Hagerty Udel 0060M 14258.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hagerty Udel 0060M 14258.Pdf LIFE HISTORY INVESTIGATIONS OF HEMIPTERANS SELECTED FOR NON-TARGET HOST-SUITABILITY STUDIES OF THE SPOTTED LANTERNFLY (LYCORMA DELICATULA) BIOCONTROL AGENT ANASTATUS ORIENTALIS, WITH MOLECULAR INVESTIGATIONS OF LOCAL ANASTATUS TAXA by Tyler Hagerty A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Entomology Summer 2020 © 2020 Tyler Hagerty All Rights Reserved LIFE HISTORY INVESTIGATIONS OF HEMIPTERANS SELECTED FOR NON-TARGET HOST-SUITABILITY STUDIES OF THE SPOTTED LANTERNFLY (LYCORMA DELICATULA) BIOCONTROL AGENT ANASTATUS ORIENTALIS, WITH MOLECULAR INVESTIGATIONS OF LOCAL ANASTATUS TAXA by Tyler Hagerty Approved: __________________________________________________________ Charles Bartlett, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: __________________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: __________________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education and Dean of the Graduate College ACKNOWLEDGMENTS I would first like to thank my advisor, Dr. Charles Bartlett, for his continuous help and support through my time at the University of Delaware. His help and guidance helped shape and push my research forward, and his knowledge of Hemiptera was indispensable. His door was always open, and he was happy to listen to me complain about insects not laying eggs whenever I needed to. I would like to thank my committee members, Dr. Debbie Delaney of the University of Delaware, and Dr. Kim Hoelmer of the USDA ARS. Each helped me in numerous ways and offered assistance and support whenever I needed it. This project would not have been possible without their guidance. In addition I would like to thank the USDA (especially the USDA ARS BIIRU facility in Newark, DE and the Otis Laboratory in Buzzards Bay, MA) and the Farm Bill for providing funding for this research and allowing me to work with such interesting species. I would also like to thank Dr. Hannah Broadley and Dr. Juli Gould (USDA APHIS) for their help with multiple aspects of this research. Finally, I would like to thank all my colleagues and family, especially my wife Michelle, for their constant support and encouragement throughout my years of research. This thesis would not have been possible without them. iii TABLE OF CONTENTS LIST OF TABLES ........................................................................................................ vi LIST OF FIGURES ...................................................................................................... vii ABSTRACT .................................................................................................................. ix Chapter 1 THE ECOLOGY AND LIFE HISTORY OF THE INVASIVE SPOTTED LANTERNFLY (LYCORMA DELICATULA) ................................................... 1 2 GENETIC ANALYSIS OF THE GENUS ANASTATUS (HYMENOPTERA: EUPELMIDAE) ................................................................ 9 2.1 Literature Review for Anastatus ................................................................ 9 2.2 Methods ................................................................................................... 12 2.3 Results ..................................................................................................... 18 2.4 Discussion ................................................................................................ 20 3 TAXONOMY OF FOCAL HEMIPTERA AND REARING TECHNIQUES OF SEVERAL NATIVE HEMIPTERAN SPECIES TO BE USED IN NON-TARGET BIOLOGICAL CONTROL TESTS ...................................... 22 3.1 Family Choices for Non-Targets species ................................................ 22 3.2 Selection of Non-target Species for Collection and Evaluation .............. 23 3.3 Life History and Ecology of Non-Target Taxa ....................................... 25 3.4 Materials and Methods ............................................................................ 33 3.5 Results ..................................................................................................... 36 3.6 Discussion ................................................................................................ 54 REFERENCES ............................................................................................................. 67 Appendix A QIAGEN DNEASY BLOOD AND TISSUE KIT ........................................... 75 B SMALL GEL ELECTROPHORESIS METHODS .......................................... 77 C MEDIUM GEL ELECTROPHORESIS METHODS ...................................... 79 D QIAGEN PCR PURIFICATION METHODS ................................................. 