The Excludon: a New Concept in Bacterial Antisense RNA-Mediated

Total Page:16

File Type:pdf, Size:1020Kb

The Excludon: a New Concept in Bacterial Antisense RNA-Mediated Nature Reviews Microbiology | AOP, published online 24 December 2013; doi:10.1038/nrmicro2934 PROGRESS this paradigm in the context of other, better characterized asRNA-mediated regulatory The excludon: a new concept in mechanisms. The excludon concept describes unusually long asRNAs that inhibit the bacterial antisense RNA-mediated expression of one group of genes while enhancing the expression of a second group gene regulation of genes. Thus, single transcripts have the ability to control divergent operons that often have opposing functions. Nina Sesto, Omri Wurtzel, Cristel Archambaud, Rotem Sorek and Pascale Cossart asRNAs in microbial transcriptomes Abstract | In recent years, non-coding RNAs have emerged as key regulators of gene asRNAs are encoded on one strand of the DNA and overlap a gene that is encoded on expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly the opposite strand. Therefore, these cis- abundant, but in most cases the function and mechanism of action for a particular encoded asRNAs have perfect complementa‑ asRNA remains elusive. Here, we highlight a recently discovered paradigm termed rity to the sense transcript from the opposite the excludon, which defines a genomic locus encoding an unusually long asRNA that DNA strand. The regulatory role of asRNAs spans divergent genes or operons with related or opposing functions. Because these was first reported more than 30 years ago, in the case of plasmid- and transposon-encoded asRNAs can inhibit the expression of one operon while functioning as an mRNA for asRNAs in Escherichia coli, when the asRNAs the adjacent operon, they act as fine-tuning regulatory switches in bacteria. RNAI and CopA were found to negatively regulate plasmid copy number12,13; a few The operon model, proposed in a seminal defined as regulators of one or several target years later, RNA-OUT was found to regulate review paper in 1961 by Jacques Monod genes located elsewhere on the chromosome; the transposition of the transposon Tn10 and Francois Jacob1, laid the foundation and cis-encoded antisense RNAs (asRNAs), by repressing synthesis of the transposase14. for understanding the principles of gene which overlap and are complementary to Following this, chromosomally encoded regulation in bacteria. In this model, the their target genes encoded on the opposite asRNAs were only rarely identified and con‑ two researchers envisioned multigene tran‑ DNA strand of the same genomic locus. The sidered to be exceptions rather than the rule. scriptional units for which expression is regulatory function of non-coding RNAs is Indeed, by 2007, only about ten bacterial co‑regulated by a repressor. Although the often tightly associated with the activity of asRNAs had been described15. The number repressor was originally predicted to be an RNases (enzymes that cleave RNA and are of reported asRNAs has recently exploded RNA molecule, the discovery that the Lac involved in RNA processing, degradation with the emergence of high-throughput repressor was a protein oriented studies on and quality control). Following an interac‑ RNA-seq (RNA sequencing) and tiling array bacterial gene regulation towards protein tion with its target transcript, a non-coding studies, which have revealed an unexpected regulators. However, the interest in RNA- RNA can recruit a particular RNase and abundance of hundreds of asRNA tran‑ mediated regulation in bacteria re‑emerged promote specific cleavage and degradation scripts in microbial transcriptomes. These a decade ago, when it became clear that RNA of the transcript. Alternatively, a non-coding asRNAs were found in a wide range of molecules do have important regulatory RNA can prevent transcript recognition bacteria and archaea, such as Mycoplasma roles. Today, the function of non-coding by RNases and protect the transcript from pneumoniae16, Sulfolobus solfataricus17, regulatory RNAs is widely studied, and degradation, thereby increasing the stability Helicobacter pylori 18, Synechocystis sp. RNAs are increasingly being recognized as of the target RNA in the cell4. The numerous PCC 6803 (REF. 19), Listeria spp.10,20,21, Bacillus key regulators of metabolic, physiological studies on trans-encoded sRNAs and regula‑ subtilis22, Salmonella enterica subsp. enterica and pathogenic processes, as well as compo‑ tory 