Ise En Page 1 17/06/10 16:41 Page 1 09

Total Page:16

File Type:pdf, Size:1020Kb

Ise En Page 1 17/06/10 16:41 Page 1 09 COUV_EXE+TRANCHES_QUADRI+SPE:Mise en page 1 17/06/10 16:41 Page 1 09 ACKNOWLEDGEMENTS HFSPO is grateful for the support of the following organizations: Australia (AU) National Health and Medical Research Council ANNUAL REPORT 20 (NHMRC) Canada (CA) Canadian Institute of Health Research (CIHR) Natural Sciences and Engineering Research Council (NSERC) European Union (EU) 09 European Commission – Directorate General Research (DG RESEARCH) European Commission – Directorate General APRIL 2009 - MARCH 2010 Information Society (DG INFSO) France (FR) Ministère des Affaires Étrangères et Européennes (MAEE) ANNUAL REPORT Ministère de l’Enseignement Supérieur et de la Recherche (MESR) Communauté Urbaine de Strasbourg (CUS) Région Alsace Human Germany (DE) Federal Ministry of Education and Research (BMBF) Frontier India (IN) Science Department of Biotechnology (DBT), Ministry of Science and Technology Program Italy (IT) Ministry of Education, University and Research Japan (JP) Ministry for Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Republic of Korea (KR) Ministry of Education, Science and Technology (MEST) New Zealand (NZ) Health Research Council (HRC) Norway (NO) The Research Council of Norway (RCN) Switzerland (CH) State Secretariat for Education and Research (SER) The International Human Frontier Science Program Organization (HFSPO) United Kingdom (UK) 12 quai Saint-Jean - BP 10034 Biotechnology and Biological Sciences Research Council (BBSRC) 67080 Strasbourg CEDEX - France Medical Research Council (MRC) Fax. +33 (0)3 88 32 88 97 e-mail: [email protected] United States of America (US) Website: www.hfsp.org National Institutes of Health (NIH) HUMAN FRONTIER SCIENCE PROGRAM National Science Foundation (NSF) Japanese Website: http://jhfsp.jsf.or.jp HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is a unique program funding basic research of the highest quality at the frontier of the life sciences that is 09 innovative, risky and requires international collaboration. Special empha- sis is given to the support and training of independent young investiga- APRIL 2009 - MARCH 2010 tors, beginning at the postdoctoral level. The Program is implemented by an international organization, supported financially by Australia, Canada, France, Germany, India, Italy, Japan, the Republic of Korea, New Zealand, ANNUAL REPORT Norway, Switzerland, the United Kingdom, the United States of America, and the European Union. Since 1990, more than 5000 awards have been made to researchers from 69 countries. Of these, 16 HFSP awardees have gone on to receive the Nobel Prize. 2 INTRODUCTION 7 Introduction 8 Highlights in FY 2009 9 Message of the Secretary General 10 Board of Trustees 12 Council of Scientists 14 Secretariat 15 CHAPTER 1 - HFSP FELLOWSHIP PROGRAM 17 1.1 Introduction 18 1.2 Long-Term and Cross-Disciplinary Fellowships 18 1.3 Long-Term and Cross-Disciplinary Fellowships 2010 20 1.4 Short-Term Fellowships 22 1.5 Career Development Awards 23 1.6 Career Development Awards in 2010 24 1.7 The 2010 Review Committee for Fellowships 25 CHAPTER 2 - HFSP RESEARCH GRANT PROGRAM 27 2.1 Overview of the Grant Program 28 2.2 Young Investigator Grants 29 2.3 Program Grants 30 2.4 Awards in 2010 30 2.5 The 2010 Review Committee for Research Grants 36 CHAPTER 3 - PROGRAM HIGHLIGHTS 39 3.1 HFSP 20th Anniversary 40 3.2 Awardees Meeting 42 3.3 Frontiers Meeting 44 contents 3.4 HFSP Nakasone Award 47 3.5 MIOIR Review 48 3.6 HFSP Communications 49 3.7 Honours and Prizes 52 The following documents are available on the HFSP website www.hfsp.org CHAPTER 4 - BUDGET AND FINANCE 59 Joint Communiqués 4.1 Guidelines for HFSPO funding 60 (Tokyo 1992, Washington 1997, Berlin 2002, Berne 2004, Ottawa 2007): 4.2 Key financial figures for FY 2009 61 http://www.hfsp.org/pubs/Pubs_reports_top.php 4.3 FY 2009 financial summary 68 Statutes of the International Human Frontier Science Program Organization: 4.4 Budget for program activities FY 2010 71 http://www.hfsp.org/about/Aboutstatutes.php APPENDIX 77 Guidelines for the Participation of New Members in the HFSP: A.1 History of the Program 78 http://www.hfsp.org/about/AboutNew_Mem.php A.2 Summary of decisions of the Board of Trustees in FY 2009 80 General Reviews of the HFSP (1996, 2001, 2006-2007): A.3 Research Grants awarded