Cold Spring Harbor Symposia on Quantitative Biology

Total Page:16

File Type:pdf, Size:1020Kb

Cold Spring Harbor Symposia on Quantitative Biology COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XLV---PART 1 COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XLV MOVABLE GENETIC ELEMENTS COLD SPRING HARBOR LABORATORY 1981 COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XLV 1981 by The Cold Spring Harbor Laboratory International Standard Book Number 0-87969-044-5 Library of Congress Catalog Card Number 34-8174 Printed in the United States of America All rights reserved COLD SPRING HARBOR SYMPOSIA ON QUANT1TA T1VE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director of the Biological Laboratory 1924 to 1936 Previous Symposia Volumes I (1933) Surface Phenomena XXIII (1958) Exchange of Genetic Material: Mechanism I1 (1934) Aspects of Growth and Consequences Ili (1935) Photochemical Reactions XX1V (1959) Genetics and Twentieth Century Darwinism IV (1936) Excitation Phenomena XXV (1960) Biological Clocks V (1937) Internal Secretions XXV1 (I 961) Cellular Regulatory Mechanisms VI (1938) Protein Chemistry XXVll (1962) Basic Mechanisms in Animal Virus Biology VII (1939) Biological Oxidations XXVIlI (1963) Synthesis and Structure of Macromolecules VIII (1940) Permeability and the Nature of Cell Mem- XXIX (1964) Human Genetics branes XXX (1965) Sensory Receptors 1X (1941) Genes and Chromosomes: Structure and Organi- XXXI (1966) The Genetic Code zation XXXII (1967) Antibodies X (1942) The Relation of Hormones to Development XXXIlI (1968) Replication of DNA in Microorganisms XI (1946) Heredity and Variation in Microorganisms. XXX1V (1969) The Mechanism of Protein Synthesis XII (1947) Nucleic Acids and Nucleoproteins XXXV (1970) Transcription of Genetic Material XIII (1948) Biological Applications of Tracer Elements XXXVI (1971) Structure and Function of Proteins at the XIV (1949) Amino Acids and Proteins Three-dimensional Level XV (1950) Origin and Evolution of Man XXXVI1 (1972) The Mechanism of Muscle Contraction XVI (1951) Genes and Mutations XXXVIll (1973) Chromosome Structure and Function XVII (1952) The Neuron XXXIX (1974) Tumor Viruses XVIII (1953) Viruses XL (1975) The Synapse XIX (1954) The Mammalian Fetus: Physiological Aspects XLI (1976) Origins of Lymphocyte Diversity of Development XLll (1977) Chromatin XX (1955) Population Genetics: The Nature and Causes of XLIII (1978) DNA: Replication and Recombination Genetic Variability in Population XL1V (1979) Viral Oncogenes XXI (1956) Genetic Mechanisms: Structure and Function XXII (1957) Population Studies: Animal Ecology and De- mography The Symposium Volumes are published by The Cold Spring Harbor Laboratory, Box 100, Cold Spring Harbor, New York 11724. Symposium Participants ABou-SABE, MORAD A., Dept. of Microbiology, BESEMER, JURGEN, Dept. of Genetics, University of Rutgers University, New Brunswick, New Jersey K61n, Federal Republic of Germany AnMED, ASAD, Dept. of Genetics, University of Al- BIEK, DONALD, Dept. of Biology, University of Utah, berta, Edmonton, Canada Salt Lake City ANISIMOV, P. I., Antiplague Research Institute, Saratov, BIEZUNSKI, NAOMI, Dept. of Biology, Case Western USSR Reserve University, Cleveland, Ohio APPLEBY, DAVID, Institute of Toxicology, Albany Medi- BINGHAM, PAUL, NIEHS, National Institutes of Health, cal College, New