5′ UTR elements have been recently serovar Typhimurium23, Agrobacterium nents of bacterial adaptive immunity, such as reviewed5–7. The less studied, asRNA- tumefaciens24, Pseudomonas aeruginosa25 and the recently characterized CRISPR (clustered mediated mechanisms of gene regulation others. The asRNAs identified in these spe‑ regularly interspaced short palindromic have also been reviewed8,9; however, this is cies overlap 1–25% of protein-coding genes repeats) elements2,3. a fast-moving field, and a novel mechanism and up to 46% in H. pylori 18. Bacterial regulatory RNAs are generally of asRNA-mediated regulation has recently Our current knowledge of asRNAs is classified into three main groups: elements emerged from transcriptomic studies in largely descriptive and relates to their size that are present in the 5′ UTR of the mRNA Listeria spp.10,11. In this Progress article, we and genomic organization, but in most which they regulate (for example, riboswitches, present our current knowledge of what cases not their function. Generally, asR‑ thermosensors and pH sensors); trans- we have termed the excludon paradigm of NAs exist as autonomous transcripts with encoded small RNAs (sRNAs), which are asRNA-mediated gene regulation11 and put promoters located on the DNA strand NATURE REVIEWS | MICROBIOLOGY ADVANCE ONLINE PUBLICATION | 1 © 2013 Macmillan Publishers Limited. All rights reserved PROGRESS a Short and long asRNAs orfA mRNA orfABCD mRNA P orfA P orfA orfB orfC orfD P P asRNA asRNA b Overlapping UTRs acting as asRNAs orfA mRNA orfA mRNA P orfA orfA P orfB P P orfB Antisense 3ʹ UTR orfB mRNA Antisense 5ʹ UTR orfB mRNA Figure 1 | Various types of bacterial antisense RNAs. Antisense RNAs respectively. a | Short asRNAs overlap one sense ORF, whereas long asRNAs (asRNAs) exist as autonomous transcripts of various sizes. Promoter (P) overlap several sense ORFs. b | An asRNA toNature a particular Reviews gene | Microbiology can also result regions are indicated, blue arrows represent annotated protein-coding from a long 3′ UTR (left) or 5′ UTR (right) of the mRNA transcribed from a genes (ORFs), and red and orange arrows depict mRNA and asRNA, neighbouring gene. opposite to the ORF of the sense transcript Despite the growing collection of asRNAs a regulatory role, and the asRNA is merely a (FIG. 1a). These RNAs vary greatly in size, reported in bacteria and archaea, the exact by-product. This interference mechanism ranging from short transcripts, such as the functions of the vast majority of these tran‑ is exemplified by the convergent lytic pro‑ 77‑nucleotide (nt) SymR asRNA that over‑ scripts are largely unknown32, and it is still a moter (pR) and lysogenic promoter (pL) of laps the SOS-induced gene encoding the matter of debate whether all asRNAs func‑ coliphage 186 (FIG. 2a). These promoters endoribonuclease toxin SymE in E. coli 26 tion as regulatory RNAs or whether some generate transcripts that overlap by 62 nt. (discussed later), to long transcripts that can of them represent transcriptional noise or The transcriptional activity of pR is intrinsi‑ reach several kilobases in size. For example, experimental artefacts8,33. Below, we summa‑ cally stronger than the activity of the weaker in Listeria monocytogenes, the 2 kb asRNA rize our current knowledge of those asRNAs pL promoter: RNA polymerase binds to pL Anti2095 overlaps four genes (lmo2095, with defined effects and mechanisms of efficiently, but is slow to switch from an lmo2096, lmo2097 and lmo2098, encoding action. We then discuss the excludon con‑ open complex to an elongating complex. a putative phosphofructokinase and three cept and describe two examples for which By altering the arrangement of the two pro‑ components of the galactitol-specific experiments support their role as molecular moters or terminating transcription from phosphotransferase system, respectively)10, switches. pR before the RNA polymerase reached pL, and in Prochlorococcus sp. MED4, a 7 kb Callen et al. demonstrated that the transcrip‑ asRNA overlaps 14 genes, including several Mechanisms of asRNA-mediated regulation tion complex originating from the stronger ribosomal protein genes, belonging to two An asRNA can affect the expression of its pR promoter elongates over pL and displaces adjacent operons spanning ORFs PMM1533 complementary gene at the levels of tran‑ the slower pL‑bound polymerase complex, to PMM1558 (REF. 27). scription, mRNA stability or translation. resulting in a 5.6‑fold reduction in