTotal numberofpreyitemsforallstomachscombined. eProportionofpreyitemsforallstomachscombined. Somestomachscontainedmorethanonepreycategorysopercentvaluesdonottotalto100for combinedcategories. Inadditiontohydrologicdifferences,observationsforeachgartersnakespeciesdiffered basedontheirrespectivepreyoptions(Figure24).Observationsofcommongartersnakes occurredmostoftenatcommonlyusedanuranbreedingsites(80%)andlessoften(14%)inareas containingnonnativebrooktrout.Incontrast,aquaticgartersnakeswereobservedmostoftenin areaswithnonnativebrooktrout(92%).Aquaticgartersnakeswerealsofoundinareas containingtadpoles36%ofthetime,largelybecauseonezone(DPMC)containedbothnon nativebrooktroutandmultipleanuranbreedingponds.

49 Cascades Frog Ecology in California

100 AquaticGarterSnake(N=107) CommonGarterSnake(N=136)

80

60

40 Average%ofAnnualCaptures 20

0 Upland1Lentic 2 Lotic 3 MacroHabitatCategory Figure 23.MeanPercentofcaptures,2004to2006,fortwospeciesofgartersnakebymacrohabitatin upperDeepCreekbasin,TrinityAlpsWilderness,California.Uplandlocationsweregreaterthanfive metersfromwater;lenticlocationsincludedallcapturesinpondsandEchoLake;loticlocationsincluded allcapturesinstreams.Errorbarsrepresentonestandarderror.

100 AquaticGarter Snake(N=126) CommonGarter 80 Snake(N=176)

60

40 Average%ofAnnualCaptures 20

0 FishPresent FishAbsent TadpolesPresentTadpolesAbsent ZoneCaptures Figure 24. MeanPercentofannualgartersnakecaptures(2003to2006)foundinhabitatzoneswithand withoutspecificprey(fishoramphibianlarvae),inupperDeepCreekbasin,TrinityAlpsWilderness, California.

50 Cascades Frog Ecology in California

Movement Thelongestmovementobservedbyacommongartersnakewas910m,whereasthe longestmovementofanaquaticgartersnakewas662m.Bothofthesemovementswereround tripmigrationsbetweentwolocations.Onaverage,commongartersnakes( n=21)movedover twiceasfar(mean:163±37m,range:0to590m)asaquaticgartersnakes( n=27)(mean:76± 23m,range:0to597m).Thenetmovementofcommongartersnakeswassignificantlygreater thanaquaticgartersnakes(MannWhitney Utest: Z =1.82, P=0.034).Ofthecommongarter snakescapturedmorethanonetime,48%(10)movedbetweenhabitatpatchesseparatedby50to 400m.Incontrast,only11%(3)ofaquaticgartersnakesmovedbetweenhabitatpatches separatedby50to210m.

51 Cascades Frog Ecology in California

RESULTS: TROUT, SNAKE, AND FROG DISTRIBUTIONS BasedonDFGstockingrecords,brooktrouthavebeenestablishedinEchoLakebasin foraminimumof78years.MultiplegillnetsweredeployedinEchoLakebyKarenPope (USFS/ UC Davis )fromthefallof2003throughthespringof2005aspartofatroutremoval experimentatfourlakesintheTrinityAlpsWilderness.ThebrooktroutpopulationatEchoLake wasquicklydepleted,andmultiplesubsequentnetsetsfailedtocapturefish.Only56fishwere removedfromEchoLakeandgillnettingceasedinthespringof2005becauseextirpationwas assumedcomplete.Nofishwereseeninthelakeuntilthefallof2006whenonebrooktroutfry wasobserved(K.Pope,unpubl.data, USFS/ UC Davis ).Althoughfishwerenotsuccessfully removedfromEchoLake,populationsweregreatlyreducedfrom2004to2006.Weassumethat gillnetsfailedtocapturetroutfrybecausethenetsaresizeselectivetowardfishes>80mmlong. On17August2007,J.Garwoodcounted33brooktroutfryinEchoLakewheretwospring streamsenterintothelake.Interestingly,thesefryappearedtobeusingthesmallspringinflows asthermalrefugia;laketemperatureawayfromthesespringswas19.3ºCat10:52.Basedon theseobservations,itappearstheEchoLakefishpopulationisexpandingtopreremoval numbersthroughinlakereproductivesuccess. Bysurveyingtheentirebasin,wefoundbrooktrouthavesuccessfullyinvaded approximately650mofstreamthroughEchoLake’sseasonaloutlet.Wealsofoundbrooktrout presentinDeepCreekgorgelocatedbelowourstudysite,butphysicalbarrierslimitedupstream movementsofthesetrout.InadditiontoEchoLake,brooktroutwerefoundinthelowgradient portionofDeepCreekmeadows(zonesAtoG)andadjoiningVanMatreCreekfork(zonesAto C)(Figure3).Thecurrentfishdistributionislikelyconstrainedbyacombinationofhighstream gradients,intermittentstreams,andphysicalbarrierswithintheremainderofthebasin.Overall, spawninghabitatinthesestreamswaslimited,butabundantgravelswerepresentinDPMCand manybrooktroutwereseencreatingreddsandspawningthereannuallyduringthemonthof September.Streamswheretroutdidoccurhadrobustnumbersofindividualswithwelldefined sizeclassdistributions.OurabundanceestimateofbrooktroutinDPMtotaled395fishwithan averagedensityexceedingtwofishpermeterofstream(Table7).

Table 7. EstimatedbrooktroutabundanceinDeepCreekMeadows(DPM)calculatedfromboundeddive countsduringthesummerof2005,TrinityAlpsWilderness,California.

Habitat Meters Total #Fish/m Zone Searched a Fish ofStream b DPMA 5.5 2 0.36 DPMB 73 300 4.11 DPMC 40.6 61 1.5 DPMD 19.4 7 0.36 DPME 30.2 18 0.6 DPMF 15.5 6 0.39 DPMG 1.6 1 0.63 Totals: 185.8 395 2.13 arepresentsthesumofallhabitatfeaturelengthsthatweresearchedfortrout. bDensityofbrooktroutbasedonabundanceestimatesperliniermeterofstreamsearched.

52 Cascades Frog Ecology in California

Species Distributions and Densities KerneldistributionsofCascadesfrogsandbothgartersnakespecies,aswellasrelative densitiesofbrooktrout,aredisplayedinFigure25.Sixtythreepercentofthedistributionkernel foraquaticgartersnakesencompassedthetroutcontaininghabitatcomparedto11%ofthe distributionkernelforcommongartersnakes(χ2=48.9, P<0.0001).Moreover,only23%of thekernelforaquaticgartersnakesoverlappedwiththekernelforCascadesfrogscomparedto 63%ofthekernelforcommongartersnakes(χ2=24.8, P<0.0001).

9.23 Easting ing th or Cascades N Frog

17.07 Common Garter Snake

67.49

Aquatic density fixed kernel 100% Relative Garter Snake

125

Brook Trout stream unit stream (bar graph) of # fish per

Basemap 500 meters

Figure 25. Fixedkernelutilizationdistributions(bandwidth=100)forCascadesfrog,commongarter snake,andaquaticgartersnakelocationswithinDeepCreekBasin,TrinityAlpsWilderness,California. Theheightofthedensityfunctiondepictstherelativeprobabilityofanindividualoccurringateach locationwithinthestudyarea.Relativekernelheightsareestimatedindependentlyforeachspeciesand arenotcomparableacrossspecies.ThebottompanelshowsaquatichabitatswithinDeepCreekBasin andincludesaspatiallyrelatedbargraphrepresentingestimateddensitiesofbrooktroutinthebasin.

53 Cascades Frog Ecology in California

Neighborhood Influences Wecaptured456uniquelymarkedCascadesfrogsatthreepatchessympatricwithnon nativebrooktroutthroughoutEchoLakebasinfrom2003to2007.SinceCascadesfrogsmove often,wefound234(51%)ofthesefrogswerealsocapturedin14otherhabitatpatchesreaching upto1508maway.Themeandistanceindividualfrogstraveledbetweenpatcheswithbrook troutandsurroundingfishlesshabitatswas421±16.6m(range:70to1508m).

Stream Densities of Cascades Frogs Duringthesummerforagingperiod,wefoundCascadesfrogdensitiestobe6.3times higherinLVMwithoutbrooktrout(meancaptures:11.9±1.2frogs,max:21)thaninDPMwith brooktrout(meancaptures:1.8±0.3frogs,max:6)(Figure26).Theseresultsarebasedon21 independentsurveysofthesetwostreamsfrom2003to2006.

25.0

20.0

15.0

10.0

NumberOfFrogsPerSurvey 5.0

0.0 +Trout(DPM) Trout(LVM) Figure 26 .BoxplotscomparingCascadesfrogcapturesattwostreamreaches(190mlong),onewith troutandonewithouttroutinEchoLakebasin,TrinityAlpsWilderness,California.Bothstreamswere locatedwithin100m,bothhadsimilarslopes,dischargeandriparianvegetationcharacteristics.

