Distribution of Ophiomorus Nuchalis Nilson & Andrén, 1978

Total Page:16

File Type:pdf, Size:1020Kb

Distribution of Ophiomorus Nuchalis Nilson & Andrén, 1978 All_short_Notes_shorT_NoTE.qxd 08.08.2016 11:01 seite 16 92 shorT NoTE hErPETozoA 29 (1/2) Wien, 30. Juli 2016 shorT NoTE logischen Grabungen (holozän); pp. 76-83. in: distribution of Ophiomorus nuchalis CABElA , A. & G rilliTsCh , h. & T iEdEMANN , F. (Eds.): Atlas zur Verbreitung und Ökologie der Amphibien NilsoN & A NdréN , 1978: und reptilien in Österreich: Auswertung der herpeto - faunistischen datenbank der herpetologischen samm - Current status of knowledge lung des Naturhistorischen Museums in Wien; Wien; (Umweltbundesamt). PUsChNiG , r. (1934): schildkrö - ten bei Klagenfurt.- Carinthia ii, Klagenfurt; 123-124/ The scincid lizard genus Ophio morus 43-44: 95. PUsChNiG , r. (1942): Über das Fortkommen A. M. C. dUMéril & B iBroN , 1839 , is dis - oder Vorkommen der griechischen land schildkröte tributed from southeastern Europe (southern und der europäischen sumpfschildkröte in Kärnten.- Balkans) to northwestern india (sindhian Carinthia ii, Klagenfurt; 132/52: 84-88. sAMPl , h. (1976): Aus der Tierwelt Kärntens. die Kriechtiere deserts) ( ANdErsoN & l EViToN 1966; s iN- oder reptilien; pp. 115-122. in: KAhlEr , F. (Ed.): die dACo & J ErEMčENKo 2008 ) and com prises Natur Kärntens; Vol. 2; Klagenfurt (heyn). sChiNd- 11 species ( BoUlENGEr 1887; ANdEr soN & lEr , M . (2005): die Europäische sumpfschild kröte in EViToN ilsoN NdréN Österreich: Erste Ergebnisse der genetischen Unter - l 1966; N & A 1978; suchungen.- sacalia, stiefern; 7: 38-41. soChU rEK , E. ANdErsoN 1999; KAzEMi et al. 2011). seven (1957): liste der lurche und Kriechtiere Kärntens.- were reported from iran including O. blan - Carinthia ii, Klagenfurt; 147/67: 150-152. fordi BoUlENGEr , 1887, O. brevipes BlAN- KEY Words: reptilia: Testudines: Emydidae: Ford , 1874, O. nuchalis NilsoN & A NdréN , Emys orbicularis , genetic analyses, cytochrome b gene, 1978, O. persicus sTEiNdAChNEr , 1867, O. different haplotypes, Austria, Carinthia streeti ANdErsoN & l EViToN , 1966, O. tri - sUBMiTTEd: November 7, 2014 dactylus BlYTh , 1853 and O. maranjabensis AUThor: Andreas KlEEWEiN , department of KAzEMi , FArhAdi QoMi , K AMi & A NdEr- integrative zoology, University of Vienna, Althan - straße 14, A-1090 Vienna, Austria, < andreas.kleewein soN , 2011 ( ANdErsoN 1999; r AsTEGAr - @gmx.net >. PoUYANi et al. 2008; KAzEMi et al. 2011). Fig. 1: Known record localities of Ophiomorus nuchalis NilsoN & A NdréN , 1978. - Type locality in Cheshmeh shah, Kavir Protected region, Teheran (34°44’N, 52°11’E) ( NilsoN & ANdréN 1978); – Five km north of the entrance to the Kavir Protected region (35°6’42”N, 51°46’14”E) (MozAFFAri et al. 2011); - Arisman village (33°39’27”N, 52°0’11”E) and Abouzeid Abad (33°54’52”N, 51°45’30”E), isfahan Province ( FArhAdi QoMi et al. 2011); - Kalmand and Bahadoran Protected Areas, Yazd (31°26’29”N, 54°59’54”E); - Cheshmeh Toti, Kolah Ghazi National Park, isfahan (32°18’39”N, 51°55’14”E); deyr-e-Gachin (35°3’18”N, 51°24’13”E), hosseinabad, Meshmast (34°25’28”N, 51°14’01”E), Qom; Jazan village, Natanz, Esfahan (33°33’16”N, 51°58’54”E). All_short_Notes_shorT_NoTE.qxd 08.08.2016 11:01 seite 17 shorT NoTE hErPETozoA 29 (1/2) Wien, 30. Juli 2016 shorT NoTE 93 Fig. 2: dorsal view of an adult Ophiomorus nuchalis NilsoN & A NdréN , 1978, from Abouzeid Abad, isfahan, central iran. Photograph by M. FArhAdi QoMi . Fig. 3: habitats of Ophiomorus nuchalis NilsoN & A NdréN , 1978 . 