York Research Triangle Park, North Carolina APPLEBY, NORMA, Institute of Toxicology, Albany BIRSHTEN, BARBARA,Dept. of Cell Biology, Albert Ein- Medical College, New York stein College of Medicine, Bronx, New York ARBER, WEANER, Biozentrum, University of Basel, BLAKESLEY, ROBERT, Bethesda Research Laboratories, Switzerland Inc., Rockville, Maryland ARNHEIM, NORMAN, Dept. of Biochemistry, State Uni- BLOCK, KARIN, Institute of Genetics, University of versity of New York, Stony Brook Lund, Sweden ATK1NS, JOHN F., Dept. of Biology, University of Utah, BOCCARA, MARTINE, INSERM, Pasteur Institute, Lille, Salt Lake City France AUERSWALD, E. A., Dept. of Microbiology, University BOISTARD,PIERRE, Dept. of Vegetable Pathology, Insti- of Heidelberg, Federal Republic of Germany rut National de la Recherche Agronomique, Ver- AUGUSTINE, ANDREI, Dept. of Microbiology, Columbia sailles, France University College of Physicians and Surgeons, BOAST, P1ET, Dept. of Biochemistry, University of Am- New York, New York sterdam, Holland AUSUBEL, FREDERICK, The Biological Laboratories, BOTCHAN, MICHAEL, Dept. of Molecular Biology, Uni- Harvard University, Cambridge, Massachusetts versity of California, Berkeley BABCOCK, MARLA, D-2 Carolina Apts., Carrboro, BOTSTEIN, DAVID, Dept. of Biology, Massachusetts In- North Carolina stitute of Technology, Cambridge BADE, ERNESTO, Faculty of Biology, University of BOURRET, ROBERT, Dept. of Biology, Massachusetts Konstanz, Federal Republic of Germany Institute of Technology, Cambridge BAKER, ROBERT, Dept. of Molecular Biology, Univer- BRENNER, SYDNEY, Laboratory of Molecular Biology, sity of Southern California, Los Angeles Medical Research Council, Cambridge, England BALTIMORE, DAVID, Dept. of Cancer Research, Massa- BROREIN, WILLIAM, JR., 1199 Beacon St., Brookline, chusetts Institute of Technology, Cambridge Massachusetts BANK, ARTHUR,Hammer Health Sciences Center, Co- BUKHARI, AHMAD I., Cold Spring Harbor Laboratory, lumbia University, New York, New York New York BEDBROOK, J. R., Plant Industry Division, CSIRO, BURR, BENJAMIN, Dept. of Biology, Brookhaven Na- Canberra, Australia tional Laboratory, Upton, New York BENNETT, P. M., Dept. of Bacteriology, University of BURTON, WILLIAM, Bethesda Research Laboratories, Bristol, England Inc., Rockville, Maryland BENSON, SPENCER, Dept. of Cancer Biology, Frederick CABEZON, TERESA, Smith Kline-RIT, Rixensart, Bel- Cancer Research Center, Frederick, Maryland gium BERG, CLAIREM., Dept. of Biological Sciences, Univer- CAIRNS, JOHN, Imperial Cancer Research Fund Labo- sity of Connecticut, Storrs ratories, London, England BERG, DOUGLAS, Dept. of Microbiology, Washington CALOS, MICHELE, Dept. of Molecular Biology, Univer- University Medical School, St. Louis, Missouri sity of Geneva, Switzerland BERNARDI, ALBERTO,Genetics Center, CNRS, Gif-sur- CAMPBELL, ALLAN M., Dept. of Biological Sciences, Yvette, France Stanford University, California BERNINGER, MARK, Bethesda Research Laboratories, CANNON, FRANK,ARC Unit of Nitrogen Fixation, Uni- Inc., Rockville, Maryland versity of Sussex, Brighton, England BERTANI, G1USEPPE, Dept. of Microbial Genetics, CARDILLO, THOMAS, Dept. of Radiation Biology and Karolinska Institute, Stockholm, Sweden Biophysics, University of Rochester, New York BERTRAND, KEV1N, Dept. of Microbiology, University CARLSON, MAR1AN, Dept. of