54 Cascades Frog Ecology in California

DISCUSSION

Cascades frog Ecology Thisstudyexaminedthetiminganddurationofspecificannuallifehistoryattributesfor Cascadesfrogsaswellasecologicallimitsposedonthisspeciesinahighelevationecosystem (Figure27).Overall,wefoundCascadesfrogstobequiteresilientinthishighlyvariable environment,byadjustingtheirbehaviorandhabitatuseassites,seasonsandyearsvaried.It’s

Figure 27. Empiricalmodeldisplayingtiminganddurationofspecificlifehistoryattributesforallage classesofCascadesfrogsfrom2003to2007inEchoLakebasin,TrinityAlpsWilderness,CA.Somelife historyattributesoverlapduetogeographicvariationinsnowmeltandorsiteavailability/elevationswithin thebasin.Timinganddurationofeachlifehistoryattributeincludeddatafrom2006(extremelywetyear with251%snowpack),anddatafrom2007(dryyearwith38%snowpack)soextremeannualvariabilityis represented. First Year Stages Eggs Incubation

Larvae Nutrition

Metamorphosis Nutrition

Over wintering

Juveniles Nutrition

Over wintering Over wintering

Adults Extreme Extreme Dry Year Breeding Wet Year Low ELEV. High ELEV. Nutrition

Over wintering Over wintering

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC importanttonotethisstudytookplacewithinaregion(bothEchoandSiligobasins)whichwe considertohavesubstantialamountsofexceptionalhabitatsforCascadesfrogs.Ofthelikely hundredsofbasinsthesefrogsinhabitacrosstheirrange,it’simportanttoconsiderthateach basinordrainagehasitsownstructuralcompositionofaquaticresources,andtherebydifferent pressuresareexertedonspeciesthatinhabitthem.However,basedonalargeelevational gradientanddiverseassemblageofaquatichabitats,wesuggestthisstudycaptured environmentalvariationthatexistsacrossmuchoftheCascadesfrograngeinCalifornia.

Surveys and Captures Basedonannualcaptures,Cascadesfrogsweremostactiveduringthemidsummer monthswhentemperatureswerewarmandbetweenthehoursof1000and1700.Thispatternis

55 Cascades Frog Ecology in California similartowhatPope(1999)discoveredwithMountainYellowleggedfrogs,withthemost capturesoccurringfromAugusttomidSeptemberintheHighSierraNevadamountains.Outside ofthisperiod,wenoticedcaptureswereextremelyvariablebasedonageclassandgender.For example,duringthebreedingseasonweprimarilycapturedadultmalesconcentratedaround breedingponds.Althoughactive,wefoundgravidadultfemalestobequitecrypticduringthe springwhichresultedinfarfewercaptures.Crypticbehaviorofadultfemalesduringbreeding seasonshasbeenobservedwithotherranidfrogs,withoperationalsexratiosofcapturesfoundto beextremelymalebias(DavisandVerrell2005,Wheeler2007).Inadditiontoadultfemales,we alsocapturedfewjuvenileCascadesfrogsduringthespring.Atthistimemosthabitatswere floodedwithcoldmeltwater(sheetflow)andlittletonovegetationwasavailableinriparian areasduringthistime.Conditionsduringtheearlyspringappeartobeunfavorablefornon breedingcohortsbasedonlimitedforagingandbaskingopportunities,butthiswarrantsmore investigation. Incontrasttothespring,fallcapturesofCascadesfrogsappearedtobebiastoward YOPYandadultfemales.InadditionwenoticedthatrecentmetamorphosedCascadesfrogs werealsoactiveduringthisperiod.Becausewesawmoreoftheyoungestageclasses(smallest frogs)aswellasadultfemales(largestfrogs)duringthelatefall,wesuspectthisistheresultof bothhavinghighenergeticcosts.Forexample,smallfrogslackextrafatstoragereservesfor overwintering,whereasadultfemaleswereovertwiceaslargeasadultmales,andmustdevelop extrafatstorageforeggdevelopment.Wesuggesttheseage/sexgroupsmustremainactively foraginglateintothefallbasedonthesesuspectedconstraints.Futuresurveyprotocolsand populationlevelmonitoringshouldaccountforthiscapturevariation,especiallywhenemploying snapshotvisualencountersurveytechniques. ThisstudyalsodeterminedannualreproductiveoutputofCascadesfrogsthroughegg masscounts.SinceCascadesfrogsareexplosivebreedersatspecificsites,andbreedinsimple structuredhabitatswithlittlevegetation,wefoundeggmasscountscanbeanefficientmethod andarenear100%accurateindeterminingtotalannualreproductiveoutput,butseeGarwoodet al.(2007)forprecautionsonthismethodonCascadesfrogs.Thesecountscanbeusedasatool formonitoringtheeffectivesizeofbreedingpopulationsinarelativelyshortperiod.Ourstudy wasabletodetermineannualreproductiveoutputoverfiveyears,withthelengthofbreeding seasonaveraging58daysfortheentirebasin.Wefound,basedoneggdevelopmentrates,total annualeggproductionforthispopulationcouldbeobtainedinfoursurveytrips.Furthermore, eggmasscountscanbeespeciallyusefulinareasthathavesufferedsignificantdeclines,suchas theLassenregionwhereeggmasseswerefoundmorecommonlythanfrogsinsinglesurveys (SteadandPope2007,J.Garwoodpers.obs.).

Habitats and Movements Sinsch(1990)wasthefirsttonotethatenvironmentsmustprovideavarietyofresources forannualactivitiesofanurans.Theseincludewintering,aestivation,reproductionandforaging. Theseresourcescanbeprovidedatasinglelocation,howevermanyoftheseseasonalresources arespatiallyseparatedforspeciesintemperateareas.Recentstudiesofhighelevationtemperate ranidfrogselucidatethispointandshowthatindividualfrogsmovebetweenresourcesbasedon seasonallifehistoryrequirementsincludingbreeding,summerforagingandwinteringhabitats (MatthewsandPope1999,Pilliodetal.2002).Ourinformationgatheredonmovementpatterns andhabitatuseofCascadesfrogsclearlydemonstratestheyuseavarietyofhabitatsthatare spatiallyortemporallyseparated.

56 Cascades Frog Ecology in California

OntogeneticshiftsinhabitatusewasapparentinEchoLakebasin.WefoundthatYOPY frogswerestronglyassociatedwiththeirnatalbreedingsites,andthemajoritywerecaptured within25moftheseareas.Basedonsnakedensitiesatbreedingsites,webelieveYOPYfrogs haveagreaterriskfrompredationthanjuvenileoradultfrogswhichwerefoundinagreater varietyofhabitats.Specifically,juvenilefrogswerefoundusingsummeronlyephemeral habitatsmorethantwiceasoftenasanyotherageclass.Inaddition,juvenilefrogswerealso foundtousestreamsmoreoftenthananyotherageclass.Adultfrogshadthehighestvarietyof habitatuse,butwerefoundmostofteninperennialhabitats.Webelieveadultfrogsneedthe widestvarietyofhabitatsbecausetheyhavemorecomplexlifehistoriesthatinclude reproduction. Basedonobservationsatbothbreedingandoverwinteringlocationsgroundwatersprings werefoundtobehighlyimportanttoCascadesfrogsinthisbasin.Duringthebreedingseason, manygroundwaterspringpondswerethefirsttothaw,presumablyduetowatertemperatures havinglittlefluctuationwheretheysurface.Intotal,28outof38breedingponds(73%)were springfed,withmosthavingayearroundwatersupply.Springswerealsoimportantinthefall whenaquaticresourcesweremostlimitedinthebasinandweretheonlywatersourceremaining formanyisolatedplaces.WecapturedmanyfrogsintoOctoberandagainthefollowingspringat thesamespringpondlocations.Thesespringsitesdonotfreezeandhaveconstantwater temperaturesthroughoutthewintermonths(J.Garwood,unpubl.data).UnlikeMountainYellow leggedfrogswhichneeddeeplenticsitestooverwinter(Bradford1983),wefoundCascades frogsoverwinteringinspringfedareasthatweresometimeslessthan0.5mdeep.Themost notablefrogoverwinteringsiteoutsideofspringsinthebasinwasEchoLake,butmostfrogs thatoverwinteredtherewereadultanimalsduetothelowproductivityatthatsitefrom2003to 2006. WefoundCascadesfrogslifehistoryandpopulationstructurewasstronglydependenton ecologicalprocessesoperatingatthebasinlevel.Patcheshadsuchhighconnectivityfromboth dispersingandmigratingindividuals(Figures13and18),webelievebasinscontainingpatchy habitatslackdemographicindependenceandmetapopulationstructure.Furthermore,wefound dispersalbetweenbasinswashigh,soataminimum,theCascadesfrogsinEchoLakebasin operateasasubpopulation.OurresultssupporttheopinionsofSmithandGreen(2005)who,in theirreviewonamphibianmovementsstudies,foundmoststudiescoveredareastoosmallto predictactualmovementcapabilitiesandpopulationstructure.Manystudiesresultedinfalsely statingamphibianshadlowvagility,andtherebywarrantedlessprotectionsforcorridorsor surroundinghabitatsforpopulationlevelprocesses. JuvenileCascadesfrogsexhibitedexceptionallyhighdispersalratesfromnatalsitestoall availablepatchesinEchoLakebasin(Figure18).Thishighfrequencyofpermanentmovements resultedinjuvenileshavinglowpatchfidelity.Thisisthefirststudyweareawareofthat documentsinterbasindispersalofanuransovermountainpasses.Bysurveyingmultiplebasins, wefounddispersalbetweenthemtonotbearareevent,with17individualsmovingbetween fourbasinswithinfiveyears.Basedonourminimalsurveyeffortintheseproximalbasins,we suggestthisisalowestimateofthesemovements.Forexample,theonlyproximalsitesurveyed regularlywasRedMountainmeadowswherewefoundsixoutof15(40%)individualfrogsthat wereoriginallycapturedandmarkedinEchoLakebasin.Thesemovementsdemonstrateinter basinconnectivitycanbehigh,evenwhenthelandscapelacksaquaticfeaturesforgreaterthan 500m.Furthermore,theseresultsareevidencethatgeneflowamongadjacentbasinsarewithin

57 Cascades Frog Ecology in California theacceptedlevelsformaintaininggeneticdiversitybetweensubpopulations(Millsand Allendorf1996)byhavinggreaterthanoneindividualpergenerationdispersingovermountain passes.Theconnectivityoffrogpopulationsamongbasinsshouldbetakenintoconsideration whenmanagingforthisspecies.