activity Moreover, asRNAs can originate from Well-studied examples are described below at pL. The authors termed this phenomenon long 5′ or 3′ UTRs of mRNAs that overlap and depicted in FIG. 2. the sitting-duck mechanism of transcrip‑ one or several genes encoded on the oppo‑ tion interference34. Another mechanism of site strand (FIG. 1b). In cyanobacteria of the Regulation of transcription. asRNAs regu‑ interference involves the head‑on collision genus Anabaena, the long 3′ UTR of the late transcription of the complementary of the two converging elongation complexes, alr1690 gene (encoding a putative cell wall- mRNA by two main mechanisms: tran‑ leading to premature termination of one or binding protein) extends
Recommended publications
  • Trans-Acting Antisense Rnas Mediate Transcriptional Gene Cosuppression in S
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae Jurgi Camblong,1 Nissrine Beyrouthy, Elisa Guffanti, Guillaume Schlaepfer, Lars M. Steinmetz,2 and Francxoise Stutz3 Department of Cell Biology and NCCR ‘‘Frontiers in Genetics’’ Program, University of Geneva, 1211 Geneva 4, Switzerland Homology-dependent gene silencing, a phenomenon described as cosuppression in plants, depends on siRNAs. We provide evidence that in Saccharomyces cerevisiae, which is missing the RNAi machinery, protein coding gene cosuppression exists. Indeed, introduction of an additional copy of PHO84 on a plasmid or within the genome results in the cosilencing of both the transgene and the endogenous gene. This repression is transcriptional and position-independent and requires trans-acting antisense RNAs. Antisense RNAs induce transcriptional gene silencing both in cis and in trans, and the two pathways differ by the implication of the Hda1/2/3 complex. We also show that trans-silencing is influenced by the Set1 histone methyltransferase, which promotes antisense RNA production. Finally we show that although antisense-mediated cis-silencing occurs in other genes, trans- silencing so far depends on features specific to PHO84. All together our data highlight the importance of noncoding RNAs in mediating RNAi-independent transcriptional gene silencing. [Keywords: Antisense RNA; cis and trans transcriptional gene silencing; PHO84; cosuppression; RNAi-independent TGS; noncoding RNA; S. cerevisiae] Supplemental material is available at http://www.genesdev.org. Received January 15, 2009; revised version accepted May 18, 2009. Eukaryotic gene expression is a complex process regu- recently reported (Camblong et al.
    [Show full text]
  • Annual Conference Abstracts
    ANNUAL CONFERENCE 14-17 April 2014 Arena and Convention Centre, Liverpool ABSTRACTS SGM ANNUAL CONFERENCE APRIL 2014 ABSTRACTS (LI00Mo1210) – SGM Prize Medal Lecture (LI00Tu1210) – Marjory Stephenson Climate Change, Oceans, and Infectious Disease Prize Lecture Dr. Rita R. Colwell Understanding the basis of antibiotic resistance University of Maryland, College Park, MD, USA as a platform for early drug discovery During the mid-1980s, satellite sensors were developed to monitor Laura JV Piddock land and oceans for purposes of understanding climate, weather, School of Immunity & Infection and Institute of Microbiology and and vegetation distribution and seasonal variations. Subsequently Infection, University of Birmingham, UK inter-relationships of the environment and infectious diseases Antibiotic resistant bacteria are one of the greatest threats to human were investigated, both qualitatively and quantitatively, with health. Resistance can be mediated by numerous mechanisms documentation of the seasonality of diseases, notably malaria including mutations conferring changes to the genes encoding the and cholera by epidemiologists. The new research revealed a very target proteins as well as RND efflux pumps, which confer innate close interaction of the environment and many other infectious multi-drug resistance (MDR) to bacteria. The production of efflux diseases. With satellite sensors, these relationships were pumps can be increased, usually due to mutations in regulatory quantified and comparatively analyzed. More recent studies of genes, and this confers resistance to antibiotics that are often used epidemic diseases have provided models, both retrospective and to treat infections by Gram negative bacteria. RND MDR efflux prospective, for understanding and predicting disease epidemics, systems not only confer antibiotic resistance, but altered expression notably vector borne diseases.