in 2009 81 http://www.hfsp.org/pubs/Pubs_reports_top.php A.4 Long-Term and Cross-Disciplinary Fellowships awarded in 2009 84 Updated and previous lists of awards, including titles and abstracts: A.5 Short-Term Fellowships awarded in 2009 88 http://www.hfsp.org/awardees/Awards-index.php A.6 Career Development Awards made in 2009 89 introduction Introduction Message of the Secretary General Highlights in FY 2009 Board of Trustees Council of Scientists Secretariat Ernst-Ludwig Winnacker (Secretary General), Toru Nakahara (Deputy Secretary General), Front: Jill Husser Since 1990, 832 Research Grants involving 3174 duction scientists, 2,443 Long-Term, 60 Cross-Disciplinary Fellowships and 157 Career Development Awards have been awarded. Researchers from nearly 70 countries FY 2009 have received HFSP funding so far. The Human Frontier Science Program The focus of research supported by HFSP is on the (HFSP) promotes fundamental research complex mechanisms of living organisms, ranging from in the life sciences with special the biomolecular level to that of behaving organisms. emphasis on novel and interdisciplinary The life sciences have undergone a revolution in recent research, international and in particular years, emerging as a leading scientific area with a intercontinental collaboration and support convergence of interest from other disciplines such as for young investigators. Since its physics, mathematics, chemistry, computer science and establishment in 1989, HFSP has engineering on solving biological questions. HFSP aims demonstrated the value of creating a to stay at the forefront of research by involving framework for competitive, collaborative, scientists from outside the life sciences as part of international research of the highest research collaborations and as postdoctoral fellows. To Former Prime Minister Nakasone making a presentation to former caliber and of providing young scientists this end, the Young Investigator and Program Grants are President Masao Ito and Secretary General Toresten Wiesel with the opportunity to emerge as specifically geared to fostering interactions between talented researchers capable of shaping scientists from different disciplines and this is a major the science of the future. factor in the review of applications in these programs. In encouraged to include young scientists with the addition, HFSP has extended its commitment to result that a significant number of scientists under the interdisciplinary research by introducing Cross- age of 40 participate in this program. Taking these Professor Akito Arima took up the The International Human Frontier Science Program Disciplinary Fellowships to equip young scientists from researchers together, approximately 70% of annual position of President of HFSPO, as Organization (HFSPO) implements the Program through outside biology with the skills needed to tackle HFSP funds are awarded to early career researchers. successor of Professor Masao Ito, on the following mechanisms of research support, details of problems in the life sciences. 1 April 2009. which can be found in Chapters 1 and 2 of this report: The HFSPO is governed by a Board of Trustees (Board) A program dedicated to the frontiers of science must consisting of representatives of the MSPs. The Board is Long Term Fellowships – for young scientists within support the next generation of researchers, who are in Professor Ernst-Ludwig Winnacker advised by a scientific advisory body, the Council of three years of obtaining their PhD who wish to broaden the strongest position to open took up the position of Secretary Scientists (Council) and the Organization is run from the their scientific experience in a foreign laboratory. new avenues of research. Several of the HFSP General of HFSPO, as successor of Secretariat in Strasbourg, France. programs are specifically targeted towards Professor Torsten Wiesel, on 1 July Cross-Disciplinary Fellowships – modeled on the Long- 2009. Term Fellowships but specifically for scientists with PhDs early career scientists: the Fellowship programs, in non-biological disciplines who seek training in the life Career Development Award and Young Investigator sciences. Grant. In addition, Program Grant teams are 20th anniversary celebrations were held in association with the 9th Awar- Career Development Awards – for former HFSP Fel- dees meeting at the National Center lows who return to their