Breeding Ecology Eachyear,timingofbreedingwaslargelydependentonwintersnowaccumulationand theelevationofeachbreedingsite(Figure22).ThisvariationindicatesCascadesfrogsare explosivebreedersatspecificsites,buthaveextendedbreedingseasonsannually.Basedonour eggmasscounts,Cascadesfrogsappeartohavearelativelysmalleffectivepopulationsizein EchoLakebasin.Although18to27individualpondsandonelakewereusedforbreeding annually,onlyamaximumof47to80eggmasseswereproducedannuallyoverthefiveyears. Forcomparison,Briggs(1987)foundfrom21to43eggmassesannuallyinonepondthatwas only550m 2at1285minelevation.

Garter Snake Ecology Thisstudyrevealsthatthetwogartersnakespeciesappeartohavedifferentlifehistory strategies.Thesedifferencesmayexplainwhythesecloselyrelatedspeciescancoexistina relativelysmallandsimplifiedfoodweb.Specifically,wefoundthediet,distribution,movement anddensitydifferedgreatlybetweenthetwospecies.Themoststrikingobservationwasthe utilizationdistributionsofcommongartersnakesandaquaticgartersnakesinEchoLakebasin (Figure25).Thesedistributionsmirroredthedistributionoftheirrespectiveprimaryprey. Commongartersnakeswerestrictamphibianpredatorswhereasaquaticgartersnakesconsumed bothamphibiansandtroutinnearequalproportions.Themajorityofamphibiansfoundinthe basinwerelenticbreeders(CascadesandTreefrogs),andmayexplainwhycommongarter snakeswerefoundpredominantlyinlentichabitats,especiallyaroundamphibianbreedingsites containinglarvae.Incontrast,aquaticgartersnakeswerefoundalmostexclusivelyinandaround streamscontainingbrooktrout.SincemanyCascadesfrogbreedinglocationswerenearsites withfish,andpredationbyaquaticgartersnakeswashighestonfrogshereingeneral,wesuspect frogsareexperiencingpredationlevelsabovewhatwouldbeexpectednaturally.Possible landscapelevelconsequencesfromourdatahavebeenincorporatedintoamuchlargeranalysis thataddressesthisphenomenonacrosstheTrinityAlpsWilderness(Popeetal. in review ).At minimum,ourresultsindicatethatpredatorsareinfluencingCascadesfrogpopulationsand introducedfisheshavethepotentialtoaltergartersnakerolesinfoodwebdynamics.

Introduced Brook Trout Alargebodyofliteraturehasimplicatedintroducedfishesasamajorsourceof amphibiandeclinesinlakesoftheWesternUnitedStates(seePilliodandPeterson(2001),and KatsandFerrer2003forareview)mostnotablythroughdirectpredationontadpolesandyoung frogs(Simons1988,Vredenburg2004).Welshetal.(2006)foundstrongnegativecorrelations withlocalamphibiansatlakeswithfishpresent,evenwhenproximalfishlesssiteswere accountedforintheanalysis.ResearchcurrentlybeingconductedintheTrinityAlpsWilderness (byKarenPopeUSFS/ UC Davis )isaddressingintroducedtrouteffectsonlenticwaterbodies, andisusingtheCascadesfrogasafocalspecies. IntroducedfishmayposeagreaterthreattosuccessfulrecruitmentofCascadesfrogsat highelevationsitesthanatlowerelevationsites.Highelevationsites,suchasEchoLake,usually

58 Cascades Frog Ecology in California haveverysimpleshorelines,primarilyduetothelackoflargewoodandaquaticvegetation existingatlowerelevationsites(H.Welshunpubl.data).Sinceintroducedtroutarevisual predatorsonamphibians(Vredenburg2004),tadpolesandyoungfrogshavelesscovertoprotect themselvesfrompredationbyintroducedfish.Inaddition,weonlyfound18individualYOPY CascadesfrogsatEchoLakeover44surveysfrom2003tothespringof2007.Duringthese years,whensnowpackwasabovenormal,weconsistentlysawtadpolesatEchoLakeinthelate fallthatfailedtoreachmetamorphosisoroverwinter.Incontrast,inthefallof2007wefound manymetamorphosedindividualsatthelakeindicatingdroughtyearsallowsufficienttimefor mosttadpolestometamorphoseatthislake.SinceEchoLakeonlyhasthepotentialforeffective recruitmentindroughtyears(inthiscaseoneoutoffiveyears),introducedtroutcouldposea muchlargerthreattothisalreadyintermittentrecruitmentsuccessthroughdirectpredationin droughtyears. Breedinghabitatsproximaltolakescontainingintroducedfishhavebeenfoundtobuffer potentiallossoffrogrecruitment,especiallyifeffectivereproductionoccursannuallyatthese sites(Knappetal.2007).InEchoLakebasinandpossiblyothers,wesuggestthisassumption couldbefalselyconsidered.WefoundmostadultschosetomigratefromthelakeanduseSMP, anearbysite,forreproduction.Eachyear,SMPdriedcompletelybythefallthoughhundredsto thousandsoftadpolessurvivedtometamorphosis.However,weonlycaptured30YOPYthat survivedoverwinteringatthissiteoverthelengthofthestudy.Alloftheseindividualswere capturedintheearlyspringandwerefoundtobeextremelyemaciated;withonlythreeofthe30 markedindividualsrecaptured.Furthermore,wefailedtodetectanyoverlandmigrationsofthese individuals,andpatchesclosesttoSMPneverreceivedaninfluxofmetamorphosedfrogsinthe fall.So,eventhoughanearbysitewasavailableforreproduction,awayfromnonnativetrout, reproductionlargelyfailed. Althoughalargebodyofliteraturedescribesfishstockingeffectsonlakesthroughoutthe WesternU.S.,fewstudieshavelookedintopossibleeffectsofintroducedfishonnative amphibiansinbasinsthathavestreamsassociatedwiththeselakes(Adamsetal.2001),butsee GillespieandRobertson(2001)andBoschetal.(2006)forintroducedfisheffectsonamphibians inotherstreamsystems.SinceDFGhasfocuseditsstockingandmanagementeffortsonlakes, littleinformationexistsontheinvasionofthesefishesintonontargetandunmanagedareas, specificallystreamsassociatedwithlakescontainingintroducedfishpopulations.Basedon establishedprotocolsthatare“lake”and“pond”focused,inventoriesofintroducedfishand amphibianpopulations,atwholebasinscales,havepossiblybeengrosslyunderestimated.For example,wefoundarobustbrooktroutpopulationoccupying650mofstreaminEchoLake basin.Thispopulationwasgreaterthan750mfromthelake,thoughitwasseededdirectly throughtheoutletstreamofthelake.SinceourstudyshowedCascadesfrogsusedstreamsmost oftenduringsummerforaging,thesehabitatsmayhavebeenlargelyoverlookedfortheir importanceinotherstudies.Furthermore,wefoundsummerCascadesfrogdensitiestobe6.3 timeshigherinastreamlackingtroutthanatasimilarstreamwithhighdensitiesofbrooktrout. ThissuggeststheseunmanagedfishpopulationsarenegativelyimpactingCascadefrogs,butisin needoffurtherstudy.Potentialimpactsposedbyfishpopulationsinstreamscouldalsoaffect otheramphibianspecies.InadditiontoCascadesfrogs,wefoundapopulationoftailedfrogs (Ascaphus truei ),anotherCaliforniaSpeciesofSpecialConcern(JenningsandHayes1994), distributedinfivestreamsthroughoutthebasin(AppendixD).Wefailedtofindanytadpolesor frogsofthisspeciesinstreamsofsimilardischargecontainingbrooktrout.

59 Cascades Frog Ecology in California

Finally,Cascadesfrogsfoundinpatcheswithtroutcanbenegativelyimpactedina varietyofways.Forexampletheseeffectscanrangefromdirectpredationonfrogs(Simons 1998),competitionforfood(FinlayandVredenburg2007),andindirectlythroughashared predator(Zavaletaetal.2001,Popeetal. in review ).SinceCascadesfrogsdemonstrated substantialdispersalandmigrationcapabilitiesbetweenseparatepatches,wesuggestindividual patchescontainingbrooktroutcouldhavefarreachingconsequencesbeyondtheirlimited distribution.Sincetheaveragedistanceafrogmovedbetweenapatchwithandwithoutbrook troutwasgreaterthan400m,unknownpopulationlevelconsequencescouldresultatpatches wellawayfromthesefish.Anexampleofsuchapopulationlevelconsequencecouldbe increasedpredationbyaquaticgartersnakesonadultfrogsthatwouldotherwisereproduceina patchnotcontainingfish.Thoughourstudytookplaceinonlyonebasin,ourlookintopossible impactsposedonCascadesfrogsbyintroducedbrooktroutpresentsacompellingcasestudy.