81 E WB2 CO1 SEQUENCE ................................................................................... 82 iv F COLLECTING METHODS ............................................................................. 83 G REARING AND EGG COLLECTION METHODS ....................................... 88 H BEHAVIORAL OBSERVATIONS ................................................................. 94 v LIST OF TABLES Table 1. List of biological control agents for spotted lanternfly (all Hymenoptera) ...... 5 Table 2. Anastatus (Hymenoptera: Eupelmidae) species extracted with method ........ 18 Table 3. Pairwise distance for Anastatus reduvii CO1 sequences ................................ 19 Table 4. Species selected for non-target host suitability studies .................................. 34 Table 5. Rearing techniques summary ......................................................................... 35 Table 6. Collection results for species targeted for host suitability studies ................. 37 vi LIST OF FIGURES Figure 1. Adult spotted lanternfly (Lycorma delicatula) ................................................ 8 Figure 2. Covered Lycorma delicatula egg mass ........................................................... 8 Figure 3. Gel with DNA banding from Anastatus reduvii extraction .......................... 20 Figure 4. Adult female Anastatus reduvii ..................................................................... 21 Figure 5. Adult female Anastatus disparis ................................................................... 21 Figure 6. Adult Poblicia fuliginosa .............................................................................. 54 Figure 7. Adult Scolops sulcipes .................................................................................. 55 Figure 8. Adult Rhynchomitra microrhina on plant material in lab ............................. 55 Figure 9. Adult Flatormenis proxima ........................................................................... 55 Figure 10. Two adult Metcalfa pruinosa photographed in the field ............................. 56 Figure 11. Seven adult Ormenoides venusta photographed by Charles Bartlett .......... 56 Figure 12. Adult Acanalonia conica ............................................................................ 56 Figure 13. Four adult Acanalonia bivittata on Robinia pseudoacacia in rearing cage 57 Figure 14. Adult Aplos simplex .................................................................................... 57 Figure 15. Several Thelia bimaculata on Robinia pseudoacacia in the field in Delaware .................................................................................................. 57 Figure 16. Two adult Anasa tristis mating ................................................................... 58 Figure 17. Strip of Leptoglossus fulvicornis eggs on Magnolia virginiana ................. 58 Figure 18. Rearing cage used for Poblicia fuliginosa .................................................. 58 Figure 19. General rearing cage setup for Acanaloniidae, Issidae, Flatidae and Membracidae ........................................................................................... 59 vii Figure 20. Field collecting site for Poblicia fuliginosa in Bladen County, North Carolina ................................................................................................... 59 Figure 21. Single “favored tree” (Rhus copallinum) of Poblicia fuliginosa in Bladen County, North Carolina ............................................................... 59 Figure 22. Late instar Poblicia fuliginosa on Rhus copallinum with seeping feeding wound ...................................................................................................... 60 Figure 23. Poblicia fuliginosa egg mass laid on a plastic pot ...................................... 60 Figure 24. Lab hatched first instar Poblicia fuliginosa ................................................ 60 Figure 25. Late instar Poblicia fuliginosa nymph hatched in the greenhouse ............. 61 Figure 26. Collecting habitat for Rhynchomitra microrhina in Newark, Delaware ..... 61 Figure 27. Rhynchomitra microrhina egg placed at base of petiole on Solidago ........ 62 Figure 28. Rhynchomitra microrhina egg .................................................................... 62 Figure 29. Rhynchomitra microrhina egg after 210 days ............................................. 62 Figure 30. Rhynchomitra microrhina egg after 211 days ............................................. 63 Figure
Recommended publications
  • Can Anastatus Bifasciatus Be Used for Augmentative Biological Control of the Brown Marmorated Stink Bug in Fruit Orchards?