1 - Cheshmeh Toti, Kolah Ghazi National Park, isfahan; 2 - hosseinabad, Meshmast, Qom; 3 - Jazan village, Natanz, isfahan. in the present note, the authors com - endemic O. nuchalis , and add new sites to pile the published records of the rarely en - the known distribution of the species in the countered Plateau snake skink, the iranian iranian Plateau, pointing to the substrate All_short_Notes_shorT_NoTE.qxd 08.08.2016 11:01 seite 18 94 shorT NoTE hErPETozoA 29 (1/2) Wien, 30. Juli 2016 shorT NoTE types inhabited. The various inconspicu - habitat of the type locality. The place is sit - ous ground-dwelling Ophiomorus species uated 36 km south of the town of isfahan; prefer different kinds of substrate varying the climate is characterized by hot and dry from loams for O. punctatissimus (B iBroN summers. Minimum and maximum rainfall & B orY dE sT. V iNCENT , 1833) (rÖdEl et of the region is 111 and 144.6 millimeters al. 1989) and almost bare gravel ground for with minimum and maximum temperatures O. nuchalis (NilsoN & A NdréN 1978), to of 16 to 42 °C, respectively. The predomi - loosely consolidated sand for O. blanfordi nant vegetation comprised Alhagi , Arte - (shoCKlEY 1949), O. brevipes (ANdErsoN misia and Peganum ; sympatric reptiles were 1963) and O. raithmai ANdErsoN & l EVi- Trapelus agilis (o liViEr , 1807) , Ophisops ToN , 1966 (MiNToN 1966; r AThor 1970) elegans MéNéTriEs , 1832, Mesalina watso - (GrEEr & W ilsoN 2001). interspecific dif - nana (sToliCzKA , 1872) and Pseudoceras - ferences in the preference for certain sub - tes persicus (d UMéril , B iBroN & d UMéril , strate types may aid species discrimina - 1854) (Fig. 3.1). tion. Two more adult specimens were col - The type locality of O. nuchalis , siah lected on 3 July, 2009 from deyr-e-Gachin Kuh (Black Mountains), lies in the center of (35°03’18”N, 51°24’13”E), hosseinabad, the Kavir Protected region, iran (34°44’N, Meshmast (34°25’28”N, 51°14’01”E), Pro - 52°11’E), about 150 km south of Teheran vince of Qom. The specimens were cap - (NilsoN & A NdréN 1978). From its coordi - tured, measured and released into their habi - nates, the location is situated in the northern tat. They were found inhabiting the sand foothills of the Black Mountains at an alti - dunes and loose soil where plants of the tude of about 1,170 m a.s.l. The ground is genera Alhagi , Haloxylon , Peganum and rocky, the vegetation sparse and patchy, Tamarix are widespread. other reptile spe - with Artemisia herba-alba being the domi - cies observed in the same habitat were nant plant ( NilsoN & A NdréN 1978). Mo- Phrynocephalus scutellatus (o liViEr , 1807) , zAFFAri et al. (2011) reported the species Trapelus agilis , Agamura persica (d UMéril , from five km north of the entrance to the 1856) , Bunopus crassicaudus (N iKolsKY , Kavir Protected region at 35°6’42”N, 1907) , Eremias fasciata BlANFord , 1874 , 51°46’14”E in the vicinity of a dry river Eremias persica BlANFord , 1875 , Eremias with clay topsoil where Tamarix , Prosopis , velox (P AllAs , 1771) , Mesalina wat sonana , Alhagi and Artemisia are widespread. FAr- Ophisops elegans , Varanus griseus caspius hAdi QoMi et al. (2011) published records (E iChWAld , 1831) , Eryx jaculus turcicus and habitat characters of the species found (oliViEr , 1801), Platyceps ventromaculatus in agricultural farms in the Province of ventromaculatus (G rAY , 1834) and Psamm - isfahan (33°39’27”N, 52°00’11”E and 33° ophis schokari (ForsKål , 1775) (Fig. 3.2). 