60 Cascades Frog Ecology in California

MANAGEMENT RECOMMENDATIONS Withinthelastdecade,DFGhasinitiatedaconservationstrategyformaintainingaquatic biodiversityinhighelevationwildernessecosystems.Thismanagementobjectiveaimstoprotect andenhancenativeamphibianspecieswhileattemptingtooptimizerecreationaltroutfishing opportunities.Startingin1999,DFGhasbeenimplementingthisconservationstrategyinthe SierraNevadaMountainsthroughwatershedbasedmanagementplans (http://www.dfg.ca.gov/habcon/conproj/big_pine.html,C.Milliron,2005).Theseplansare focusedonbasinwidemanagementofbothnativemountain(andSierra)yellowleggedfrogs (MLYF)andintroducedfishes.Wesuggesttheseplanscanalsobesuccessfulforbetter managingaquaticspeciesbiodiversityacrosstherangeofCascadesfrogsandotheramphibian speciesinnorthernCalifornia. However,ecosystemdifferencesdoexistbetweentheSierraNevadaMountainsandthe regionswhereCascadesfrogsarefound.Thesedifferencesprovideadifferentsetofdesign challengesforcreatingsuccessfulmanagementplans.AlthoughtheCascadesfrogisclosely relatedtotheMLYF,eachspecieshasspecificanddifferentecologicalrequirements.For example,CascadesfrogscanbreedinawidervarietyofhabitatsthantheMLYFbecause Cascadesfrogsdonotrequireoverwinteringhabitatsfortadpoles.Additionally,theKlamath regionholdsthehighestdiversityofsubalpineamphibianspeciesinthewesternUnitedStates, withthreespecieslistedasCaliforniaspeciesofspecialconcern.Weencouragemanagerstouse theresultsofthisstudyasatoolfordecisionmakingthatwillbenefitnotonlyCascadesfrogs andothernativespecies,butrecreationalfisheriesaswell.Further,Cascadesfrogpopulations foundintheLassenandShastaregionsofCaliforniamayalsohavedifferentecological dynamicsthanthepopulationstudiedhereintheKlamathMountains.Thesepopulationsneed furtherstudytoreflectthesepotentialregionaldifferences.However,acrosstheirrangein California,Cascadesfrogshavethesamegeneralannuallifehistorypatternsandexistinhigh elevationsnowdrivensystems.Ourobservationsprovideimportantinsightsbasedonadetailed longtermstudy.Thefollowingrecommendationscouldbeconsideredwhendesigning managementplansinareaswithCascadesfrogspresent. • ManagementdecisionsforCascadesfrogsneedtobeaddressedatscalesrelevantto wholepopulations.ThisstudydemonstratedCascadesfrogpopulationscanoperateover alargearea,withindividualsmovingbetweenmultiplehabitattypesforspecificseasonal resources.WesuggestthatareascontainingcontinuousCascadesfroghabitats,or habitatsisolatedbyonekilometerormoreshouldbeconsideredappropriateforassessing habitatquality,populationdemographics,andpotentialnegativeeffectsfromfisheries management.Basedonourstudy,wefoundtheCalWaterswatershedscalewaspossibly toolargeofanareatomakeinformedmanagementdecisionsonthisspecies.For example,wefoundtwodistinctpopulationsofCascadesfrogsoperatingwithintheDeep creekdrainageadefinedCalWatersdrainage.Thesepopulationsoccurredintwodistinct subbasinswithinDeepcreekdrainage(Figure2). • WhenestablishingbasininventoriesofCascadesfrogpopulations,wesuggestsurveys shouldbeconductedwhenconditionsaremostfavorablefordetectingallpotentialage classes.Thisstudyfoundthemostfavorableconditionsfordetectingallpotentialage classesduringthemidsummermonths.Detectingallageclasseswillallowmanagersto identifytheminimumnumberofgenerationspresentinagivenpopulation,includingthe

61 Cascades Frog Ecology in California

population’sstructure.Missingagecohortscouldbeadirectsignofhabitatbottlenecks, weatherinducedimpacts,astressedpopulationordisease.Obtaininglength measurementsfromindividualanimalswillhelpmanagersdetermineapopulation’s structurebeforemakinginformedmanagementorrestorationdecisions.Inaddition,we foundeggmasssurveysarearapidandeasytoolformonitoringeffectivepopulation sizesofCascadesfrogsduringbreedingseasons.Determiningbreedinglocationsand effectivepopulationsizesallowsmanagerstoaddressandbetterunderstandbothspatial attributesandreproductiveoutputofpopulations. • Wesuggestinventoriesofbasinsshouldincorporatemorerigorousprotocolsfor detectingnaturalamphibianpredators,mostspecificallysnakes( Thamnophis spp. ). Basedonoursnakedietanddistributionresults,wesuggestthatfindingcommongarter snakesinabasincouldreflectahealthyamphibiancommunity.Alternatively,finding manyaquaticgartersnakesinareaswithfishcouldindicatealteredfoodwebdynamics andincreasedpredationpressureonamphibians(seePopeetal. in review ).Accounting forpredatorswillgivemanagersbetterinsightonlocalfoodwebdynamicsandpossible stressorstofrogpopulationdynamics. • Inadditiontodetectingamphibianpredators,basininventoriescouldalsoincludeother sensitiveamphibians(Californiaspeciesofspecialconcern)thatarepalatabletofish, especiallythetailedfrog( Ascaphus truei )andlongtoedsalamanders( Ambystoma macrodactylum ).Thiswillrequireaddingadditionalsurveymethods(i.e.nightsurveysof lenticandlotichabitats)moresuitedtodetectingspecieswithlifehistoriesthatdiffer fromCascadesfrogs. • Basedonourfindings,managersshouldconsiderallsurfacewaterinbasinswhere Cascadesfrogsarefoundaspotentialhabitat,thisincludesspringsourceswhichwe foundtobeimportantforbothreproductionandwinteringhabitats.Sinceintroduced fisheshavecommonlyinvadedaquaticresourcesoutsideofdirectlymanaged waterbodies(especiallystreams),managersshoulddeterminethefullextentoffish distributioninbasinsbeforemakinginformedmanagementdecisions.Additionally, habitatssurroundingthosewithintroducedfishshouldbeidentifiedbasedona hydrologicalgradient(seasonaltoperennial)andassessedaspotentialhabitatforspecific lifehistorycomponents(e.g.breeding,summer,andwinterhabitats)beforemaking informeddecisionsonfisheriesmanagement. • Wherefeasible,isolatedhabitatpatcheswithbothCascadesfrogsandintroducedfishes shouldreceiveincreasedprotectionthroughcompleteeradicationoffishpopulations. Specifically,wesuggestbasinscontainingonetofewlenticwaterbodiesseparatedbyone kilometerormorefromthenearestperennialCascadesfrogbreedinghabitatshould receivethistypeofrestorationandincreasedprotection. • Maintaininggeneflowbetweenanimalpopulationsshouldbeanimportantconsideration formanagers.ThisstudyshowedthatCascadesfrogsusemountainpassesasdispersal corridors,sowerecommendthataquatichabitatsclosestinlinkingadjacentbasinsshould haveincreasedprotectionandshouldbeahighrestorationpriorityformaintaininggene flowamongCascadesfrogpopulations.

62 Cascades Frog Ecology in California

• Highelevationwaterbodies(withCascadesfrogspresentornearby)greaterthan2,100 metersinelevationshouldalsoreceiveincreasedprotectionthroughcompleteeradication ofintroducedtroutwherefeasible.Thisstudyshowedthatahighelevationbreedingsite maynotproducesuccessfulCascadesfrogoffspringinheavysnowyears,butwere showntohavesuccessfulbreedingrecruitmentofCascadesfrogsduringadroughtyear. SinceCascadesfrogsarelonglived(>7years),habitatswithintermittentreproductive successcanstillprovideimportantreproductivepotentialinfavorableweatheryears.In addition,thesehighelevationsitesusuallyhavereducedstructuralshorelinecomplexities fromthelackofriparianvegetation.Thislackofcomplexitymayposeasgreater predationriskbyvisualtroutpredatorsontadpolesduringkeyreproductionyears. • AselectivefisheradicationintherangeofCascadesfrogscouldfurthertheconservation ofthisfrogspeciesbybufferinglossesfrompotentialoutbreaksofinfectiousdiseases. Onesuchdiseaseischytridiomycosiscausedby Batrachochytrium dendrobatidis (BD). BDhasrecentlybeendetectedinsomeCascadesfrogpopulationswithintheTrinityAlps Wilderness(K.Popepers.comm.)andshouldbeofgreatconcerntomanagers.This diseaseinparticularhasbeennotedtoswiftlydecreaseorexterminatepreviouslyrobust populationsofamphibiansworldwideandwillremainamajorchallengeinmanaging localnativeamphibians.IntheSierraNevada,bothintroducedtroutandBDhavebeen identifiedasmajorcausestoextirpatinghistoricallyrobustpopulationsofMLYF (Rachowiczetal.2006).

REFERENCES Adams,S.B.,C.A.Frissell,andB.E.Rieman.2001.Geographyofinvasioninmountain streams:consequencesofheadwaterlakefishintroductions.Ecosystems4:296307. Bailey,L.L.2004.Evaluatingelastomermarkingandphotoidentificationmethodsforterrestrial salamanders:markingeffectsandobserverbias.HerpetologicalReview35:3841. Bahls,P.1992.Thestatusoffishpopulationsandmanagementofhighmountainlakesinthe westernUnitedStates.NorthwestScience66:183193. Beyer,H.L.2004.Hawth'sAnalysisToolsforArcGIS.Availableat: http://www.spatialecology.com/htools. Bosch,J.,P.A.Rincón,L.Boyero,andI.MartinezSolano.2006.Effectsofintroduced salmonidsonamontanepopulationofIberianfrogs.ConservationBiology20:180189. Bradford,D.F.1983.Winterkill,oxygenrelations,andenergymetabolismofasubmerged dormantamphibian, Rana muscosa .Ecology64:11711183. Bradford,D.F.1989.AllotopicdistributionofnativefrogsandintroducedfishesinhighSierra NevadalakesofCalifornia:implicationofthenegativeeffectoffishintroductions. Copeia1989:775778. Briggs,J.L.,andR.M.Storm.1970.GrowthandpopulationstructureoftheCascadefrog, Rana cascadae ,Slater.Herpetologica26:283300. Briggs,J.L.1976.BreedingbiologyoftheCascadesfrog, Rana cascadae .Herpetological Review12:75.