    insects Article Can Anastatus bifasciatus Be Used for Augmentative Biological Control of the Brown Marmorated Stink Bug in Fruit Orchards? Judith M. Stahl 1,2,* , Dirk Babendreier 1, Cristina Marazzi 3, Stefano Caruso 4, Elena Costi 5, Lara Maistrello 5 and Tim Haye 1 1 CABI, Rue des Grillons 1, 2800 Delémont, Switzerland; [email protected] (D.B.); [email protected] (T.H.) 2 Institute of Ecology and Evolutionary Biology, University of Bremen, Leobener Str. NW2, 28359 Bremen, Germany 3 Servizio Fitosanitario Cantonale, Dipartimento Delle Finanze e Dell’economia, Sezione Dell’agricoltura Viale S. Franscini 17, 6501 Bellinzona, Switzerland; [email protected] 4 Consorzio Fitosanitario Provinciale di Modena, Via Santi Venceslao 14, 41123 Modena, Italy; [email protected] 5 Dipartimento di Scienze della Vita, Centro BIOGEST-SITEIA, Università di Modena e Reggio Emilia, Via G. Amendola 2, 42122 Reggio-Emilia, Italy; [email protected] (E.C.); [email protected] (L.M.) * Correspondence: [email protected] Received: 20 March 2019; Accepted: 12 April 2019; Published: 15 April 2019 Abstract: The generalist egg parasitoid Anastatus bifasciatus (Geoffroy) (Hymenoptera: Eupelmidae) is the most prevalent egg parasitoid of the invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in Europe. To assess its efficacy against the pest H. halys and to validate the potential risks for non-target species in a realistic field setting, inundative releases were conducted over three consecutive years in four fruit orchards in Switzerland and Italy. In total, more than 4300 A. bifasciatus females were released, which was equivalent to 11,000 to 26,000 females per hectare, depending on distances between trees in each orchard.
    [Show full text]
  • The Planthopper Genus <I>Acanalonia </I>In the United
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 1995 The planthopper genus Acanalonia in the United States (Homoptera: Issidae): male and female genitalic morphology Rebecca Freund University of South Dakota, Vermillion, SD Stephen W. Wilson Central Missouri State University, Warrensburg, MO Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Freund, Rebecca and Wilson, Stephen W., "The planthopper genus Acanalonia in the United States (Homoptera: Issidae): male and female genitalic morphology" (1995). Insecta Mundi. 133. https://digitalcommons.unl.edu/insectamundi/133 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 9, No. 3-4, September - December, 1995 195 The planthopper genus Acanalonia in the United States (Homoptera: Issidae): male and female genitalic morphology Rebecca Freund Department of Biology, University of South Dakota, Vermillion, SD 57069 and Stephen W. Wilson Department of Biology, Central Missouri State University, Warrensburg, MO 64093 Abstract: The issidplanthopper genus Acanalonia is reviewed anda key to the 18 speciesprovided. Detailed descriptions and illustrationsof the complete external morphology ofA. conica (Say), anddescriptionsandillustrationsof the male and female external genitalia ofthe species ofunited States Acanalonia are given. The principal genitalic features usedto separate species included: male - shape andlength ofthe aedeagalcaudal andlateralprocesses, and presence ofcaudalextensions; female -shape ofthe 8th abdominal segment and the number of teeth on the gonapophysis ofthe 8th segment.
    [Show full text]
  • Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha Halys in Europe with a Large-Scale Monitoring Program
    insects Article Assessing the Distribution of Exotic Egg Parasitoids of Halyomorpha halys in Europe with a Large-Scale Monitoring Program Livia Zapponi 1 , Francesco Tortorici 2 , Gianfranco Anfora 1,3 , Simone Bardella 4, Massimo Bariselli 5, Luca Benvenuto 6, Iris Bernardinelli 6, Alda Butturini 5, Stefano Caruso 7, Ruggero Colla 8, Elena Costi 9, Paolo Culatti 10, Emanuele Di Bella 9, Martina Falagiarda 11, Lucrezia Giovannini 12, Tim Haye 13 , Lara Maistrello 9 , Giorgio Malossini 6, Cristina Marazzi 14, Leonardo Marianelli 12 , Alberto Mele 15 , Lorenza Michelon 16, Silvia Teresa Moraglio 2 , Alberto Pozzebon 15 , Michele Preti 17 , Martino Salvetti 18, Davide Scaccini 15 , Silvia Schmidt 11, David Szalatnay 19, Pio Federico Roversi 12 , Luciana Tavella 2, Maria Grazia Tommasini 20, Giacomo Vaccari 7, Pietro Zandigiacomo 21 and Giuseppino Sabbatini-Peverieri 12,* 1 Centro Ricerca e Innovazione, Fondazione Edmund Mach (FEM), Via Mach 1, 38098 S. Michele all’Adige, TN, Italy; [email protected] (L.Z.); [email protected] (G.A.) 2 Dipartimento di Scienze Agrarie, Forestali e Alimentari, University di Torino (UniTO), Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy; [email protected] (F.T.); [email protected] (S.T.M.); [email protected] (L.T.) 3 Centro Agricoltura Alimenti Ambiente (C3A), Università di Trento, Via Mach 1, 38098 S. Michele all’Adige, TN, Italy 4 Fondazione per la Ricerca l’Innovazione e lo Sviluppo Tecnologico dell’Agricoltura Piemontese (AGRION), Via Falicetto 24, 12100 Manta, CN,