Biology, Massachusetts of California, Irvine Institute of Technology, Cambridge vi SYMPOSIUM PARTICIPANTS CASADABAN,MALCOLM, Dept. of Biophysics and Theo- EMERICK, ANNE, Cetus Corporation, Berkeley, Califor- retical Biology, University of Chicago, Illinois nia CASEY, JAMES, Dept. of Chemistry, California Institute ENDOW, SHARYN,Dept. of Microbiology and Immunol- of Technology, Pasadena ogy, Duke University Medical Center, Durham, CHACONAS, GEORGE, Cold Spring Harbor Laboratory, North Carolina New York ENGELS, WILLIAM, Dept. of Genetics, University of CHANDLER, MICHAEL, Dept. of Molecular Biology, Wisconsin, Madison University of Geneva, Switzerland ERNST, JOACHIM, Dept. of Radiological Biology and CHATTORAJ, DHRUBA,NICHHD, National Institutes of Biophysics, University of Rochester, New York Health, Bethesda, Maryland ERREDE, BEVERLY, Dept. of Radiation Biology and CLOWES, ROYSTON, Dept. of Biology, University of Biophysics, University of Rochester, New York Texas at Dallas, Richardson FALLEN, MICHAEL, Dept. of Genetics, Universit6 Libre COHEN, S. N., Dept. of Genetics, Stanford University de Bruxelles, Rhode-St.-Gen~se, Belgium School of Medicine, California FARABAUGH, PHILIP, Dept. of Biochemistry, Cornell COLLINS, JOHN, Gessellschaft Biotechnologische fur University, Ithaca, New York Schungsstehle, Braunschweig, Federal Republic of FASY, THOMAS M., Dept. of Pathology, Mt. Sinai Germany School of Medicine, New York, New York COMEAU, ANNE M., Dept. of Biology, Brandeis Univer- FEDOROFF, NINA, Dept. of Embryology, Carnegie In- sity, Waltham, Massachusetts stitution of Washington, Baltimore, Maryland CORNELIS, GUY, Dept. of Microbiology, Catholic Uni- FEINGOLD, JAY, Dept. of Molecular Biology, Albert versity of Louvain, Brussels, Belgium Einstein College of Medicine, Bronx, New York COZZARELLI, NICHOLAS, Dept. of Biochemistry, Uni- FENNEWALD, MICHAEL, Dept. of Biochemistry, Univer- versity of Chicago, Illinois sity of Chicago, Illinois CROW, JAMES F., Dept. of Genetics, University of Wis- FINCHAM, JOHN R. S., Dept. of Genetics, University of consin, Madison Edinburgh, Scotland DATTA, NAOMI, Hammersmith Hospital, Royal Post- FINK, GERALD, Cornell University, Ithaca, New York graduate Medical School, London, England FLAVELL, ANDREW, Sidney Farber Cancer Institute, DAvis, MARK M., California Institute of Technology, Boston, Massachusetts Pasadena FLAVELL, RICHARD B., Plant Breeding Institute, Cam- DAVlSON, JOHN, Institute of Cell Pathology, Brussels, bridge, England Belgium FLEISSNER, ERW1N, Sloan-Kettering Institute for DE BRUIJN,FRANS J., The Biological Laboratories, Har- Cancer Research, New York, New York vard University, Cambridge, Massachusetts FLYNN, ANN E., New England Biological Laboratories, DECARIS, BERNARD, Dept. of Genetics, University of Inc., Beverly, Massachusetts Paris, Orsay, France FOSTER, T. J., Dept. of Microbiology, Trinity College, DE CROMBRUGGHE,BENOIT, NCI, National Institutes of Dublin, Ireland Health, Bethesda, Maryland
Recommended publications
  • Springer A++ Viewer