    [Show full text]
  • Exploring the Structure of Long Non-Coding Rnas, J
    IMF YJMBI-63988; No. of pages: 15; 4C: 3, 4, 7, 8, 10 1 2 Rise of the RNA Machines: Exploring the Structure of 3 Long Non-Coding RNAs 4 Irina V. Novikova, Scott P. Hennelly, Chang-Shung Tung and Karissa Y. Sanbonmatsu Q15 6 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 7 Correspondence to Karissa Y. Sanbonmatsu: [email protected] 8 http://dx.doi.org/10.1016/j.jmb.2013.02.030 9 Edited by A. Pyle 1011 12 Abstract 13 Novel, profound and unexpected roles of long non-coding RNAs (lncRNAs) are emerging in critical aspects of 14 gene regulation. Thousands of lncRNAs have been recently discovered in a wide range of mammalian 15 systems, related to development, epigenetics, cancer, brain function and hereditary disease. The structural 16 biology of these lncRNAs presents a brave new RNA world, which may contain a diverse zoo of new 17 architectures and mechanisms. While structural studies of lncRNAs are in their infancy, we describe existing 18 structural data for lncRNAs, as well as crystallographic studies of other RNA machines and their implications 19 for lncRNAs. We also discuss the importance of dynamics in RNA machine mechanism. Determining 20 commonalities between lncRNA systems will help elucidate the evolution and mechanistic role of lncRNAs in 21 disease, creating a structural framework necessary to pursue lncRNA-based therapeutics. 22 © 2013 Published by Elsevier Ltd. 24 23 25 Introduction rather than the exception in the case of eukaryotic 50 organisms. 51 26 RNA is primarily known as an intermediary in gene LncRNAs are defined by the following: (i) lack of 52 11 27 expression between DNA and proteins.
    [Show full text]
  • Female Fellows of the Royal Society
    Female Fellows of the Royal Society Professor Jan Anderson FRS [1996] Professor Ruth Lynden-Bell FRS [2006] Professor Judith Armitage FRS [2013] Dr Mary Lyon FRS [1973] Professor Frances Ashcroft FMedSci FRS [1999] Professor Georgina Mace CBE FRS [2002] Professor Gillian Bates FMedSci FRS [2007] Professor Trudy Mackay FRS [2006] Professor Jean Beggs CBE FRS [1998] Professor Enid MacRobbie FRS [1991] Dame Jocelyn Bell Burnell DBE FRS [2003] Dr Philippa Marrack FMedSci FRS [1997] Dame Valerie Beral DBE FMedSci FRS [2006] Professor Dusa McDuff FRS [1994] Dr Mariann Bienz FMedSci FRS [2003] Professor Angela McLean FRS [2009] Professor Elizabeth Blackburn AC FRS [1992] Professor Anne Mills FMedSci FRS [2013] Professor Andrea Brand FMedSci FRS [2010] Professor Brenda Milner CC FRS [1979] Professor Eleanor Burbidge FRS [1964] Dr Anne O'Garra FMedSci FRS [2008] Professor Eleanor Campbell FRS [2010] Dame Bridget Ogilvie AC DBE FMedSci FRS [2003] Professor Doreen Cantrell FMedSci FRS [2011] Baroness Onora O'Neill * CBE FBA FMedSci FRS [2007] Professor Lorna Casselton CBE FRS [1999] Dame Linda Partridge DBE FMedSci FRS [1996] Professor Deborah Charlesworth FRS [2005] Dr Barbara Pearse FRS [1988] Professor Jennifer Clack FRS [2009] Professor Fiona Powrie FRS [2011] Professor Nicola Clayton FRS [2010] Professor Susan Rees FRS [2002] Professor Suzanne Cory AC FRS [1992] Professor Daniela Rhodes FRS [2007] Dame Kay Davies DBE FMedSci FRS [2003] Professor Elizabeth Robertson FRS [2003] Professor Caroline Dean OBE FRS [2004] Dame Carol Robinson DBE FMedSci
    [Show full text]
  • Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression
    Vol. 1:7-15 Antisense RNA Insert Design for Plasmid Construction to Knockdown Target Gene Expression Ji, Tom, Lu, Aneka, Wu, Kaylee Department of Microbiology and Immunology, University of British Columbia Regulatory RNA molecules are common tools used in bacterial gene regulation. This paper focuses on the steps in designing an antisense RNA component for insertion into a plasmid in order to silence a gene in the plasmid host cell. By hybridizing to the ribosomal binding site of the target gene mRNA transcript, the antisense RNA transcript from the plasmid is able to inhibit gene translation and lead to eventual mRNA degradation. By regulating or silencing the gene of interest, further experiments could be used to confirm or reject proposed roles for undefined genes. In this paper, wecD silencing using pHN678 plasmid in Escherichia Coli will be used as an example. The design of the antisense RNA component involves three main steps: identification of the gene of interest, selection of the antisense