54’52”N, 51°45’30”E). recently, a speci - one specimen was collected on 20 men was found in the Kalmand and Baha- July, 2008 at Jazan village, Natanz, Pro - doran Protected Areas (31°26’29”N, 54°59’ vince of isfahan (33°33’16”N, 51°58’54” 54”E), Province of Yazd, inhabiting the E), in an area of low hills with rocky ground sand dunes between the desert and the that resembles the habitat of the type locali - mountains. The specimen was deposited at ty (Fig. 3.3). The specimen was captured, the zagros herpetological institute Museum measured and released into the habitat. (zhiM27) (Fig. 1). The available records show that O. Three more populations were found nuchalis is widely distributed across the by the authors in the Central iranian Plateau Central iranian Plateau including the Pro - (Figs. 1, 2). Two adults were collected on vinces of semnan, Tehran, Qom, isfahan 28 July, 2009 from Cheshmeh Toti, Kolah and Yazd. The type specimens were col - Ghazi National Park, Province of isfahan lected under stones on sparesly vegetated, (32°18’39”N, 51°55’14”E). The specimens almost bare gravel ground devoid of loose were captured, measured for morphometric sand ( NilsoN & A NdréN 1978). The characters and released into their natural authors’ new findings confirm that the habitat. The individuals lived in a hilly en - species occupies different habitat types as vironment on rocky soil, resembling the mentioned by previous studies which All_short_Notes_shorT_NoTE.qxd 08.08.2016 11:01 seite 19 shorT NoTE hErPETozoA 29 (1/2) Wien, 30. Juli 2016 shorT NoTE 95 reported the presence of the species in low s. C. & l EViToN , A. E. (1966): A review of the genus hills with rocky ground, near dry river beds Ophiomorus (sauria: scincidae) with descriptions of three new forms.- Proceedings of the California with clay topsoil, at agricultural farms and Academy of sciences, san Francisco; (ser. 4) 33 (16): on sand dunes ( NilsoN & A NdréN 1978; 499-534. BoUlENGEr , G. A. (1887): les espèces du MozAFFAri et al. 2011; FArhAdi QoMi et al. genre Opiomore .- Bulletin de la société zoologique de 2011). The habitat types of O. nuchalis are France, Paris; 12: 519-534. FArhAdi QoMi , M. & KAMi , h. G. & s hAJii , h. & K AzEMi , s. M . (2011): common in many deserts in the Central Further recordes of the plateau snake skink iranian Plateau suggesting a wider distribu - Ophiomorus nuchalis NilsoN and ANdréN , 1978 tion of O. nuchalis than previously estimat - (sauria: scincidae) from isfahan pro vince, iran.- ed ( MozAF FAri et al. 2011). The closest rel - iranian Journal of Animal Biosystematics, Mashhad; 7: 171-175. GrEEr , A. E. & W ilsoN , G. d. F. (2001): ative of O. nuchalis is O. brevipes , a taxon Com ments on the scincid lizard genus Ophiomorus , which includes members of both an eastern with a cladistic analysis of the species.- hamadryad, form of Ophiomorus and its sister species, Madras; 26: 261-271.