63 Cascades Frog Ecology in California

Briggs,J.L.1987.BreedingbiologyoftheCascadesfrog, Rana cascadae ,withcomparisons to R. aurora and R. pretiosa .Copeia:241245. Brown,W.S.,andW.S.Parker.1976.Aventralscaleclippingsystemforpermanentlymarking snakes(Reptilia,Serpentes).JournalofHerpetology10:247249. Brown,C.1997.Habitatstructureandoccupancypatternsofthemontanefrog, Rana cascadae , intheCascadeRange,Oregon,atmultiplescales:Implicationsforpopulationdynamics inpatchylandscapes.[Thesis],OregonStateUniversity,Corvallis,Oregon.161pp. Bull,E.L.2003.DietandpreyavailabilityofColumbiaSpottedfrogsinnortheasternOregon. NorthwestScience77:349356. Bury,R.B.2006.Naturalhistory,fieldecology,conservationbiologyandwildlifemanagement: timetoconnectthedots.HerpetologicalConservationandBiology1:5661. Bury,R.B.,andD.J.Major.1997.Integratedsamplingforamphibiancommunitiesinmontane habitats. In :OlsonD.H.,W.P.Leonard,andR.B.Bury(editors).Samplingamphibians inlentichabitats.p7582.Olympia(WA):NorthwestFauna4. CCSS.2007.Historicalcoursedata.CaliforniaResourcesAgency,DepartmentofWater Resources,DivisionofFloodManagement,CaliforniaCooperativeSnowSurveys.Data onlineat:http://cdec.water.ca.gov/snow/. Cleveland,W.S.,andS.J.Devlin.1988.Locallyweightedregression:anapproachtoregression analysisbylocalfitting.JournaloftheAmericanStatisticalAssociation83:596610. Crouch,W.B.,andW.C.Paton.2000.Usingeggmasscountstomonitorwoodfrog populations.WildlifeSocietyBulletin28:895901. Crump,M.L.,andN.J.J.Scott.1994.Visualencountersurveys, in :Heyer,W.R.,M.A. Donnelly,R. W.McDiarmid,L.A.C.Hayek,andM.S.Foster(editors).Measuring andMonitoringBiologicalDiversity:StandardMethodsforAmphibians.p.8491. SmithsonianInstitutionPress,WashingtonD.C. Davidson,C.,B.H.Shaffer,andM.R.Jennings.2002.Spatialtestsofthepesticidedrift,habitat destruction,UVB,andclimatechangehypothesesforCaliforniaamphibiandeclines. ConservationBiology16:15881601. Davis,A.B.,andP.A.Verrell.2005.DemographyandreproductiveecologyoftheColumbia spottedfrog( Rana luteiventris )acrossthePalouse.Can.J.Zool.83:702711. Dolloff,A.,J.Kershner,andR.Thurow.1996.Underwaterobservation. In: B.R.Murphy,and D.W.Willis(editors).Fisheriestechniques,2 nd edition.p.533554AmericanFisheries Society,Bethesda,Maryland. ESRI2004.ArcGISv.9.0.EnvironmentalSystemsResearchInstituteInc.(ESRI),Redlands, CA,USA. Fellers,G.M.,andC.A.Drost.1993.DisappearanceoftheCascadesfrog, Rana cascadae atthe southernendofitsrange,California,USA.BiologicalConservation65:177181. Fellers,G.M.1998.19961997AquaticamphibiansurveysLassenNationalForest.Biological ResourcesDivision,USGS,PointReyesNationalSeashore,PointReyes,CA94956. SubmittedDecember1997.RevisedDecember1998.27pp.UnpublishedReport.

64 Cascades Frog Ecology in California

FellersG.M.,K.L.Pope,J.E.Stead,M.S.Koo,andH.H.Welsh,Jr.2008.TurningPopulation TrendMonitoringintoActiveConservation:CanwesavetheCascadesFroginthe LassenregionofCalifornia?HerpetologicalConservationandBiology(in press ). Ferner,J.W.2007.Areviewofmarkingandindividualrecognitiontechniquesforamphibians andreptiles.SocietyfortheStudyofAmphibiansandReptiles.72pp. Ferlatte,W.J.1974.AfloraoftheTrinityAlpsofnorthernCalifornia.UniversityofCalifornia, BerkeleyandLosAngeles.206pp. Finlay,J.C.,andV.T.Vredenburg.2007.Introducedtroutsevertrophicconnectionsin watersheds:consequencesforadecliningamphibian.Ecology88:21872198. Fitch,H.S.1987.Collectingandlifehistorytechniques, in :Seigel,R.A.,J.T.Collins,andS.S. Novak(editors).Snakes:EcologyandEvolutionaryBiology.MacmillanPublishers,New York,143164p. Garwood,J.M.,andH.H.WelshJr.2005.NaturalHistoryNotes: Rana cascadae (Cascades frog).Predation.HerpetologicalReview36:165 Garwood,J.M.2006.NaturalHistoryNotes: Rana cascadae (Cascadesfrog).Tadpole Predation.HerpetologicalReview37:76. Garwood,J.M.,C.A.Wheeler,R.M.Bourque,M.L.Larson,andH.H.WelshJr.2007.Egg massdriftIncreasesvulnerabilityduringearlylifehistorystagesofCascadesfrogs( Rana cascadae ).NorthwesternNaturalist88:9597. Garwood,J.M.,andC.A.Wheeler.2007. Rana cascadae (Cascadesfrog)Predation. HerpetologicalReview38:193194. Gillespie,G.R.,andA.I.Robertson.2001.Theroleofintroducedtroutinthedeclineofthe spottedtreefrog( Litoria spenceri )insoutheasternAustralia.BiologicalConservation 100:187198. Gosner,K.L.1960.Asimplifiedtableforstaginganuranembryosandlarvaewithnoteson identification.Herpetologica16:183190. Gregory,P.,andL.A.Isaac.2004.FoodhabitsofthegrasssnakeinsoutheasternEngland:is Natrix natrix ageneralistpredator?JournalofHerpetology38:8895. HankinD.J.,andG.H.Reeves.1988.Estimatingtotalfishabundanceandtotalhabitatareain smallstreamsbasedonvisualestimationmethods.CanadianJournalofFisheriesand AquaticSciences45:834844. Hastie,T.,andR.Tibshirani.1991.Generalizedadditivemodels.ChapmanandHall,NewYork, NewYork,USA. Hintze,J.2004.NCSSandPASS.NumberCruncherStatisticalSystems.Kaysville,Utah. http//.www.ncss.com Jennings,M.R.,andM.P.Hayes.1994.Amphibianandreptilespeciesofspecialconcernin California.CaliforniaDepartmentofFishandGame,Sacramento,California.255pp. Jennings,W.B.,D.F.Bradford,andD.F.Johnson.1992.Dependenceofthegartersnake Thamnophis elegans onamphibiansintheSierraNevadaofCalifornia.Journalof Herpetology26:503505.

65 Cascades Frog Ecology in California

Kats,L.B.,andR.P.Ferrer.2003.Alienpredatorsandamphibiandeclines.Diversityand Distributions9:99110. Keck,M.B.1994.TestfordetrimentaleffectsofPITtagsinneonatalsnakes.Copeia1:226228. Kephart,D.G.1982.Microgeographicvariationinthedietsofgartersnakes.Oecologia52:287 291. Knapp,R.A.1996.NonnativetroutinnaturallakesoftheSierraNevada:ananalysisoftheir distributionandimpactsonnativeaquaticbiota.in :SierraNevadaEcosystemProject: finalreporttoCongress.VolumeIII.p.363407.CentersforWaterandWildland Resources,UniversityofCalifornia,Davis,California,USA. Knapp,R.A.,D.M.Boiano,andV.T.Vredenburg.2007.Removalofnonnativefishresultsin populationexpansionofadecliningamphibian(mountainyellowleggedfrog, Rana muscosa ).BiologicalConservation135:1120. Koo,M.S.,J.V.Vindum,andM.McFarland.2004.Resultsof02CS11050650029,The2003 CaliforniaAcademyofSciencesSurvey:AmphibiansandreptilesoftheLassenNational Forest.CaliforniaAcademyofSciences.175pp.UnpublishedReport. Lind,A.J.,andH.H.WelshJr.1994.Ontogeneticchangesinforagingbehaviorandhabitatuse bytheOregongartersnake, Thamnophis atratus hydrophilus .AnimalBehaviour48: 12611273. Lind,A.J.,H.H.Welsh,andD.A.Tallmon.2005.Gartersnakepopulationdynamicsfroma16 yearstudy:considerationsforecologicalmonitoring.EcologicalApplications15:294 303. Lipman,P.W.1964.StructureandoriginofanultramaficplutonintheKlamathMountains, California.Am.Jour.ofSci.262:199222. Marzluff,J.M.,Millspaugh,J.J.,andP.Hurvitz.2004.Relatingresourcestoaprobabilistic measureofspaceuse:ForestfragmentsandSteller'sJays.Ecology85:14111427. Matthews,K.R.,andK.L.Pope.1999.Atelemetricstudyofthemovementpatternsandhabitat useofRana muscosa ,themountainyellowleggedfrog,inahighelevationbasinin KingsCanyonNationalPark,California.J.Herpetol.33:615624. Matthews,K.R.,R.A.Knapp,andK.L.Pope.2002.Gartersnakedistributionsinhigh elevationaquaticecosystems:istherealinkwithdecliningamphibianpopulationsand nonnativetroutintroductions?JournalofHerpetology36:1622. Milliron,C.2005.CaliforniaDepartmentofFishandGamemanagementofnativefaunaand introducedfisheriesinSierraNevadalakes.Abstract from :DecliningAmphibians PopulationsTaskForce,Cal/NevadaWorkingGroupannualmeeting,January1314, 2005,BerkeleyCA, Mills,L.S.,andF.W.Allendorf.1996.TheOneMigrantpergenerationruleinconservation andmanagement.ConservationBiology10:15091518. Millspaugh,J.J.,R.M.Nielson,L.McDonald,J.M.Marzluff,R.A.Gitzen,C.D.Rittenhouse, M.W.Hubbard,andS.L.Sheriff.2006.Analysisofresourceselectionusingutilization distributions.JournalofWildlifeManagement70:384395.