home countries to help them The HFSPO is financed and managed by for Sciences,Tokyo, Japan, on 1-4 June set up their own independent laboratories. representatives of the Management Supporting 2009. Parties (MSPs). The MSPs are those countries that Young Investigator Grants – grants for interdisciplinary directly fund the HFSP Programs plus the teams of young researchers within the first five years of A meeting on the Frontiers of their first independent positions, who are located in dif- European Union, which represents the EU Biology was held in Strasbourg on ferent countries. countries that do not contribute directly. The 3-6 March 2010. MSPs are: Australia, Canada, France, Germany, Program Grants – for interdisciplinary teams of resear- India, Italy, Japan, the Republic of Korea,
Recommended publications
  • Establishment of Sister Chromatid Cohesion During Dna Replication in Saccharomyces Cerevisiae
    ESTABLISHMENT OF SISTER CHROMATID COHESION DURING DNA REPLICATION IN SACCHAROMYCES CEREVISIAE Vanessa de Sousa Ferreira Borges Thesis submitted for the degree of Doctor of Philosophy to University College London Supervisor: Dr. Frank Uhlmann September 2012 Chromosome Segregation Laboratory Cancer Research UK, London Research Institute 44 Lincoln’s Inn Fields London WC2A 3LY United Kingdom Declaration I, Vanessa de Sousa Ferreira Borges, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Acknowledgements One day scientific research became part of me, a world of puzzles, challenges and open questions waiting to be answered. Four years ago this decision brought me to London to do my PhD and many people became part of this exciting adventure and helped me through it in so many different ways. For this I would like to thank… …My supervisor Frank Uhlmann, for his continuous support, guidance and excellent scientific advice throughout the last 4 years. For always having the door of his office opened and time to discuss important or trivial questions about my project. For his contagious enthusiasm about science and for everything he taught me during my PhD. For being a great supervisor. …Everyone in the Chromosome and Segregation Laboratory for a very stimulating working environment and for making it such a nice place to work. I would like to thank Maria for all her help around the lab, Sebastian who taught me a lot in the beginning of my PhD, Adrian, Thomas, Celine, Molly, Rahul, Sandra, Lesia, Yasuto and Yasu.
    [Show full text]
  • Annual Conference Abstracts
    ANNUAL CONFERENCE 14-17 April 2014 Arena and Convention Centre, Liverpool ABSTRACTS SGM ANNUAL CONFERENCE APRIL 2014 ABSTRACTS (LI00Mo1210) – SGM Prize Medal Lecture (LI00Tu1210) – Marjory Stephenson Climate Change, Oceans, and Infectious Disease Prize Lecture Dr. Rita R. Colwell Understanding the basis of antibiotic resistance University of Maryland, College Park, MD, USA as a platform for early drug discovery During the mid-1980s, satellite sensors were developed to monitor Laura JV Piddock land and oceans for purposes of understanding climate, weather, School of Immunity & Infection and Institute of Microbiology and and vegetation distribution and seasonal variations. Subsequently Infection, University of Birmingham, UK inter-relationships of the environment and infectious diseases Antibiotic resistant bacteria are one of the greatest threats to human were investigated, both qualitatively and quantitatively, with health. Resistance can be mediated by numerous mechanisms documentation of the seasonality of diseases, notably malaria including mutations conferring changes to the genes encoding the and cholera by epidemiologists. The new research revealed a very target proteins as well as RND efflux pumps, which confer innate close interaction of the environment and many other infectious multi-drug resistance (MDR) to bacteria. The production of efflux diseases. With satellite sensors, these relationships were pumps can be increased, usually due to mutations in regulatory quantified and comparatively analyzed. More recent studies of genes, and this confers resistance to antibiotics that are often used epidemic diseases have provided models, both retrospective and to treat infections by Gram negative bacteria. RND MDR efflux prospective, for understanding and predicting disease epidemics, systems not only confer antibiotic resistance, but altered expression notably vector borne diseases.