Recommended publications
  • Further Records of the Plateau Snake Skink Ophiomorus Nuchalis Nilson and Andren, 1978 (Sauria: Scincidae) from Isfahan Province, Iran
    Iranian Journal of Animal Biosystematics (IJAB) Vol.7, No.2, 171-175, 2011 ISSN: 1735-434X Further Records of the Plateau Snake Skink Ophiomorus nuchalis Nilson and Andren, 1978 (Sauria: Scincidae) from Isfahan Province, Iran Farhadi Qomi, M.*a,d, Kami, H.G. b, Shajii, H.a, Kazemi S.M.c,d a Department of Biology, College of Sciences, Damghan Branch, Islamic Azad University, Damghan, Iran b Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran c Department of Biology, College of Sciences, Qom Branch, Islamic Azad University, Qom, Iran dZagros Herpetological Institute, 37156-88415, P. O. No 12, Somayyeh 14 Avenue, Qom, Iran Two specimens of Ophiomorus nuchalis from the northern part of Isfahan province were collected, one of them on June 6, 2010, and the other one on June 9, 2011. The new records were collected in southern part of the type locality. The habitat of Ophiomorus nuchalis in this region varies greatly from the previous records. Ophiomorus nuchalis is a rare scincid lizard which has already been collected from two localities. The first record is from Andren and Nilson and Andrén (1978). They described this skink as a new ,”species by two specimens collected from N52o11' ،E34o44' in the northern slope of “Siah Kooh near “Cheshmeh Shah”, “Kavir National Park”, Iran (Fig. 1, Black (Diamond)). The next two specimens were found in type locality, one in 1999 and the other one in 2000 by Mozaffari. In 2009, Mozaffari recorded this lizard from a new locality, N35o6'42.1'', E51o46'14.5''. This study, presents two new records of this species and their habitat in Isfahan Province for the first time.
    [Show full text]
  • Download Full-Text
    Phyllomedusa 16(1):121–124, 2017 © 2017 Universidade de São Paulo - ESALQ ISSN 1519-1397 (print) / ISSN 2316-9079 (online) doi: http://dx.doi.org/10.11606/issn.2316-9079.v16i1p121-124 Short CommuniCation Eremias stummeri (Squamata: Lacertidae) as a prey for Gloydius halys complex (Serpentes: Viperidae) from Kyrgyzstan Daniel Jablonski¹ and Daniel Koleska² E-mail: [email protected]. ² Department of Zoology and Fisheries, Faculty of Agrobiology Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6-Suchdol, 165 21, Czech Republic. E-mail: [email protected]. Keywords: 16S rRNA, diet, Halys Pit Viper, lizard, necrophagy. Palavras-chave: 16S rRNA, dieta, lagarto, necrofagia, víbora-de-halys. The genus Gloydius comprises 13 species of Racerunners (Lacertidae: Eremias) are widely venomous Asian pit vipers (Wagner et al. 2016) distributed lizards occurring from southeastern that range from east of the Ural Mountains to Europe throughout most of the Asian continent Japan and the Ryukyu Islands (McDiarmid et al. (Ananjeva et al. 2006). Their systematic status is 1999). The Gloydius halys (Pallas, 1776) not yet fully resolved owing to their complex occurs from Azerbaijan, Iran, through morphological resemblance to one another and Central Asia to eastern Siberia, Mongolia, and the syntopic occurrence of several species China. Traditionally, Gloydius halys from (Pouyani et al. 2012, Liu et al. 2014, Poyarkov Kyrgyzstan has been considered a subspecies— Jr. et al. 2014). These lizards often occur in the i.e., G. halys caraganus (Eichwald, 1831). same localities as pit vipers (cf. Sindaco and However, given recent descriptions of cryptic Jeremcenko 2008) and are eaten by snakes of the taxa from Kyrgyzstan and unresolved phylo- G.
    [Show full text]
  • Genetic Evidence for Occurrence of Macrovipera Razii (Squamata, Viperidae) in the Central Zagros Region, Iran
    Herpetozoa 33: 27–30 (2020) DOI 10.3897/herpetozoa.33.e51186 Genetic evidence for occurrence of Macrovipera razii (Squamata, Viperidae) in the central Zagros region, Iran Hamzeh Oraie1,2 1 Department of Zoology, Faculty of Science, Shahrekord University, Shahrekord, Iran 2 Department of Biodiversity, Institute of Biotechnology, Shahrekord University, Shahrekord, Iran http://zoobank.org/955A477F-7833-4D2A-8089-E4B4D48B0E31 Corresponding author: Hamzeh Oraie ([email protected]) Academic editor: Peter Mikulíček ♦ Received 16 February 2020 ♦ Accepted 17 March 2020 ♦ Published 9 April 2020 Abstract This study presents the first molecular evidence ofMacrovipera razii from central Zagros, more than 300 km north-west of its prior records in southern Iran. Molecular analyses based on mitochondrial cytochrome b sequences identified the individuals from central Zagros as a lineage of M. razii. Specimens from the new localities are separated by a genetic distance of 1.46% from the known populations of M. razii. The results extend the known distribution range of M. razii as an endemic species of Iran. Key Words Iran, Macrovipera, mtDNA, new record, Ra zi’s Viper, taxonomy, Viperidae Central Zagros is a mainly mountainous region in the Macrovipera razii, described by Oraie et al. (2018) based Chaharmahal and Bakhtiari Province and surrounding on a holotype collected at 105 km on the road from Jiroft areas of Iran. Its climatic conditions and topographic in- to Bam near Bab-Gorgi village and Valley, Kerman tricacy contribute to unique ecological conditions and a Province. The known distribution range of M. razii is significant level of biodiversity. Several endemic species reported as the central and southern parts of Iran (Oraie et of the Iranian herpetofauna are restricted to this region al.