66 Cascades Frog Ecology in California

Monnet,J.M.,andM.I.Cherry.2002.Sexualsizedimorphisminanurans.R.Soc.Lond.B. 269:23012307. Monsen,K.J.,andM.J.Blouin.2003.Geneticstructureinamontaneranidfrog:restrictedgene flowandnuclearmitochondrialdiscordance.MolecularEcology:32753286. Moyle,P.B.2002.InlandfishesofCalifornia,revisedandexpanded.UniversityofCalifornia Press,Berkeley,CA.502pp. Muths,E.2003.Aradiotransmitterbeltforsmallranidfrogs.HerpetologicalReview34:345 348. Nauwelaerts,S.,J.Coeck,andP.Aerts.2000.Visibleimplantelastomersasamethodfor markingadultanurans.HerpetologicalReview31:154155. Nussbaum,R.A.,E.D.BrodieJr.,andR.M.Storm.1983.AmphibiansandreptilesofthePacific Northwest.1stedition.UniversityofIdahoPress,Moscow,Idaho.332pp. Olson,D.H.2005.Cascadesfrog: Rana cascadae (Slater,1939). In :JonesL.C.,W.P.Leonard, andD.H.Olson(editors).AmphibiansofthePacificNorthwest.p.214217.Seattle, WA:SeattleAudubonSociety. Ouellet,M.2000.Amphibiandeformities:currentstateofknowledge. In :Sparling,D.W.,C.A. Bishop,andG.Linder(editors).EcotoxicologyofAmphibiansandReptiles.p.617661. SocietyforEnvironmentalToxicologyandChemistry,Pensacola,FL.USA. Pearl,C.A.,andM.J.Adams.2005.TheCascadesfrog( Rana cascadae ). InM.J.Lannoo (editor).StatusandconservationofU.S.amphibians.p.538540.UniversityofCalifornia Press,Berkeley,California,USA. Petranka,J.W.,C.K.Smith,andA.F.Scott.2004.Identifyingtheminimaldemographicunit formonitoringpondbreedingamphibians.EcologicalApplications14:10651078. Pilliod,D.S.,andC.R.Peterson.2001.Localandlandscapeeffectsofintroducedtrouton amphibiansinhistoricallyfishlesswatersheds.Ecosystems4:322333. Pilliod,D.S.,C.R.Peterson,andP.I.Ritson.2002.SeasonalmigrationofColumbiaSpotted frogs(Rana luteiventris )amongcomplementaryresourcesinahighmountainbasin. CanadianJournalofZoology80:18491862. Pope,K.L.,andK.M.Matthews.2001.Movementecologyandseasonaldistributionof MountainYellowleggedfrogs, Rana muscosa ,inahighelevationSierraNevadabasin. Copeia:787793. Pope,K.L.,J.M.Garwood,H.H.WelshJr.,andS.P.Lawler.Introducedtroutindirectlyimpact nativeamphibiansviafacilitationofasharednativepredator.Unpublishedmanuscript. (in review ). Pope,S.E.,L.Fahrig,andH.G.Merriam.2000.Landscapecomplementationand metapopulationeffectsonleopardfrogpopulations.Ecology81:24982508. Rachowicz,L.J.,Knapp,R.A.,Morgan,J.A.T.,Stice,M.J.,Vredenburg,V.T.,Parker,J.M.& Briggs,C.J.2006.Emerginginfectiousdiseaseasaproximatecauseofamphibianmass mortality.Ecology87:16711683.

67 Cascades Frog Ecology in California

Resetarits,W.J.1991.Ecologicalinteractionsamongpredatorsinexperimentalstream communities.Ecology72:17821793 Richards,S.J.,U.Sinsch,andR.Alford.1994.Radiotracking. In W.R.Heyer,M.A.Donnelly, R.W.McDiarmid,L.C.Heyek,andM.S.Foster(editors).MeasuringandMonitoring BiologicalDiversity:StandardMethodsforAmphibians,p.155158.Smithsonian InstitutionPress,Washington,DC. Rossman,D.A.,N.B.Ford,andR.A.Seigel.1996.TheGarterSnakes:EvolutionandEcology. UniversityofOklahomaPress,Oklahoma. Sharp,R.P.1960.PleistoceneglaciationintheTrinityAlpsofnorthernCalifornia.Am.Jour.of Sci.258:305340. Simons,L.H.1998. Rana cascadae (Cascadesfrog):Predation.HerpetologicalReview29:232. Sinsch,U.1990.Migrationandorientationinanuranpopulations.Ethology,Ecology,and Evolution2:6579. Skinner,C.N.,A.H.Taylor,andJ.K.Agee.2006.KlamathMountainsbioregion.In:Firein California’sEcosystems.EditedbyN.G.Sugihara,J.W.vanWagtendonk,J.Fites Kaufman,K.E.Shaffer,A.E.Thode.UniversityofCaliforniaPress,Berkeley.p.170 194. Slater,J.R.1939.DescriptionandlifehistoryofanewranafromWashington.Herpetologica1: 145149. Smith,A.M.,andD.M.Green.2005.Dispersalandthemetapopulationparadigminamphibian ecologyandconservation:areallamphibianpopulationsmetapopulations?Ecography 28:110128. SPlus.1999.User’smanual,version2000.DataAnalysisProductsDivision,MathSoft,Seattle Washington,USA. Stead,J.E.,H.H.WelshJr.,andK.L.Pope.2005.Censusofamphibiansandfishesinlentic habitatsofLassenVolcanicNationalPark:areporttothenationalparkservice.LAVO 00717,USDAForestService,Arcata,California.75pp. Stead,J.E.,andK.L.Pope.2007.CascadesfrogBreedingandAquaticLeechesintheMt. LassenRegion,California.FinalReport:SubmittedtotheUSDAForestService,Lassen NationalForest.19pp. St.John,A.2002.ReptilesoftheNorthwest.LonePinePublishing,Renton,WA.272pp. Sype,W.E.1975.Breedinghabits,embryonicthermalrequirementsandembryonicandlarval developmentoftheCascadefrog, Rana cascadae (Slater1939)[thesis].Corvallis,OR: OregonStateUniversity.113pp. ThomsC.,C.C.Corkran,andD.H.Olson.1997.Basicamphibiansurveyforinventoryand monitoringinlentichabitats. In :OlsonD.H.,W.P.Leonard,R.B.Bury(editors). Samplingamphibiansinlentichabitats.Olympia(WA):NorthwestFauna4.p.3546. USDAForestService.1998.RegionalForesterSensitiveSpeciesList,Region5,unpublished report.

68 Cascades Frog Ecology in California

Vredenburg,V.T.2004.Reversingintroducedspecieseffects:experimentalremovalof introducedfishleadstorapidrecoveryofadecliningfrog.ProceedingsoftheNational AcademyofSciences101:76467650. Vredenburg,V.T.,G.M.Fellers,andC.Davidson.2005.Themountainyellowleggedfrog (Rana muscosa ).p.563566 in Lannoo,M.J.(editor).StatusandconservationofU.S. amphibians.UniversityofCaliforniaPress,Berkeley,California,USA. Wahbe,T.R.,F.L.Bunnell,andR.B.Bury.2004.Terrestrialmovementsofjuvenileandadult tailedfrogsinrelationtotimberharvestincoastalBritishColumbia.CanadianJournalof ForestryResearch34:24552466. Wheeler,C.A.2007.TemporalbreedingpatternsandmatingstrategyoftheFoothillyellow leggedfrog( Rana boylii ).[Thesis]HumboldtStateUniversity,Arcata,CA.52pp. Welsh,H.H.Jr.,andA.J.Lind.2000.Evidenceoflingualluringbyanaquaticsnake.Journalof Herpetology34:6774. Welsh,H.H.Jr.,K.L.Pope,andD.Boiano.2006.Subalpineamphibiandistributionsrelatedto speciespalatabilitytononnativesalmonidsintheKlamathMountainsofnorthern California.DiversityandDistributions12:298309. Worton,B.J.1989.Kernelmethodsforestimatingtheutilizationdistributioninhomerange studies.Ecology70:164168. Zar,J.H.1999.BiostatisticalAnalysis,Fourthedition.PrenticeHall,Inc.,UpperSaddleRiver, NJ,USA. Zavaleta,E.S.,R.J.Hobbs,andH.A.Mooney.2001.Viewinginvasivespeciesremovalina wholeecosystemcontext.TrendsinEcologyandEvolution16:454459.