    [Show full text]
  • Hemiptera: Fulgoridae) an Invasive Species in South Korea
    Journal of Asia-Pacific Entomology 14 (2011) 213–215 Contents lists available at ScienceDirect Journal of Asia-Pacific Entomology journal homepage: www.elsevier.com/locate/jape Short Communication Discovery of an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) an invasive species in South Korea Il-Kwon Kim 1, Sang-Hyun Koh, Jung-Su Lee, Won Il Choi ⁎, Sang-Chul Shin Division of Forest Insect Pests and Diseases, Korea Forest Research Institute, Seoul 130–712, Republic of Korea article info abstract Article history: Anastatus sp. (Hymenoptera: Eupelmidae) is reported as the first chalcidoid wasp which parasitizes eggs of Received 27 July 2010 Lycorma delicatula, an invasive species spreading rapidly in South Korea. The wasp appears to be a solitary Revised 26 January 2011 endoparasitoid. The present paper also describes its oviposition and host feeding behaviour. Accepted 28 January 2011 © Korean Society of Applied Entomology, Taiwan Entomological Society and Malaysian Plant Protection Available online 4 February 2011 Society, 2011. Published by Elsevier B.V. All rights reserved. Keywords: Anastatus sp. Eupelmidae Solitary Endoparasitic Oviposition Host feeding Introduction Materials and methods Lycorma delicatula (White) (Hemiptera: Fulgoridae) was officially Collection and rearing reported in western Korea in 2008 (Han et al., 2008). Since then, it has expanded rapidly throughout the country (Park et al., 2009). It is Overwintering L. delicatula egg masses on grape, Vitis vinifera L., thought to have been accidentally introduced from China and has were collected from Cheongwon-gun, Chungcheongbuk-do (N36°38′, successfully established based on its high population in several E127°29′) on 16 April 2010. Individual egg mass attached to a branch locations in western Korea in 2006 (Han et al., 2008).
    [Show full text]
  • Temporal Dynamics in Non-Additive Responses of Arthropods to Host-Plant Genotypic Diversity
    Oikos 000: 000Á000, 2007 doi: 10.1111/j.2007.0030-1299.16276.x, # The Authors. Journal compilation # Oikos 2007 Subject Editor: Lonnie Aarssen, Accepted 28 October 2007 Temporal dynamics in non-additive responses of arthropods to host-plant genotypic diversity Gregory M. Crutsinger, Michael D. Collins, James A. Fordyce and Nathan J. Sanders G. M. Crutsinger ([email protected]), Dept of Ecology and Evolutionary Biology, 569 Dabney Hall, Univ. of Tennessee, Knoxville, TN 37996, USA Á M. D. Collins, Dept of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA Á J. A. Fordyce and N. J. Sanders, Dept of Ecology and Evolutionary Biology, 569 Dabney Hall, Univ. of Tennessee, Knoxville, T, 37996, USA. Genotypic diversity within host-plant populations has been linked to the diversity of associated arthropod communities, but the temporal dynamics of this relationship, along with the underlying mechanisms, are not well understood. In this study, we employed a common garden experiment that manipulated the number of genotypes within patches of Solidago altissima, tall goldenrod, to contain 1, 3, 6 or 12 genotypes m2 and measured both host-plant and arthropod responses to genotypic diversity throughout an entire growing season. Despite substantial phenological changes in host plants and in the composition of the arthropod community, we detected consistent positive responses of arthropod diversity to host- plant genotypic diversity throughout all but the end of the growing season. Arthropod richness and abundance increased with genotypic diversity by up toÂ65%. Furthermore, arthropod responses were non-additive for most of the growing season, with up to 52% more species occurring in mixtures than the number predicted by summing the number of arthropods associated with component genotypes in monoculture.