    [Show full text]
  • The Body Burden and Thyroid Disruption in Lizards (Eremias Argus)
    Journal of Hazardous Materials 347 (2018) 218–226 Contents lists available at ScienceDirect Journal of Hazardous Materials jo urnal homepage: www.elsevier.com/locate/jhazmat The body burden and thyroid disruption in lizards (Eremias argus) living in benzoylurea pesticides-contaminated soil a,b a,b a,b a a a Jing Chang , Jitong Li , Weiyu Hao , Huili Wang , Wei Li , Baoyuan Guo , a a a,∗ Jianzhong Li , Yinghuan Wang , Peng Xu a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China b University of Chinese Academy of Sciences, Yuquan RD 19A, Beijing, 100049, China h i g h l i g h t s g r a p h i c a l a b s t r a c t • Diflubenzuron degraded faster than flufenoxuron in the soil. • The SPFs of flufenoxuron were greater than diflubenzuron. • The body burden of BPUs was related with LogKow and molecular weight. • BPUs exposure disturbed both thy- roid and metabolism system of lizards. a r t i c l e i n f o a b s t r a c t Article history: Dermal exposure is regarded as a potentially significant but understudied route for pesticides uptake Received 1 November 2017 in terrestrial reptiles. In this study, a native Chinese lizard was exposed to control, diflubenzuron or Received in revised form −1 flufenoxuron contaminated soil (1.5 mg kg ) for 35 days. Tissue distribution, liver lesions, thyroid hor- 19 December 2017 mone levels and transcription of most target genes were examined. The half-lives of diflubenzuron and Accepted 3 January 2018 flufenoxuron in the soil were 118.9 and 231.8 days, respectively.
    [Show full text]
  • Does the Dzungarian Racerunner (Eremias
    Liu et al. Zool. Res. 2021, 42(3): 287−293 https://doi.org/10.24272/j.issn.2095-8137.2020.318 Letter to the editor Open Access Does the Dzungarian racerunner (Eremias dzungarica Orlova, Poyarkov, Chirikova, Nazarov, Munkhbaatar, Munkhbayar & Terbish, 2017) occur in China? Species delimitation and identification with DNA barcoding and morphometric analyses The Eremias multiocellata-przewalskii species complex is a dzungarica, which were primarily associated with sexual viviparous group in the genus Eremias, and a well-known dimorphism and a broader range of values for various traits. representative of taxonomically complicated taxa. Within this The rapid development of DNA barcoding (Hebert et al., complex, a new species – E. dzungarica (Orlova et al., 2017) 2003) has facilitated the successful application of a – has been described recently from western Mongolia and standardized short mitochondrial gene fragment, COI, to most eastern Kazakhstan, with an apparent distribution gap in species level identifications (e.g., excluding plants), species northwestern China. In this study, we used an integrative discovery and global biodiversity assessment (DeSalle & taxonomic framework to address whether E. dzungarica Goldstein, 2019; Yang et al., 2020). DNA barcoding is indeed occurs in China. Thirty specimens previously classified particularly helpful for phylogenetic and taxonomic inference in as E. multiocellata were collected in eastern Kazakhstan and species groups that have considerable morphological the adjacent Altay region in China. The cytochrome c oxidase conservatism or ambiguity (e.g., Hofmann et al., 2019; Oba et I (COI) barcodes were sequenced and compiled with those al., 2015; Xu et al., 2020; Zhang et al., 2018). from Orlova et al.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Bonn Zoological Bulletin Volume 57 Issue 2 Pp