target sequence of the gene, and modification of the target sequence to generate the antisense sequence. In addition, a sense RNA insert could be used as an orientation control in the experiment. The vector plasmid without any sequence insertion should also be included as a negative control. As a result, a successfully designed antisense RNA insert should allow knockdown of the target gene through hybridization to the mRNA transcript and therefore inhibiting gene translation. INTRODUCTION Bacteria possess many diverse means of gene regulation regions containing the ribosomal binding site (RBS) and using RNA molecules. More specifically, RNA the start site of the wecD mRNA.
    [Show full text]
  • Assembly and Function of Gonad-Specific Non-Membranous
    non-coding RNA Review Assembly and Function of Gonad-Specific Non-Membranous Organelles in Drosophila piRNA Biogenesis Shigeki Hirakata and Mikiko C. Siomi * Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5841-4386 Received: 27 September 2019; Accepted: 4 November 2019; Published: 6 November 2019 Abstract: PIWI-interacting RNAs (piRNAs) are small non-coding RNAs that repress transposons in animal germlines. This protects the genome from the invasive DNA elements. piRNA pathway failures lead to DNA damage, gonadal development defects, and infertility. Thus, the piRNA pathway is indispensable for the continuation of animal life. piRNA-mediated transposon silencing occurs in both the nucleus and cytoplasm while piRNA biogenesis is a solely cytoplasmic event. piRNA production requires a number of proteins, the majority of which localize to non-membranous organelles that specifically appear in the gonads. Other piRNA factors are localized on outer mitochondrial membranes. In situ RNA hybridization experiments show that piRNA precursors are compartmentalized into other non-membranous organelles. In this review, we summarize recent findings about the function of these organelles in the Drosophila piRNA pathway by focusing on their assembly and function. Keywords: PIWI; piRNA; transposon; Yb body; Flam body; Dot COM; nuage; mitochondrion; Drosophila; ovary 1. Introduction piRNAs are 24–35-nucleotide (nt) long non-coding RNAs that specifically associate with members of the PIWI subclade of the Argonaute protein family in a stoichiometric manner [1–7]. The association between PIWI and piRNA produces the piRNA-induced silencing complex (piRISC), the core engine of piRNA-mediated transposon silencing.
    [Show full text]
  • From Telomeres to Empathy Highlights from the EMBO Meeting 2010 by CRISTINA JIMÉNEZ
    AUTUMN 2010 encounters Newsletter of the European Molecular Biology Organization From telomeres to empathy Highlights from The EMBO Meeting 2010 BY CRISTINA JIMÉNEZ ◗ In the early 1980s, after a meeting at the Gordon Research Conference, Elizabeth Blackburn and Jack Szostak discovered that telo meres include a specifi c DNA sequence. 29 years on, the fortuitous encounter resulted in a Nobel Prize for discovering the structure Elizabeth Frans de Waal Blackburn of molecular caps called telomeres and for working out how they protect chromosomes from degradation. This is only one fi brillation, a condition in Richard example of how necessary meetings can be for the advancement of sci- which there is uncoordinated Losick ence. They provide a perfect setting for junior researchers to approach contraction of the cardiac prospective supervisors – and vice versa. They can lead to new part- muscle of the ventricles in the nerships between research groups working in similar fi elds. And they heart, making them quiver also inspire open discussion and collaboration between institutions. rather than contract properly. The EMBO Meeting, held in September in Barcelona, gathered more Haïssaguerre explained how than 1,300 researchers from a broad scope of disciplines, extending he is currently having great from synthetic, developmental and evolutionary biologists to plant success in curing hundreds of scientists and neuroscientists. “Postdocs and PhD students are the patients every year from this main benefi ciaries of these meetings,” pointed out Luis Serrano, who sort of arrhythmia. Austin co-organized the meeting with Denis Duboule. Smith, the other prize winner, | Barcelona © Christine Panagiotidis The meeting kicked off on Saturday 4 September with Richard Losick gave a lecture on stem cells and the Design principles of pluripotency.