    PublisherInfo PublisherName : BioMed Central PublisherLocation : London PublisherImprintName : BioMed Central Ira Herskowitz dies ArticleInfo ArticleID : 4766 ArticleDOI : 10.1186/gb-spotlight-20030506-01 ArticleCitationID : spotlight-20030506-01 ArticleSequenceNumber : 118 ArticleCategory : Research news ArticleFirstPage : 1 ArticleLastPage : 4 RegistrationDate : 2003–5–6 ArticleHistory : OnlineDate : 2003–5–6 ArticleCopyright : BioMed Central Ltd2003 ArticleGrants : ArticleContext : 130594411 Brendan Maher Email: [email protected] Ira Herskowitz, professor of genetics at the University of California, San Francisco (UCSF), died at home on April 28 of pancreatic cancer. He was 56. Remembered for clarity of mind, exceptional science, enthusiastic teaching, and a love of music, his death sent a shock throughout the yeast community this week, where Herskowitz made many great contributions and friends. "It's a great loss to us all," said Paul Nurse, Nobel Laureate and new president of The Rockefeller University. "Ira Herskowitz had a huge influence on the yeast field and on me personally." Laureate Leland Hartwell, president of Fred Hutchinson Cancer Research Center told us in an e-mail, "I'll bet there are few scientists in genetics, molecular and cell biology who were not personally affected by him." Born in Brooklyn, NY, Herskowitz moved with his family about the country as father Irwin, a Drosophilageneticist, took various academic positions. Herskowitz received a bachelor's degree in science from the California Institute of Technology in 1967 and a PhD in microbiology from the Massachusetts Institute of Technology (MIT) in 1971. After a short postdoctoral stint there, he assumed an assistant professor position at the University of Oregon. Moving in 1982 to UCSF, he immediately revamped the genetics program there, chaired the department of biochemistry and biophysics from 1990 to 1995, and co-directed the program in human genetics from 1997.
    [Show full text]
  • From the President's Desk
    Sept | Oct 2009 From the President’s desk: The Increasing Importance of Model Organism Research I’m sure you know this scenario: You’re at a party, and someone hears you’re a biologist, and asks, “What do you work on?” When this happens to me, and I respond that I study yeast, I frequently get the follow-up question that you have probably already anticipated: “Are you learning how to make better beer?” At that point, I offer my explanation about the value of studying model organisms, which in cludes the statement that my daughter, now 17, learned to repeat with me by the time she was 3: “Yeast are actually a lot like people.” If you study a model organism, whether it’s yeast, bacteria, phage, flies, worms, fish, plants, or something else, you probably have been in Fred Winston a similar situation when talking to someone who is not a scientist. There GSA President is little understanding among the general public about the value of studying a model organism. This is also true among some who we might think would better understand this issue. While you wouldn’t be surprised to learn that the person at this party was a lawyer or a businessperson, you might also not be too surprised if that person turned out to be a physician, or even a human biologist. Even among some biologists who understand the history of model organisms, there may be a lack of appreciation for what model organism research can contribute to future scientific understanding. For these scientists, model organi sms appear to be in the twilight of their usefulness with the advent of new sequencing technologies and other genome-wide, high-throughput approaches that can be used in human studies.