    [Show full text]
  • Sensory Gene Identification in the Transcriptome of the Ectoparasitoid
    www.nature.com/scientificreports OPEN Sensory gene identifcation in the transcriptome of the ectoparasitoid Quadrastichus mendeli Zong‑You Huang, Xiao‑Yun Wang, Wen Lu & Xia‑Lin Zheng* Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall‑inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall‑making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor‑like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli–L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall‑making pests. In this study, we present the transcriptome of Q. mendeli using high‑throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identifed, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identifed in Q. mendeli by bioinformatics analysis. Our report is the frst to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall‑making pests.
    [Show full text]
  • Two Coreidae (Hemiptera), Chelinidea Vittiger and Anasa Armigera, New for Arkansas, U.S.A. Stephen W
    Journal of the Arkansas Academy of Science Volume 62 Article 23 2008 Two Coreidae (Hemiptera), Chelinidea vittiger and Anasa armigera, New for Arkansas, U.S.A. Stephen W. Chordas III The Ohio State University, [email protected] Peter W. Kovarik Columbus State Community College Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Chordas, Stephen W. III and Kovarik, Peter W. (2008) "Two Coreidae (Hemiptera), Chelinidea vittiger and Anasa armigera, New for Arkansas, U.S.A.," Journal of the Arkansas Academy of Science: Vol. 62 , Article 23. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/23 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 23 Two Coreidae (Hemiptera), Chelinidea vittiger and Anasa armigera, New for Arkansas, U.S.A. S. Chordas III1 and P. Kovarik2 1Center for Life Sciences Education, The Ohio State University, 260 Jennings Hall, 1735 Neil Avenue, Columbus, Ohio 43210 2 Columbus State Community College 239 Crestview Road, Columbus, Ohio 43202 1Correspondence: [email protected] Most leaf-footed bugs (Hemiptera: Coreidae) Herring (1980) and Froeschner (1988) in not occurring north of Mexico are essentially generalist recognizing subspecies of Chelinidea vittiger (which phytophagous insects feeding on tender shoots or were almost solely based on color variations).
    [Show full text]
  • Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
    The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183
    [Show full text]
  • Squash Bugs of South Dakota Burruss Mcdaniel South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Agricultural Experiment Station Technical Bulletins SDSU Agricultural Experiment Station 1989 Squash Bugs of South Dakota Burruss McDaniel South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_tb Part of the Entomology Commons, and the Plant Sciences Commons Recommended Citation McDaniel, Burruss, "Squash Bugs of South Dakota" (1989). Agricultural Experiment Station Technical Bulletins. 12. http://openprairie.sdstate.edu/agexperimentsta_tb/12 This Book is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Agricultural Experiment Station Technical Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. T B 92 quash Agricultural Experiment Station South Dakota State University U.S. Department of Agriculture T B 92 of South Dakota Burruss McDaniel Professor, Plant Science Department South Dakota State University COREi DAE (HEMIPTERA: HETEROPTERA) Agriopocorinae (this latter extrazimital) . Baranowski and Slater ( 1986), in their Coreidae of Florida, listed The family Coreidae is best known because of the 120 species dispersed among 18 genera, 9 tribes and 3 destructive habit of the squash bug, Anasa tristis, on subfamilies. squash, pumpkin, cucumber, and other members of the cucurbit family in the United States. The family, The material examined in this work is deposited in represented by various species, is found throughout the the SDSU H.C.