    [Show full text]
  • Smutty Alchemy
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2021-01-18 Smutty Alchemy Smith, Mallory E. Land Smith, M. E. L. (2021). Smutty Alchemy (Unpublished doctoral thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/113019 doctoral thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Smutty Alchemy by Mallory E. Land Smith A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN ENGLISH CALGARY, ALBERTA JANUARY, 2021 © Mallory E. Land Smith 2021 MELS ii Abstract Sina Queyras, in the essay “Lyric Conceptualism: A Manifesto in Progress,” describes the Lyric Conceptualist as a poet capable of recognizing the effects of disparate movements and employing a variety of lyric, conceptual, and language poetry techniques to continue to innovate in poetry without dismissing the work of other schools of poetic thought. Queyras sees the lyric conceptualist as an artistic curator who collects, modifies, selects, synthesizes, and adapts, to create verse that is both conceptual and accessible, using relevant materials and techniques from the past and present. This dissertation responds to Queyras’s idea with a collection of original poems in the lyric conceptualist mode, supported by a critical exegesis of that work.
    [Show full text]
  • A N N U a L R E P O R T 2 0
    0 1 0 2 Acknowledgements T R HFSPO is grateful for the support of the following organizations: O P Australia E R National Health and Medical Research Council (NHMRC) L Canada A Canadian Institute of Health Research (CIHR) U Natural Sciences and Engineering Research Council (NSERC) N European Union N European Commission - A Directorate General Information Society (DG INFSO) European Commission - Directorate General Research (DG RESEARCH) France Communauté Urbaine de Strasbourg (CUS) Ministère des Affaires Etrangères et Européennes (MAEE) Ministère de l’Enseignement Supérieur et de la Recherche (MESR) Région Alsace Germany Federal Ministry of Education and Research (BMBF) India Department of Biotechnology (DBT), Ministry of Science and Technology Italy Ministry of Education, University and Research (CNR) Japan Ministry for Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Republic of Korea Ministry of Education, Science and Technology (MEST) New Zealand Health Research Council (HRC) Norway Research Council of Norway (RCN) Switzerland State Secretariat for Education and Research (SER) United Kingdom The International Human Frontier Science Biotechnology and Biological Sciences Research Program Organization (HFSPO) Council (BBSRC) 12 quai Saint Jean - BP 10034 Medical Research Council (MRC) 67080 Strasbourg CEDEX - France Fax. +33 (0)3 88 32 88 97 United States of America e-mail: [email protected] National Institutes of Health (NIH) Web site: www.hfsp.org National Science Foundation (NSF) Japanese web site: http://jhfsp.jsf.or.jp HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontiers of the life sciences.