    [Show full text]
  • Curriculum Vitae Jasper Rine Address: Work Home Department of Molecular and Cellular Biology 400 Western Drive Division of Genet
    Curriculum Vitae Jasper Rine Address: Work Home Department of Molecular and Cellular Biology 400 Western Drive Division of Genetics Richmond, California 94801 California Institute for Quantitative Biosciences 374A Stanley Hall 510-232-4293 University of California Birth Date: October 16, 1953 Berkeley, CA 94720-3202 Tel: 510-642-7047 Fax: 510-666-2768 Higher Education Post-doctoral Fellow 1980-1982 Stanford University School of Medicine Advisor: Ronald W. Davis University of Oregon, Ph.D. 1975-1979 Molecular Genetics Advisor: Ira Herskowitz State University of New York at Albany 1971-1975 B.S. Biological Sciences, Magna Cum Laude Professional Experience Professor of Genetics Division of Genetics, Genomics and Development Department of Molecular and Cell Biology University of California, Berkeley 1990-Present Director, Human Genome Center Lawrence Berkeley Labs Berkeley, California 1991-1994 Associate Professor of Genetics Division of Genetics Department of Molecular and Cell Biology University of California, Berkeley 1989-1990 Assistant Professor of Biochemistry Department of Biochemistry University of California, Berkeley 1982-1988 Honors/Awards N.I.H. Postdoctoral Fellowship 1980-1982 The Camille and Henry Dreyfus Teacher Scholar Award 1986 Miller Research Professor, UC Berkeley 1993 Philips Distinguished Lecturer, Haverford College 1993 American Academy of Microbiology – Fellow Election 1993 Streisinger Lecturer, University of Oregon 1993 UCB Distinguished Teaching Award 1997 Richard & Rhoda Goldman Distinguished Professor of Biology
    [Show full text]
  • CURRICULUM VITAE Laura Finzi
    CURRICULUM VITAE Laura Finzi Physics Department, Emory University e-mail: [email protected] 400 Dowman Dr, Atlanta, GA 30322 http://www.physics.emory.edu/faculty/finzi/ tel. 404-727-4930 ; fax: 404-727-0873 EDUCATION_________________________________________________________________________________ 1990 Ph.D. in Chemistry, University of New Mexico, Albuquerque, NM. (Advisor: Carlos Bustamante) 1987 Master's in Chemistry, University of New Mexico, Albuquerque, NM. 1984 Laurea in Industrial Chemistry, University of Bologna, Bologna, Italy. 1979 Diploma from Liceo Classico "M. Minghetti" (High School diploma), Bologna, Italy. PROFESSIONAL ACTIVITY____________________________________________________________________ September 2012 - present: Full Professor, Physics Department, Emory University. July 2005-August 2012: Associate Professor, Physics Department, Emory University. June 1999-June 2005: Tenured Researcher and Group Leader, Biology Dept, University of Milano, Italy. 1993-May 1999: Researcher (tenured in ’96), Biology Dept, University of Milan, Italy. 1992-1993: Post Doctoral Fellow, Biochemistry Dept., Brandeis University (Mentor: Jeff Gelles). 1990-1991: Post Doctoral Fellow, Chem. Dept., University of New Mexico (October-December 1990), Institute of Molecular Biology, University of Oregon (January-December 1991) (Carlos Bustamante group). HONORS and AWARDS________________________________________________________________________ 2018: Recognized for “Excellent Teaching” by Phi Beta Kappa Mentee. Ceremony held on 4/10 in Cannon Chapel.
    [Show full text]
  • NCI Laboratory of Molecular Biology Oral History Project Interview #1 with Dr
    NCI Laboratory of Molecular Biology Oral History Project Interview #1 with Dr. Sankar L. Adhya Conducted on October 1, 2008, by Jason Gart JG: My name is Jason Gart and I am a senior historian and History Associates Incorporated in Rockville, Maryland. Today’s date is October 1, 2008, and we are in the offices of the National Institutes of Health in Bethesda, Maryland. Please state your full name and also spell it. SA: Sankar Adhya. S-A-N-K-A-R—A-D-H-Y-A. JG: Terrific, thank you. The subject of this interview is the Laboratory of Molecular Biology. Established in 1970, the Laboratory of Molecular Biology (LMB), Center for Cancer Research, National Cancer Institute, National Institutes of Health, currently has among its ten groups four members of the National Academy of Sciences. LMB has trained many other prominent scientists and its researchers have contributed both to basic science and to novel applied cancer treatments. LMB has initiated this oral history project to capture recollections of prominent scientists currently and formerly associated with the laboratory. To begin please talk about where you were born and your interests as a child. Explain your family background and what your parents did for a living? Interview #1 with Dr. Sankar L. Adhya, October 1, 2008 2 SA: I was born in Kolkata (Calcutta), India, in a large family where my father lived with many other members of his family, like his brothers and so on. My father was a lawyer, my mother was a housewife. I grew up in a family mostly involved in law or real estate business and no scientists.