    [Show full text]
  • Female Fellows of the Royal Society
    Female Fellows of the Royal Society Professor Jan Anderson FRS [1996] Professor Ruth Lynden-Bell FRS [2006] Professor Judith Armitage FRS [2013] Dr Mary Lyon FRS [1973] Professor Frances Ashcroft FMedSci FRS [1999] Professor Georgina Mace CBE FRS [2002] Professor Gillian Bates FMedSci FRS [2007] Professor Trudy Mackay FRS [2006] Professor Jean Beggs CBE FRS [1998] Professor Enid MacRobbie FRS [1991] Dame Jocelyn Bell Burnell DBE FRS [2003] Dr Philippa Marrack FMedSci FRS [1997] Dame Valerie Beral DBE FMedSci FRS [2006] Professor Dusa McDuff FRS [1994] Dr Mariann Bienz FMedSci FRS [2003] Professor Angela McLean FRS [2009] Professor Elizabeth Blackburn AC FRS [1992] Professor Anne Mills FMedSci FRS [2013] Professor Andrea Brand FMedSci FRS [2010] Professor Brenda Milner CC FRS [1979] Professor Eleanor Burbidge FRS [1964] Dr Anne O'Garra FMedSci FRS [2008] Professor Eleanor Campbell FRS [2010] Dame Bridget Ogilvie AC DBE FMedSci FRS [2003] Professor Doreen Cantrell FMedSci FRS [2011] Baroness Onora O'Neill * CBE FBA FMedSci FRS [2007] Professor Lorna Casselton CBE FRS [1999] Dame Linda Partridge DBE FMedSci FRS [1996] Professor Deborah Charlesworth FRS [2005] Dr Barbara Pearse FRS [1988] Professor Jennifer Clack FRS [2009] Professor Fiona Powrie FRS [2011] Professor Nicola Clayton FRS [2010] Professor Susan Rees FRS [2002] Professor Suzanne Cory AC FRS [1992] Professor Daniela Rhodes FRS [2007] Dame Kay Davies DBE FMedSci FRS [2003] Professor Elizabeth Robertson FRS [2003] Professor Caroline Dean OBE FRS [2004] Dame Carol Robinson DBE FMedSci
    [Show full text]
  • From the President's Desk
    Sept | Oct 2009 From the President’s desk: The Increasing Importance of Model Organism Research I’m sure you know this scenario: You’re at a party, and someone hears you’re a biologist, and asks, “What do you work on?” When this happens to me, and I respond that I study yeast, I frequently get the follow-up question that you have probably already anticipated: “Are you learning how to make better beer?” At that point, I offer my explanation about the value of studying model organisms, which in cludes the statement that my daughter, now 17, learned to repeat with me by the time she was 3: “Yeast are actually a lot like people.” If you study a model organism, whether it’s yeast, bacteria, phage, flies, worms, fish, plants, or something else, you probably have been in Fred Winston a similar situation when talking to someone who is not a scientist. There GSA President is little understanding among the general public about the value of studying a model organism. This is also true among some who we might think would better understand this issue. While you wouldn’t be surprised to learn that the person at this party was a lawyer or a businessperson, you might also not be too surprised if that person turned out to be a physician, or even a human biologist. Even among some biologists who understand the history of model organisms, there may be a lack of appreciation for what model organism research can contribute to future scientific understanding. For these scientists, model organi sms appear to be in the twilight of their usefulness with the advent of new sequencing technologies and other genome-wide, high-throughput approaches that can be used in human studies.
    [Show full text]
  • 2010 Program Meeting Schedule
    Vision Sciences Society 10th Annual Meeting, May 7-12, 2010 Naples Grande Resort & Club, Naples, Florida Program Contents Board, Review Committee & Staff . 2 Satellite Events. 22 Keynote Address . 3 Club Vision Dance Party. 22 Meeting Schedule . 4 Open House . 23 Schedule-at-a-Glance . 6 Member-Initiated Symposia . 24 Poster Schedule . 8 Friday Sessions . 29 Talk Schedule . 10 Saturday Sessions . 33 Young Investigator Award . 11 Sunday Sessions . 43 Abstract Numbering System. 11 Monday Sessions . 53 VSS Dinner and Demo Night . 12 Tuesday Sessions . 58 VSS Public Lecture . 15 Wednesday Sessions . 68 VSS at ARVO . 15 Topic Index. 71 Attendee Resources . 16 Author Index . 74 Exhibitors . 19 Hotel Floorplan . 86 Travel Awards . 21 Advertisements. 