    [Show full text]
  • The Specifics of Small Interfering RNA Specificity
    COMMENTARY The specifics of small interfering RNA specificity Andrew Dillin* Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 he discovery of transgene silenc- ing in plants and double- stranded RNA (dsRNA) inter- ference in the worm TCaenorhabditis elegans has led to the latest revolution in molecular biology, RNA interference (RNAi). Over 10 years ago it was noted that several trans- genic plant lines each containing the same ectopic transgene not only failed to be expressed but also inhibited the expression of the endogenous gene (1). Similarly, a determined Craig Mello and Andy Fire (2), attempting to reduce gene function using antisense RNA in the worm, discovered a minor contami- nant in their antisense RNA prepara- tions effectively and repeatedly reduced expression of the endogenous gene. In both cases, dsRNA homologous to the gene of interest was responsible for these observations. In the last 4 years, these discoveries have been extended to include protozoa, fungi, and mammals. What is RNAi? RNAi is a highly con- served mechanism found in almost all eukaryotes and believed to serve as an antiviral defense mechanism. The mo- lecular details are becoming clear from combined genetic and biochemical ap- proaches (reviewed in refs. 3 and 4). On entry into the cell, the dsRNA is cleaved by an RNase III like enzyme, Dicer, into small interfering (21- to 23- nt) RNAs (siRNAs) (5–8) (Fig. 1). Bio- chemical evidence indicates the siRNAs are incorporated into a multisubunit protein complex, the RNAi-induced si- Fig. 1.
    [Show full text]
  • Silent Mutations in the Escherichia Coli Ompa Leader Peptide Region
    4778–4782 Nucleic Acids Research, 1998, Vol. 26, No. 20 1998 Oxford University Press Silent mutations in the Escherichia coli ompA leader peptide region strongly affect transcription and translation in vivo Atilio Deana1,*, Ricardo Ehrlich1 and Claude Reiss Centre de Génétique Moléculaire, Laboratoire Structure et Dynamique du Génome, CNRS, F91198 Gif-sur-Yvette, France and 1Sección Bioquímica, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay Received January 6, 1998; Revised May 18, 1998; Accepted August 26, 1998 ABSTRACT traffic of ribosomes on the mRNA. Accordingly, passage from a segment carrying frequent codons to one carrying rare codons In order to test the effect of silent mutations on the would provide a bottleneck to ribosome traffic and could produce regulation of gene expression, we monitored several jamming, which in turn could reduce the level of gene expression steps of transcription and translation of the ompA and waste part of the cellular resources invested. gene in vivo, in which some or all codons between The ompA gene of E.coli exhibits a strong bias for major codons codons 6 and 14, frequently used in Escherichia coli, and is expressed at a high level (3% of total soluble protein). We had been exchanged for infrequent synonymous focus here on the possible effects due to major to minor codons. Northern blot analysis revealed an up to 4-fold synonymous codon exchanges near the N-terminus of the ompA reduction in the half-life of the mutated messengers and coding sequence. Introduction of slow codons at the very a >10-fold reduction in their steady-state amounts.
    [Show full text]
  • Green Biotechnology: Kill Or Cure?
    issue 11 winter 2008|2009 promoting excellence in the molecular life sciences in europe Dear Reader, Green biotechnology: kill or cure? Recognising excellence is core to EMBO – the member- ship has been doing just that since nomination of the fi rst 200 EMBO Members in the 1960’s. This year again we welcome newly elected members to EMBO (see page 4). And we congratulate Luc Montagnier, Roger Tsien and Harald zur Hausen – EMBO Members awarded The Nobel Prize this year. The discipli- nary breadth of molecular life sciences is much broader today than it was some 40 years ago. For this reason, a modifi ed member election procedure was adopted – see page 5. You may have noticed some changes to format in this issue of EMBOencounters: fi rst, you are hearing from me as Deputy Director – a role I share with EMBO Fellowships Programme Manager Jan Taplick. Secondly, we plan a lead story for each issue to highlight © www.goldenrice.org topics relevant to EMBO activities. Golden Rice could help prevent vitamin A defi ciency in the developing world. This issue’s lead story investigates today’s Soaring grain prices, high energy costs and increasingly louder riots on the streets of perceptions of the green revolution – the focus famine-stricken countries such as Haiti or Somalia are forcing politicians and the public of the next EMBO/EMBL Science & Society to reconsider their opposition to modern agriculture and crops created through breed- Conference. EMBO Science & Society aims to ing techniques that employ methods of molecular genetics. Will the fi erce opposition of create dialogue between policy makers and western countries to so-called genetically modifi ed (GM) crops eventually give way to the public and complements our numerous the acceptance that they might help tackle the global food crisis and even prevent some activities that share knowledge addressing the diseases? challenges of our changing world.
    [Show full text]