    [Show full text]
  • From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize Nathaniel C
    454 Forum TRENDS in Biochemical Sciences Vol.26 No.7 July 2001 Historical Perspective From controlling elements to transposons: Barbara McClintock and the Nobel Prize Nathaniel C. Comfort Why did it take so long for Barbara correspondence. From these and other to prevent her controlling elements from McClintock (Fig. 1) to win the Nobel Prize? materials, we can reconstruct the events moving because their effects were difficult In the mid-1940s, McClintock discovered leading up to the 1983 prize*. to study when they jumped around. She genetic transposition in maize. She What today are known as transposable never had any inclination to pursue the published her results over several years elements, McClintock called ‘controlling biochemistry of transposition. and, in 1951, gave a famous presentation elements’. During the years 1945–1946, at Current understanding of how gene at the Cold Spring Harbor Symposium, the Carnegie Dept of Genetics, Cold activity is regulated, of course, springs yet it took until 1983 for her to win a Nobel Spring Harbor, McClintock discovered a from the operon, François Jacob and Prize. The delay is widely attributed to a pair of genetic loci in maize that seemed to Jacques Monod’s 1960 model of a block of combination of gender bias and gendered trigger spontaneous and reversible structural genes under the control of an science. McClintock’s results were not mutations in what had been ordinary, adjacent set of regulatory genes (Fig. 2). accepted, the story goes, because women stable alleles. In the term of the day, they Though subsequent studies revealed in science are marginalized, because the made stable alleles into ‘mutable’ ones.
    [Show full text]
  • 2020 Online Session Descriptions
    Thursday, April 16 2:00 pm - 6:00 pm Mammalian Trainee Symposium Session Chairs: Fernando Pardo-Manuel de Villena, UNC Chapel Hill Linda Siracusa, Hackensack Meridian School of Medicine at Seton Hall University 538A 2:00 pm No more paywalls: cost-benefit analysis across scRNA-seq platforms reveals biological insight is reproducible at low sequencing depths. Kathryn McClelland, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK/NIH) 882C 2:15 pm Control of target gene specificity in Wnt signaling by transcription factor interactions. Aravindabharathi Ramakrishnan, University of Michigan, Ann Arbor 2217C 2:30 pm Evolutionary genomics of centromeric satellites in House Mice (Mus). Uma Arora, The Jackson Laboratory 2:45 pm Reference quality mouse genomes reveal complete strain-specific haplotypes and novel functional loci. Mohab Helmy, EMBL-EBI 887B 3:00 pm Divergence in KRAB zinc finger proteins is associated with pluripotency spectrum in mouse embryonic stem cells. Candice Byers Jackson Laboratory 531C 3:15 pm Replicability and reproducibility of genetic analysis between different studies using identical Collaborative Cross inbred mice. UNC CHAPEL HILL 3:30 pm Proteomics reveals the role of translational regulation in ES cells. Selcan Aydin, The Jackson Laboratory for Mouse Genetics 563B 3:45 pm Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Hannah Grunwald, University of California San Diego 2103C 4:00 pm Gene Editing ELANE in Human Hematopoietic Stem and Progenitor Cells Reveals Variant Pathogenicity and Therapeutic Strategies for Severe Congenital Neutropenia. Shuquan Rao, Boston Childrens Hospital 4:15 pm Phase separation of YAP reorganizes genome topology for long-term YAP target gene expression.