69 Cascades Frog Ecology in California

APPENDICES Appendix A. InclusivedatesbycensusforCascadesfrogvisualencountermarkrecapturesurveys includingthenumberofnewlymarkedanimalstotaledbycensusfromyears2003to2007inupperDeep CreekBasin,TrinityAlpsWilderness,California.Censusdurationsvaried,withspringandfallhavingthe shortesttimeintervals. #NewlyMarked #ofRecaptured Census StartDate EndDate R.cascadae R.cascadae 1 4Jun2003 5Jun2003 26 0 2 10Jun2003 15Jun2003 185 3 3 19Jun2003 26Jun2003 161 48 4 30Jun2003 10Jul2003 193 98 5 15Jul2003 25Jul2003 148 137 6 28Jul2003 8Aug2003 108 173 7 11Aug2003 20Aug2003 67 177 8 20Aug2003 15Sep2003 32 161 9 18Sep2003 22Sep2003 16 64 10 2Oct2003 23Oct2003 10 79 11 25May2004 26May2004 4 20 12 5Jun2004 8Jun2004 12 44 13 17Jun2004 22Jun2004 60 120 14 25Jun2004 5Jul2004 67 211 15 9Jul2004 17Jul2004 60 215 16 22Jul2004 28Jul2004 28 187 17 2Aug2004 8Aug2004 41 188 18 8Aug2004 20Aug2004 16 159 19 25Aug2004 5Sep2004 15 179 20 8Sep2004 26Sep2004 5 140 21 1Oct2004 10Oct2004 5 93 22 30May2005 31May2005 1 24 23 11Jun2005 14Jun2005 4 40 24 22Jun2005 24Jun2005 10 60 25 29Jun2005 3Jul2005 41 121 26 4Jul2005 21Jul2005 161 178 27 27Jul2005 2Aug2005 72 165 28 9Aug2005 16Aug2005 36 216 29 22Aug2005 1Sep2005 25 171 30 6Sep2005 14Sep2005 17 183 31 20Sep2005 25Sep2005 36 119 32 10Oct2005 12Oct2005 4 80 33 31May2006 31May2006 0 21 34 14Jun2006 28Jun2006 0 27 35 10Jul2006 13Jul2006 0 83 36 17Jul2006 29Jul2006 4 130 37 9Aug2006 23Aug2006 4 132 38 6Sep2006 10Sep2006 8 136 39 6Oct2006 10Oct2006 0 37 40 28Apr2007 29Apr2007 8 32 41 8May2007 20May2007 1 19 42 27May2007 9Jun2007 24 133 43 17Jun2007 22Jun2007 23 38 44 2Jul2007 8Jul2007 20 63

70 Cascades Frog Ecology in California Appendix B. SummaryofallCascadesfrogcapturesbyyear,site,andcensusperiodfrom2003to2007inEchoLakebasin,TrinityAlpsWilderness,California. Dashesindicateasitewasnotsurveyedduringaspecificcensus.

2003 2004 2005 2006 2007 Census: 1 2 3 4 5 6 7 8 9 10 1112131415161718192021 22232425262 7 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Site Echo Lake Basin Totals BLB 0021000100 00523000010 00010000000 0010000 ─ ─ ─ 1 ─ 18 CAS 0163837141412705 38993345834 115541571146 0350455 68022 292 CLM 0001216126500 00517104126550 00189571001 0076720 015 ─ ─ 175 DPM 15 55 100 91 48 28 33 23 1 8 21 37 37 27 20 21 21 18 24 23 20 21 26 24 23 15 16 1114 23 4 22 21 7 6 5 8 14 12 34 2 10 8 4 1001 ECH 11 19 22 10 34 119 56 62 38 50 0 0 9 19 59 47 41 48 41 36 23 0 3 3 12 36 33 43 3228 8 10 0 1 7 464636 7 0 0 45 9 10 1159 EVM 0 1 1 22282817 8 1 0 0 0 7 2928223419 3214 6 0 0 1 5 14 12 2016 10 11 4 0 0 5 4 4 7 0 0 ─ 4 ─ 2 416 GSP 0 1 017101922196 4 0 3131013108 9 7 1 4 0 0 010116 9 4 4 2 0 0 2 6 0 4 2 4 0 0 1 ─ 1 242 LVM 0 1 3 282216 9 16 8 5 0 1 9 2019 2320 7 17 20 11 0 0 6 8 13 202116 12 13 9 0 2 10 10 14 12 2 0 0 4 2 11 440 MOS 04185623103 0024131441371220 056124491994 0201212 0 ─ 1 ─ ─ 203 MVM 0 0 17 14 17 6 11 8 0 5 0 1 19 37 34 25 12 17 17 15 9 0 7 10 12 35 25 21 17 29 17 5 0 3 1 4 7 14 1 0 ─ 3 ─ ─ 475 PTH 0 0 0 2 1115 8 810 6 0 313 6 7 1110 8 4 2 4 2 2 4 51533392323276 0 0 5 4 017 1 0 0 13 12 13 372 UVM 0 0 3 5 15 8 18 17 8 1 0 0 8 17 10 12 14 5 12 7 10 0 0 5 16 262915 232112 10 0 0 9 9 7 7 4 0 4 5 ─ ─ 372 SMP 0 0 4 254629 8 15 6 7 0 0 4 57201716 7 6 7 3 1 0 3 8 2532291517 7 5 0 7 1938 29 18 0 0 0 34 ─ 2 566 VMC ─ ─ ─ 18966100 001911846242 00038754532 0004430 0 ─ ─ ─ ─ 135 EDN ────────── ──── 114710642 0018221367600 0023060 0 ─ 5 ─ ─ 123 DPC ─ ─ ─ ─ 1 ─ ─ ─ ─ ─ ─ ─ ─ 1 1 ─ 9 3 1 ─ ─ ─ ─ 1 ─ 5 ─ 4 1 ─── ─────── ───── 27 VAG ────────── ─────────── ─────── 1 1 1 ─ ─────── ───── 3 BBL ────────── ─────────── ─────── 0 0 0 ─ ─────── ───── 0 ELV* ─ ─ ─ 3 1 10 5 1 ─ ─ ─ ─ ─ 1 5 2 1 ─ ─ ─ ─ ─ ─ ─ ─ 2 1 2 ──── ─────── ──── 1 35 Echo Lake Basin Total: 6054 Peripheral Sites Outside Of Echo Lake Basin

RMM 0011122121 03440200010 00020011200 ─ ─ ─ ─ ─ ─ ─ ─ 5 ─ ─ ─ 35 BBD ────────── ─────────── ────── 1 ─ 3 ─ ─ ─ ─ ─ ─ ─ 1 ─ ─ ─ ─ ─ 2 7 ATL ────────── ── 13 ─ 7 ─ ─ ─ ─ ─ ─ ─ ─ ─ 24 ─ ─ ─ ─ ─ 27 ─ ─────── ───── 71 FOX ────────── ─────────── ─────── 2 ─── ─────── ───── 2 TAL ────────── ─────────── ─────── 8 ─── ─────── ───── 8 BOB ────────── ─── 39 ─────── ──── 76 ─ ─ 5 ─── ─────── ── 6 8 10 144 DAR ────────── ─────────── ──── 22 ─ ─ 6 ─── ─────── ───── 28 DEE ─ ─ ─ ─ 1 ───── ─────────── ─────────── ─────── ───── 1 USL ────────── ─────────── ──── 26 ─ ─ 20 ─── ─────── ───── 46 USC ────────── ─────────── ──── 16 ─ 3 17 ─── ─────── ───── 36 MSM ────────── ─────────── ──── 42 ─ ─ ─ ─ 10 ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ 12 11 17 92 SIC ────────── ────── 3 ──── ─────────── ─────── ───── 3 GDP ────────── ─────────── ──── 20 ─ 1 7 ─── ─────── ───── 28 SSL ────────── ─── 30 ─────── ──── 75 ────── ─────── ── 7 6 4 122 LSI ─ 91 ──────── ─────────── ─────────── ─────── ── 2 2 4 8 Peripheral Site Total: 631 Totals: 26 188 209 291 280 314 216 193 80 95 0 24 56 180 347 275 215 229 175 1 94 145 98 25 44 70 162 521 237 252 248 204 155 84 21 27 83 134 136 145 38 40 20 157 61 83 6685 *Indicatesincidentalcapturesoutsideofestablishedhabitatpatches.

71 Cascades Frog Ecology in California

Appendix C.Summarytableofattributes,movement,andfateof51Cascadesfrogsmonitoredbyradiotelemetryforyears2003and2004inEchoLake basin,TrinityAlpsWilderness,California.

Radio Tracking Dist Maximum Weight ID. Sex SUL Weight DatesMonitored Duration Fixes Sum Displacement Fate (g) a b %(g) (Days) (m) (m)

1 F 56.2 16.8 5.0 13Aug1Sep03 19 12 210 141 Radiobatteryexpired,couldnotlocate 2 F 73.7 42.4 2.4 17Aug3Oct03 47 13 252 179 Radiobatteryexpired,couldnotlocate 3 M 57.0 19.7 5.2 6Jul1Sep03 57 33 518 306 Suspect Thamnophis spp.predation 4 M 57.7 18.7 4.5 21Jun22Sep03 93 45 263 117 Radiobatteryexpired,couldnotlocate 5 M 59.3 21.5 4.7 24Jun22Aug03 59 35 1171 260 Released,abrasiononstomach 6 F 65.3 32.5 3.1 21Jun12Aug03 52 25 747 592 Released,abrasiononhipandstomach 7 F 53.5 15.9 5.3 20Jun12Aug03 53 31 204 70 Released,abrasiononurostyleandstomach 8 M 57.6 19.5 4.4 24Jun5Aug03 42 30 829 408 Released,abrasiononstomach 9 M 56.5 21.7 3.9 20Jun12Sep03 84 37 1342 255 Radiobatteryexpired,couldnotlocate 10 F 61.2 24.5 4.2 23Aug15Sep03 23 9 409 337 Predation: ThamnophissirtalisLength:70cm 11 F 60.0 27.7 3.7 23Jun4Aug03 42 26 348 261 Released,abrasionondorsolateralfolds 12 M 57.7 22.5 4.5 21Jun23Jun03 2 3 57 49 Predation: ThamnophisatratusLength:85cm 13 M 58.8 20.9 4.1 20Jun24Aug03 65 40 1132 373 Radiobatteryexpired,couldnotlocate 14 F 68.5 28.8 3.5 18Jul15Sep03 59 32 839 424 Released 15 F 70.9 30.7 3.3 18Jul5Aug03 18 14 316 88 Predation: ThamnophissirtalisLength:72cm 16 M 58.2 17.9 5.7 13Aug2Oct03 50 20 247 80 Released 17 F 59.7 22.3 4.6 24Jun17Jul03 23 13 221 161 Released,abrasionondorsolateralfolds 18 M 60.0 17 6.0 13Aug2Oct03 50 21 368 57 Released,abrasionondorsolateralfolds 19 F 64.1 28.6 3.6 8Jul4Aug03 27 16 263 66 Released,abrasiononsideandstomach 20 F 63.0 27.5 3.7 5Jul17Jul03 12 7 185 102 Radiobatteryexpired,couldnotlocate 21 M 58.9 20.9 3.9 18Jun3Jul04 15 8 19 11 Shedradio 22 M 60.1 21.3 3.8 19Jun29Jun04 10 7 347 253 Released 23 F 63.6 23 4.6 19Jun20Jun04 2 2 218 218 Shedradio 24 F 75.5 39.1 2.7 20Jun26Jun04 6 3 3 3 Shedradio 25 F 71.3 35.4 3.0 20Jun04 1 1 ─ ─ Shedradio 26 F 73.2 31 3.4 20Jun26Jun04 6 3 11 10 Shedradio 27 M 58.9 18.5 5.7 21Jun13Jul04 22 10 141 120 Radiobatteryexpired,couldnotlocate 28 M 63.9 21.9 4.8 21Jun2Jul04 11 6 73 36 Shedradio 29 F 74.7 36.6 2.9 21Jun3Oct04 104 38 416 271 Released 30 M 59.8 20.4 5.1 21Jun10Oct04 111 42 357 67 Shedradio,foundlaterandtrackedagain.