    [Show full text]
  • Engineer Cantonment, Missouri Territory, 1819-1820: America's First Biodiversity Ineventory
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Research: A Journal of Natural and Social Sciences Great Plains Studies, Center for 2008 Engineer Cantonment, Missouri Territory, 1819-1820: America's First Biodiversity Ineventory Hugh H. Genoways University of Nebraska - Lincoln, [email protected] Brett C. Ratcliffe University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/greatplainsresearch Part of the Other International and Area Studies Commons, Plant Sciences Commons, and the Zoology Commons Genoways, Hugh H. and Ratcliffe, Brett C., "Engineer Cantonment, Missouri Territory, 1819-1820: America's First Biodiversity Ineventory" (2008). Great Plains Research: A Journal of Natural and Social Sciences. 927. https://digitalcommons.unl.edu/greatplainsresearch/927 This Article is brought to you for free and open access by the Great Plains Studies, Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Research: A Journal of Natural and Social Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Great Plains Research 18 (Spring 2008):3-31 © 2008 Copyright by the Center for Great Plains Studies, University of Nebraska-Lincoln ENGINEER CANTONMENT, MISSOURI TERRITORY, 1819-1820: AMERICA'S FIRST BIODIVERSITY INVENTORY Hugh H. Genoways and Brett C. Ratcliffe Systematic Research Collections University o/Nebraska State Museum Lincoln, NE 68588-0514 [email protected] and [email protected] ABSTRACT-It is our thesis that members of the Stephen Long Expedition of 1819-20 completed the first biodiversity inventory undertaken in the United States at their winter quarters, Engineer Cantonment, Mis­ souri Territory, in the modern state of Nebraska.
    [Show full text]
  • Vol. 14, No. 1 Spring 1981 the GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 14 No
    The GREAT LAKES ENTOMOLOGIST Vol. 14, No. 1 Spring 1981 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 14 No. 1 ISSN 0090-0222 TABLE OF CONTENTS Annotated List of Indiana Scolytidae (Coleoptera) Mark Deyrup .................................................. Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 2. Coreoida J. E. McPherson and B. C. Weber .......................................... 11 Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 3. Reduvioidea J. E. McPherson and B. C. Weber .......................................... 15 Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 4. Cimicoidea J. E. McPherson and B. C. Weber .......................................... 19 Fourlined Plant Bug (Hemiptera: Miridae), A Reappraisal: Life History, Host Plants, and Plant Response to Feeding A. G. Wheeler, Jr. and Gary L. Miller.. ..................................... 23 Hawthorn Lace Bug (Hemiptera: Tingidae), First Record of Injury to Roses, with a Review of Host Plants A. G. Wheeler, Jr. ........................................................ 37 Notes on the Biology of Nersia florens (Homoptera: Fulgoroidea: Dictyopharidae) with Descriptions of Eggs, and First, Second, and Fifth Instars S. W. Wilson and J. E. McPherson.. ...................... Ontogeny of the Tibial Spur in Megamelus davisi (Homoptera: Delphacidae) and its Bearing on Delphacid Classification S. W. Wilson and J. E. McPherson.. .....................
    [Show full text]
  • Hemiptera Recently Introduced Into Italy
    Bulletin of Insectology 61 (1): 145-146, 2008 ISSN 1721-8861 Hemiptera recently introduced into Italy 1 2 1 2 Costanza JUCKER , Ambra QUACCHIA , Mario COLOMBO , Alberto ALMA 1Istituto di Entomologia agraria, Università degli Studi di Milano, Italy 2Di.Va.P.R.A. - Entomologia e Zoologia applicate all’Ambiente “C. Vidano”, Università di Torino, Italy Abstract The invasion of exotic species is one of the most important threats to biodiversity, causing economic costs in agriculture, forestry, other human enterprises as well as in human health. This is a growing worldwide phenomenon in the last years due to the increase of human trade, transports, and tourism across countries. In particular the importation of ornamental plants from other countries has led to the introduction of many exotic pests. In the last 10 years, more than 160 exotic arthropods have been introduced into Italy, and among them 50 belong to the order Hemiptera, representing 41% of all introductions. Some of the last introduced Hemiptera damaging both ornamental and herbaceous plants are here reported. Key words: Italy, exotic species, introduction, woody plants, herbaceous plants. Introduction dentalis it is univoltine, while in Mexico it can accomplish three generations a year (Mitchell, 2000). Adults abandon The introduction of exotic insects is a growing worldwide overwintering sites in spring and they start feeding on phenomenon, especially in countries with an intensive in- cones and inflorescences of coniferous trees. Females lay ternational exchange of goods and tourists. Italy is particu- eggs in rows on conifer needles, the nymphs feed on the larly at risk of introduction of exotic insects due to the needles and cone scales, then they pass to the developing broad range of its climatic parameters (allowing the settle- seeds.
    [Show full text]