    [Show full text]
  • 2000 Highlights
    from the 2000 Annual Report HIGHLIGHTS OF THE YEAR The research and education programs at the Laboratory continue their strong momentum. The Watson School of Biological Sciences recruited its second class of students this year, and the DNA Learning Center underwent extensive renovations that will further its educa- tional objectives. The Meetings and Courses program and Banbury Center continue to be invaluable resources for scientific information, and the Cold Spring Harbor Laboratory Press added new projects and properties to its long list of titles. In this, the year of the Human Genome, Cold Spring Harbor Laboratory was a bustling center of scientific activity. Research Cancer Malignant melanoma is an aggressive, deadly cancer that does not respond to conventional chemotherapy. Other aggressive, chemoresistant can- cers—and approximately half of all cancers—are characterized by muta- tions in the p53 tumor suppressor gene. Malignant melanomas, however, do not typically display mutations in the p53 gene. To explore alternative explanations for the origins and properties of malignant melanoma, and to identify potential targets and strategies for therapy, Scott Lowe and his colleagues have examined the status of other genes known to function downstream from p53 in a pathway leading to Scott Lowe “apoptosis” or “programmed cell death.” When intact, this pathway rids the body of abnormal, precancerous cells by triggering a cellular self-destruct mechanism. When this pathway is disrupted (by the loss of p53 function, for example), precancerous cells sur- vive and proliferate, resulting in cancer. This year, Scott and postdoctoral fellow Marisol Soengas found that malignant melanomas often lose a key trigger of programmed cell death, a protein called Apaf-1 (apop- tosis activation factor-1).
    [Show full text]
  • Biological Consequences of Tightly Bent DNA: the Other Life of a Macromolecular Celebrity
    University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 10-2006 Biological Consequences of Tightly Bent DNA: The Other Life of a Macromolecular Celebrity Hernan G. Garcia Paul Grayson Lin Han Mandar Inamdar Jané Kondev See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/physics_papers Part of the Physics Commons Recommended Citation Garcia, H. G., Grayson, P., Han, L., Inamdar, M., Kondev, J., Nelson, P. C., Phillips, R., Widom, J., & Wiggins, P. A. (2006). Biological Consequences of Tightly Bent DNA: The Other Life of a Macromolecular Celebrity. Biopolymers, 85 115-130. http://dx.doi.org/10.1002/bip.20627 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/physics_papers/503 For more information, please contact [email protected]. Biological Consequences of Tightly Bent DNA: The Other Life of a Macromolecular Celebrity Abstract The mechanical properties of DNA play a critical role in many biological functions. For example, DNA packing in viruses involves confining the viral genome in a volume (the viral capsid) with dimensions that are comparable to the DNA persistence length. Similarly, eukaryotic DNA is packed in DNA-protein complexes (nucleosomes) in which DNA is tightly bent around protein spools. DNA is also tightly bent by many proteins that regulate transcription, resulting in a variation in gene expression that is amenable to quantitative analysis. In these cases, DNA loops are formed with lengths that are comparable to or smaller than the DNA persistence length. The aim of this review is to describe the physical forces associated with tightly bent DNA in all of these settings and to explore the biological consequences of such bending, as increasingly accessible by single-molecule techniques.
    [Show full text]
  • Flexibility of the Yeast A2 Repressor Enables It to Occupy the Ends of Its Operator, Leaving the Center Free
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Flexibility of the yeast a2 repressor enables it to occupy the ends of its operator, leaving the center free Robert T. Sauer,* Dana L. Smith, and Alexander D. Johnson Departments of Microbiology and Biochemistry/Biophysics, University of California, San Francisco, California 94143 USA The yeast a2 protein, the product of the MATal gene, is a regulator of yeast cell type; it turns off transcription of the a-specific genes by binding to an operator located upstream of each gene. In this paper we describe the domain structure, subunit organization, and some unusual features of the way this protein contacts its operator. We show that the protein is folded into two domains. The carboxy-terminal domain binds specifically to the operator; the amino-terminal domain contains dimerization contacts. The a2 dimer differs from those of the phage repressors in that it is flexible and therefore is able to bind tightly to differently spaced operator half-sites. In the natural operator, the centers of the operator half-sites are two and one-half turns of DNA apart, exposing them on opposite sides of the DNA helix. We show that the design of a2 allows a dimer to reach across its operator such that it occupies the two half-sites but leaves the middle of the operator available to other proteins. [Key Words: DNA-protein interaction; repressor; gene expression; homeo domain] Received March 29, 1988; revised version accepted May 13, 1988. The yeast a2 protein is related by sequence (and presum­ of 24,000, its amino-terminal sequence is Met-Asn-Lys- ably structure) and by function (the determination of Ile..., and the purified protein exhibits the expected cell type) to a large group of proteins that contain the amino acid composition (see Methods).