72 Cascades Frog Ecology in California

Appendix C. Continued.

Radio Tracking Dist Maximum Weight ID. Sex SUL Weight DatesMonitored Duration Fixes Sum Displacement Fate (g) a b %(g) (Days) (m) (m)

31 M 60.0 20.1 5.2 21Jun3Aug04 43 18 91 34 Released,abrasiononrightside 32 F 62.7 20.9 5.0 26Jun28Jul04 32 16 217 162 Predation: Thamnophissirtalis 33 F 77.9 35.5 3.0 27Jun10Oct04 105 43 830 191 Released 34 F 67.0 22.5 4.7 27Jun9Oct04 104 44 408 112 Released 33 F 77.9 35.5 3.0 27Jun10Oct04 105 43 830 191 Released 34 F 67.0 22.5 4.7 27Jun9Oct04 104 44 408 112 Released 35 F 66.9 27.9 3.6 29Jun10Oct04 103 39 259 59 Released 36 M 55.8 13.8 5.8 2Jul8Oct04 98 37 1009 326 Released 37 F 63.0 20.7 5.1 10Jul17Jul04 7 6 49 26 Predation: Thamnophisatratus 38 F 67.8 17.9 5.9 12Jul8Aug04 27 16 301 77 Predation: Thamnophissirtalis 39 M 56.2 17 6.2 12Jul17Jul04 5 5 18 10 Shedradio 40 F 62.7 19 5.5 13Jul27Aug04 45 22 138 63 Predation: ThamnophissirtalisLength:73cm 41 F 56.8 16.3 4.7 23Jul10Oct04 79 31 211 100 Released 42 M 61.1 19.8 5.3 23Jul10Oct04 79 30 272 136 Released 43 F 70.0 25.9 4.1 23Jul8Aug04 16 8 15 4 Mortalityofunknowncause,desiccated 44 F 76.5 39.8 2.7 26Jul3Oct04 69 27 264 132 Shedradio 45 M 59.3 18.5 5.4 28Jul3Aug04 7 2 10 10 Radiobatteryexpired,couldnotlocate 46 F 67.4 24.4 4.1 6Aug4Sep04 30 2 14 14 Released,abrasionondorsolateralfolds 47 M 58.8 16.6 6.3 18Aug4Sep04 17 6 15 5 Released 48 F 73.6 31.5 3.2 20Aug8Oct04 49 15 50 14 Released 49 F 73.8 37.9 2.6 4Sep10Oct04 36 13 140 71 Released 50 F 63.9 22.5 3.6 9Sep10Oct04 31 10 174 112 Released 51 M 56.6 17 6.2 19Jun04 1 1 ─ ─ Shedradio aCumulativedistancetraveledbyanindividualoveritsentiretrackingperiod. bDistanceseparatingthefurthesttwotelemetrylocationsforeachindividualrepresentingthemaximumdisplacement.

73 Cascades Frog Ecology in California

Appendix D. NontargetherpetofaunadetectedduringthisstudyinthesoutheastTrinityAlpsWildernessfrom2003to2007. Years Life Stages Species Occurrence Occurrence Notes Noted Observed Amphibia Caudata Long-toed Salamander Regionally 5 RareinSiligoandEchoLakebasin.Observed22and21larvaeatSMPin2003and2004respectively.Also Larvae Ambystoma rare observedonelarvaatBob’smeadow.Thisspecieshaveatwoyearlarvalstageatthesehighelevationsand Adult macrodactylum larvaecannotsurvivetometamorphosisatthispondbecauseitdriescompletelyeachfall.Observedonelarva Commonat in2006atEcholake;weassumebrooktrouttobeamajorpredatorherebecauselarvaearecommonlyfound onelocality inexposedopenwaterareasinBillyBeDamnedlakewhichisfishless.Larvaewerecommonannuallyfrom 2005to2007whenwesurveyedBillyBeDamnedLake;wenoticedtwodistinctlarvalageclassesatthissite. Adultsrarelyseenandareonlyonthesurfaceduringtheirexplosivebreedingseason(<1week)atfirstthaw. ObservedoneadultatSMPin2006. Rough-skinned Newt Regionally 3 ObservedonelargeadultfemaleonsixoccasionsinthesamepondatDPMforyears2003,2004and2007. Adult Taricha granulosa rare Weassumethisisasingleanimal.Seennowhereelsewhereweconductedsurveys. Ensatina Rarely 1 FoundoneadultonStuartsForktrail(BridgeCamp)~1kmbelowthemouthofDeepcreekon07Oct2007. Juvenile? Ensatina eschscholtzii detected Foundonepossiblejuvenileindividual(31mmSVL)inthestomachofa T.sirtalis atEcholakein2004:genetic Adult analysispending.Oursurveyprotocolwasnotdesignedtodetectthisterrestrialspecies .

Anura Coastal Tailed Frog Common 5 CommoninEchoLakebasinincoolspringfedperennialstreamslackingBrooktrout.Especiallycommonat Larvae Ascaphus truei EVM,LVM,CAS,upperDPMandoutletofGSP.ConductedamarkrecapturestudyofthisspeciesinEVMand Juvenile MVMfrom2004to2005(inpreparation).Appearstohaveaminimumofthreeandpossiblyfourlarvalcohorts Adult basedonsizeclassdistributions.FrogsalsocommonlyseeninthemainstreamatMiddleSiligoMeadowsin 2007.Collectedtissuesamples. Pacific Treefrog Common 5 CommoninEcholakeandSiligobasins.RareatRMM,Atlantis,andBillyBeDamnedlake.InEchoLake Egg Pseudacris regilla basin,thisspecieshadbreedingsitesatSMP,UVM,ECH,PTH,GSPandEDNeveryyear20032007.The Larvae largestbreedingaggregationswereatSMP,with>200ofadultbreederspresenteachspringdepositing Juvenile hundredsofeggmasses.Adultsrarelyseenafterbreedingandassumedtomigratetosurroundingtalusfields. Adult Collectedtissuesamples. Western Toad Regionally 2 BreedsatDeerlakebutisrareeverywhereelseweconductedsurveys.NoindividualsdetectedinSiligobasin Egg Bufo boreas rare andonlytwoinEchoLakebasin.Threeobservationsofsolitaryadultsin2003(RMM,LVMandDeerLake).In Adult addition,OneeggstringdetectedatDeerlakein2003.OneadultobservationbelowSMPin2004. Reptilia Serpentes Rubber Boa Rarely 1 ObservedoneadultindividualatnightinEchoLakebasinon10Sep2005at01:00.Oursurveyprotocolwas Adult Charina bottae detected notdesignedtodetectthisspecies. Western Rattlesnake Rarely 2 ObservedoneadultonStonyRidgeTrailswallowingachipmunk(Tamias sp.)in2004.Observedanotheradult Adult Crotalus viridis detected attheridgetopduewestofEDNin2006.Oursurveyprotocolwasnotdesignedtodetectthisterrestrial species,butweassumeit’suncommoninthehigherelevations. Gopher Snake Rarely 1 ObservedoneadultonStonyRidgetrailin2004~500mbelowRMM.Oursurveyprotocolwasnotdesignedto Adult Pituophis catenifer detected detectthisterrestrialspecies,butweassumeit’srareathighelevations.

Lacertilia Alligator lizards Periodically 5 FoundperiodicallyinriparianareasduringsurveysinEchoLakebasin.Bothspecies( E.multicarinata and E. Juvenile Elgaria spp. observed coerulea )confirmed.IndividualsseenatEcholake,GSP,MOS,RMMandDPM. Adult Western Skink Periodically 2 CommononStonyRidgetrailuptomilethree.Noneseeninareasofregularsurveys.Oursurveyprotocolwas Adult Eumeces skiltonianus observed notdesignedtodetectthisterrestrialspecies. Spiny lizards Locally 5 CommononStonyRidgetrailuptomilefour,seeninEchoLakebasinonsouthfacingslopeaboveDPM.Our Juvenile Sceloporous spp. common surveyprotocolwasnotdesignedtodetectthisterrestrialspeciesbutweassumeit’slocallycommoninlower Adult elevations(<1500melevation)andinhigherelevationsouthfacingopenslopes. 74 Cascades Frog Ecology in California Blank Page

75