89 Board, Review Committee & Staff Board of Directors Abstract Review Committee Tony Movshon (2011), President David Alais Laurence Maloney New York University Marty Banks Ennio Mingolla Pascal Mamassian (2012), President Elect Irving Biederman Cathleen Moore CNRS & Université Paris 5 Geoff Boynton Shin’ya Nishida Eli Brenner Tony Norcia Bill Geisler (2010), Past President Angela Brown Aude Oliva University of Texas, Austin David Burr Alice O’Toole Marisa Carrasco (2012), Treasurer Patrick Cavanagh John Reynolds New York University Marvin Chun Anna Roe Barbara Dosher (2013) Jody Culham Brian Rogers University of California, Irvine Greg DeAngelis Jeff Schall James Elder Brian Scholl Karl Gegenfurtner (2013) Steve Engel David Sheinberg Justus-Liebig Universität Giessen, Germany Jim Enns Daniel Simons
    [Show full text]
  • SMC Complexes Orchestrate the Mitotic Chromatin Interaction Landscape
    Curr Genet DOI 10.1007/s00294-017-0755-y REVIEW SMC complexes orchestrate the mitotic chromatin interaction landscape Yasutaka Kakui1 · Frank Uhlmann1 Received: 13 September 2017 / Revised: 14 September 2017 / Accepted: 16 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Chromatin is a very long DNA–protein complex Keywords Chromosome condensation · SMC complex · that controls the expression and inheritance of the genetic Chromatin · Cell cycle · Hi-C information. Chromatin is stored within the nucleus in interphase and further compacted into chromosomes dur- ing mitosis. This process, known as chromosome condensa- Introduction tion, is essential for faithful segregation of genomic DNA into daughter cells. Condensin and cohesin, members of How chromatin is spatially organized within the cell nucleus the structural maintenance of chromosomes (SMC) fam- and within chromosomes is a fundamental question in cell ily, are fundamental for chromosome architecture, both biology. Centimeter-long DNA molecules change their spa- for establishment of chromatin structure in the interphase tial chromatin organization within micrometer-sized cells nucleus and for the formation of condensed chromosomes during cell cycle progression. In interphase, chromatin is in mitosis. These ring-shaped SMC complexes are thought distributed throughout the nucleus to express the genetic to regulate the interactions between DNA strands by topo- information. When cells enter mitosis, chromatin becomes logically entrapping DNA. How this activity shapes chro- compacted to form mitotic chromosomes. Chromosome mosomes is not yet understood. Recent high throughput condensation, the gross morphological change of spatial chromosome conformation capture studies revealed how chromatin organization in mitosis, is indispensable for chromatin is reorganized during the cell cycle and have the faithful inheritance of genetic information.
    [Show full text]
  • CURRICULUM VITAE Laura Finzi
    CURRICULUM VITAE Laura Finzi Physics Department, Emory University e-mail: [email protected] 400 Dowman Dr, Atlanta, GA 30322 http://www.physics.emory.edu/faculty/finzi/ tel. 404-727-4930 ; fax: 404-727-0873 EDUCATION_________________________________________________________________________________ 1990 Ph.D. in Chemistry, University of New Mexico, Albuquerque, NM. (Advisor: Carlos Bustamante) 1987 Master's in Chemistry, University of New Mexico, Albuquerque, NM. 1984 Laurea in Industrial Chemistry, University of Bologna, Bologna, Italy. 1979 Diploma from Liceo Classico "M. Minghetti" (High School diploma), Bologna, Italy. PROFESSIONAL ACTIVITY____________________________________________________________________ September 2012 - present: Full Professor, Physics Department, Emory University. July 2005-August 2012: Associate Professor, Physics Department, Emory University. June 1999-June 2005: Tenured Researcher and Group Leader, Biology Dept, University of Milano, Italy. 1993-May 1999: Researcher (tenured in ’96), Biology Dept, University of Milan, Italy. 1992-1993: Post Doctoral Fellow, Biochemistry Dept., Brandeis University (Mentor: Jeff Gelles). 1990-1991: Post Doctoral Fellow, Chem. Dept., University of New Mexico (October-December 1990), Institute of Molecular Biology, University of Oregon (January-December 1991) (Carlos Bustamante group). HONORS and AWARDS________________________________________________________________________ 2018: Recognized for “Excellent Teaching” by Phi Beta Kappa Mentee. Ceremony held on 4/10 in Cannon Chapel.