    [Show full text]
  • A Yeast Model of FUS/TLS-Dependent Cytotoxicity
    A Yeast Model of FUS/TLS-Dependent Cytotoxicity The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ju, Shulin et al. “A Yeast Model of FUS/TLS-Dependent Cytotoxicity.” Ed. Jonathan S. Weissman. PLoS Biology 9.4 (2011) : e1001052. As Published http://dx.doi.org/10.1371/journal.pbio.1001052 Publisher Public Library of Science Version Final published version Citable link http://hdl.handle.net/1721.1/65580 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.5/ A Yeast Model of FUS/TLS-Dependent Cytotoxicity Shulin Ju1,2, Daniel F. Tardiff3,4, Haesun Han3,4, Kanneganti Divya1, Quan Zhong5,6, Lynne E. Maquat7, Daryl A. Bosco8, Lawrence J. Hayward8, Robert H. Brown Jr.8, Susan Lindquist3,4, Dagmar Ringe1,2*, Gregory A. Petsko1,2* 1 Department of Biochemistry and Chemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America, 2 Department of Neurology and Center for Neurologic Diseases, Harvard Medical School and Brigham & Women’s Hospital, Cambridge, Massachusetts, United States of America, 3 Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America, 4 Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America, 5 Department of Cancer Biology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America, 6 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 7 Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, United States of America, 8 Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America Abstract FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS).
    [Show full text]
  • Role of the Casein Kinase I Isoform, Hrr25, and the Cell Cycle-Regulatory
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 581–586, January 1997 Genetics Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae (DNA repairytranscriptionycell cycle) YUEN HO*, STEPHEN MASON*†,RYUJI KOBAYASHI‡,MERL HOEKSTRA§, AND BRENDA ANDREWS*¶ *Department of Molecular and Medical Genetics, University of Toronto, Toronto, ON Canada M5S 1A8; ‡Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and §ICOS Corporation, 22021-20th Avenue SE, Bothell, WA 22021 Communicated by Ira Herskowitz, University of California, San Francisco, CA, November 1, 1996 (received for review July 31, 1996) ABSTRACT In the budding yeast, Saccharomyces cerevi- agents such as methyl methanesulfonate (MMS) and UV siae, DNA damage or ribonucleotide depletion causes the irradiation. Recent studies have delineated a pathway by which transcriptional induction of an array of genes with known or the damage signal is transduced to the checkpoint and tran- putative roles in DNA repair. The ATM-like kinase, Mec1, and scriptional response apparatus. The kinases, Mec1 (4, 17) and the serineythreonine protein kinases, Rad53 and Dun1, are Rad53 (6, 17), are required for both responses, whereas the required for this transcriptional response. In this paper, we Dun1 kinase, believed to act downstream of Mec1 and Rad53, provide evidence suggesting that another kinase, Hrr25, is is only required for the transcriptional induction response (16). also involved in the transcriptional response to DNA damage Mutations in another kinase, Hrr25, were identified as causing through its interaction with the transcription factor, Swi6. hypersensitivity to double-stranded DNA breaks induced by The Swi6 protein interacts with Swi4 to form the SBF complex endonuclease expression, x-irradiation, or continuous exposure and with Mbp1 to form the MBF complex.
    [Show full text]