    [Show full text]
  • 3718 Issue63july2010 1.Pdf
    Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 1 JULYJULLYY 2010 | ISSUEISSUE 63 GENETICSGENNETICSS SOCIETYSOCIEETY NENEWSEWS In this issue The Genetics Society NewsNewws is edited by U Genetics Society PresidentPresident Honoured Honoured ProfProf David Hosken and items ittems for future future issues can be sent to thee editor,editor, preferably preferably U Mouse Genetics Meeting by email to [email protected],D.J.Hosken@@exeter.ac.uk, or U SponsoredSponsored Meetings Meetings hardhard copy to Chair in Evolutionary Evoolutionary Biology, Biology, UniversityUniversity of Exeter,Exeter, Cornwall Cornnwall Campus, U The JBS Haldane LectureLecture Tremough,Tremough, Penryn, TR10 0 9EZ UK.UK. The U Schools Evolutionn ConferenceConference Newsletter is published twicet a year,year, with copy dates of 1st June andand 26th November.November. U TaxiTaxi Drivers The British YeastYeaste Group Group descend on Oxford Oxford for their 2010 meeting: m see the reportreport on page 35. 3 Image © Georgina McLoughlin Issue 63.qxd:Genetic Society News 1/10/10 14:41 Page 2 A WORD FROM THE EDITOR A word from the editor Welcome to issue 63. In this issue we announce a UK is recognised with the award of a CBE in the new Genetics Society Prize to Queen’s Birthday Honours, tells us about one of Welcome to my last issue as join the medals and lectures we her favourite papers by Susan Lindquist, the 2010 editor of the Genetics Society award. The JBS Haldane Mendel Lecturer. Somewhat unusually we have a News, after 3 years in the hot Lecture will be awarded couple of Taxi Drivers in this issue – Brian and seat and a total of 8 years on annually to recognise Deborah Charlesworth are not so happy about the committee it is time to excellence in communicating the way that the print media deals with some move on before I really outstay aspects of genetics research to scientific issues and Chris Ponting bemoans the my welcome! It has been a the public.
    [Show full text]
  • The Excludon: a New Concept in Bacterial Antisense RNA-Mediated
    Nature Reviews Microbiology | AOP, published online 24 December 2013; doi:10.1038/nrmicro2934 PROGRESS this paradigm in the context of other, better characterized asRNA-mediated regulatory The excludon: a new concept in mechanisms. The excludon concept describes unusually long asRNAs that inhibit the bacterial antisense RNA-mediated expression of one group of genes while enhancing the expression of a second group gene regulation of genes. Thus, single transcripts have the ability to control divergent operons that often have opposing functions. Nina Sesto, Omri Wurtzel, Cristel Archambaud, Rotem Sorek and Pascale Cossart asRNAs in microbial transcriptomes Abstract | In recent years, non-coding RNAs have emerged as key regulators of gene asRNAs are encoded on one strand of the DNA and overlap a gene that is encoded on expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly the opposite strand. Therefore, these cis- abundant, but in most cases the function and mechanism of action for a particular encoded asRNAs have perfect complementa‑ asRNA remains elusive. Here, we highlight a recently discovered paradigm termed rity to the sense transcript from the opposite the excludon, which defines a genomic locus encoding an unusually long asRNA that DNA strand. The regulatory role of asRNAs spans divergent genes or operons with related or opposing functions. Because these was first reported more than 30 years ago, in the case of plasmid- and transposon-encoded asRNAs can inhibit the expression of one operon while functioning as an mRNA for asRNAs in Escherichia coli, when the asRNAs the adjacent operon, they act as fine-tuning regulatory switches in bacteria.
    [Show full text]
  • NCI Laboratory of Molecular Biology Oral History Project Interview #1 with Dr
    NCI Laboratory of Molecular Biology Oral History Project Interview #1 with Dr. Sankar L. Adhya Conducted on October 1, 2008, by Jason Gart JG: My name is Jason Gart and I am a senior historian and History Associates Incorporated in Rockville, Maryland. Today’s date is October 1, 2008, and we are in the offices of the National Institutes of Health in Bethesda, Maryland. Please state your full name and also spell it. SA: Sankar Adhya. S-A-N-K-A-R—A-D-H-Y-A. JG: Terrific, thank you. The subject of this interview is the Laboratory of Molecular Biology. Established in 1970, the Laboratory of Molecular Biology (LMB), Center for Cancer Research, National Cancer Institute, National Institutes of Health, currently has among its ten groups four members of the National Academy of Sciences. LMB has trained many other prominent scientists and its researchers have contributed both to basic science and to novel applied cancer treatments. LMB has initiated this oral history project to capture recollections of prominent scientists currently and formerly associated with the laboratory. To begin please talk about where you were born and your interests as a child. Explain your family background and what your parents did for a living? Interview #1 with Dr. Sankar L. Adhya, October 1, 2008 2 SA: I was born in Kolkata (Calcutta), India, in a large family where my father lived with many other members of his family, like his brothers and so on. My father was a lawyer, my mother was a housewife. I grew up in a family mostly involved in law or real estate business and no scientists.
    [Show full text]
  • 158273472.Pdf
    ANNUAL .2003REPCOLD SPRING HARBOR LABORATORY .1; ANNUAL REPORT 2003 © 2004 by Cold Spring Harbor Laboratory Cold Spring Harbor Laboratory One Bungtown Road Cold Spring Harbor, New York 11724 Web Site: www.cshl.edu Managing Editors Jeff Picarello, Lisa Becker Production Editor Rena Steuer Copy Editor Dorothy Brown Development Manager Jan Argentine Project Coordinators Maria Falasca, Nora Rice Production Manager Denise Weiss Desktop Editor Susan Schaefer Nonscientific Photography Miriam Chua, Bill Geddes Cover Designer Denise Weiss Book Designer Emily Harste Front cover: McClintock Laboratory (right) and Carnegie Library (left) (photos by Miriam Chua) Back cover: Magnolia Kobus on grounds of Cold Spring Harbor Laboratory (photo by Bruce Stillman) Section title pages: Miriam Chua Contents Officers of the Corporation/Board of Trusteesiv-v Governancevi Committees vii Edwin Marks (1926-2003) viii PRESIDENT'S REPORT Highlights5 CHIEF OPERATING OFFICER'S REPORT 25 50TH ANNIVERSARY OF THE DOUBLE HELIX 29 RESEARCH 47 Cancer: Gene Expression 49 Cancer: Genetics 74 Cancer: Cell Biology 106 Bioinformatics and Genomics 134 Neuroscience152 Plant Development and Genetics 199 CSHL Fellows 212 Author Index 217 WATSON SCHOOL OF BIOLOGICAL SCIENCES 219 Dean's Report 221 Courses 238 Undergraduate Research Program245 Partners for the Future 248 Nature Study 249 COLD SPRING HARBOR LABORATORY MEETINGS AND COURSES 251 Academic Affairs253 Symposium on Quantitative Biology 255 Meetings 258 Postgraduate Courses295 Seminars 353 BANBURY CENTER 355 Director's Report357 Meetings 365 DOLAN DNA LEARNING CENTER 403 Director's Report 405 Workshops, Meetings, and Collaborations 418 COLD SPRING HARBOR LABORATORY PRESS 425 Publications 426 Executive Director's Report 427 FINANCE 431 History of the CSHL Endowment 433 Financial Statements 444 Financial Support448 Grants448 Institutional Advancement 457 Capital and Program Contributions 458 Watson School of Biological Sciences Capital Campaign 459 Annual Contributions 460 LABORATORY STAFF 474 III Officers of the Corporation William R.
    [Show full text]
  • Consciousness, Accessibility, and the Mesh Between Psychology and Neuroscience
    BEHAVIORAL AND BRAIN SCIENCES (2007) 30, 481–548 Printed in the United States of America doi: 10.1017/S0140525X07002786 Consciousness, accessibility, and the mesh between psychology and neuroscience Ned Block Department of Philosophy, New York University, New York, NY 10003 [email protected] Abstract: How can we disentangle the neural basis of phenomenal consciousness from the neural machinery of the cognitive access that underlies reports of phenomenal consciousness? We see the problem in stark form if we ask how we can tell whether representations inside a Fodorian module are phenomenally conscious. The methodology would seem straightforward: Find the neural natural kinds that are the basis of phenomenal consciousness in clear cases – when subjects are completely confident and we have no reason to doubt their authority – and look to see whether those neural natural kinds exist within Fodorian modules. But a puzzle arises: Do we include the machinery underlying reportability within the neural natural kinds of the clear cases? If the answer is “Yes,” then there can be no phenomenally conscious representations in Fodorian modules. But how can we know if the answer is “Yes”? The suggested methodology requires an answer to the question it was supposed to answer! This target article argues for an abstract solution to the problem and exhibits a source of empirical data that is relevant, data that show that in a certain sense phenomenal consciousness overflows cognitive accessibility. I argue that we can find a neural realizer of this overflow if we assume that the neural basis of phenomenal consciousness does not include the neural basis of cognitive accessibility and that this assumption is justified (other things being equal) by the explanations it allows.
    [Show full text]