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Bonn zoological Bulletin Volume 57 Issue 2 pp. 329-345 Bonn, November 2010 A brief history of Greek herpetology Panayiotis Pafilis >- 2 •Section of Zoology and Marine Biology, Department of Biology, University of Athens, Panepistimioupolis, Ilissia 157-84, Athens, Greece : School of Natural Resources & Environment, Dana Building, 430 E. University, University of Michigan, Ann Arbor, MI - 48109, USA; E-mail: [email protected]; [email protected] Abstract. The development of Herpetology in Greece is examined in this paper. After a brief look at the first reports on amphibians and reptiles from antiquity, a short presentation of their deep impact on classical Greek civilization but also on present day traditions is attempted. The main part of the study is dedicated to the presentation of the major herpetol- ogists that studied Greek herpetofauna during the last two centuries through a division into Schools according to researchers' origin. Trends in herpetological research and changes in the anthropogeography of herpetologists are also discussed. Last- ly the future tasks of Greek herpetology are presented. Climate, geological history, geographic position and the long human presence in the area are responsible for shaping the particular features of Greek herpetofauna. Around 15% of the Greek herpetofauna comprises endemic species while 16% represent the only European populations in their range. THE STUDY OF REPTILES AND AMPHIBIANS IN ANTIQUITY Greeks from quite early started to describe the natural en- Therein one could find citations to the Greek herpetofauna vironment. At the time biological sciences were consid- such as the Seriphian frogs or the tortoises of Arcadia.
    [Show full text]
  • Biodiversity Profile of Afghanistan
    NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores
    [Show full text]
  • Molecular Variability in Isoptera
    ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA DOTTORATO DI RICERCA IN BIODIVERSITÀ ED EVOLUZIONE CICLO XXII SETTORE SCIENTIFICO DISCIPLINARE DI AFFERENZA: BIO-05 MOLECULAR VARIABILITY IN ISOPTERA SILVIA GHESINI COORDINATORE: TUTOR: PROF. BARBARA MANTOVANI PROF. MARIO MARINI ESAME FINALE ANNO 2010 INDEX PREFACE 5 CHAPTER 1: ISOPTERA 6 1.1 Morphology 7 1.2 Anatomy 8 1.3 Castes 10 1.4 Formation of new colonies 13 1.5 Termite nests 15 1.6 Feeding 17 1.7 Defence mechanisms 18 1.8 Phylogeny and systematics 19 1.9 European termites 22 1.10 Termites from Cyprus 24 CHAPTER 2: TRANSPOSABLE ELEMENTS 26 2.1 Classification of transposable elements 27 2.2 Interactions between transposable elements and host genomes 30 2.3 Long interspersed elements 32 2.4 The element R2 34 CHAPTER 3: MITOCHONDRIAL DNA AS A PHYLOGENETIC MARKER 42 CHAPTER 4: AIMS OF THIS WORK 43 CHAPTER 5: MATERIALS AND METHODS 45 5.1 R2 Methods overview 45 5.2 Mitochondrial DNA methods overview 48 5.3 DNA isolation 49 5.4 Amplification 49 5.4.1 Amplification of R2 fragments 49 5.4.2 Amplification of mitochondrial genes 52 3 5.5 Primer designing 52 5.6 Purification 52 5.7 Cloning 53 5.7.1 Cloning short fragments 54 5.7.2 Cloning long fragments 55 5.7.3 Amplification of inserts 56 5.8 Sequencing 56 5.9 Sequence analysis 56 5.10 Southern blot 57 5.11 Termite breeding 61 CHAPTER 6: RESULTS 63 6.1 The transposable element R2 in termites 63 6.1.1 R2 structure 63 6.1.2 R2 phylogeny 69 6.1.3 R2 truncated variants 73 6.2 Phylogeny of Reticulitermes populations from Cyprus 75 CHAPTER 7: DISCUSSION 79 7.1 The transposable element R2 in termites 79 7.2 Phylogeny of Reticulitermes termites 83 ACKNOWLEDGEMENTS 86 REFERENCES 87 APPENDIX 103 4 PREFACE This work aims to investigate some aspects of termite molecular variability.
    [Show full text]
  • Severe Conditions on Eremias Intermedia (STRAUCH, 1876) And
    HOSSEINIAN YOUSEFKHANI and RASTEGAR POUYANI Artikel 2013 article 3 2013 № 3 - Online veröffentlicht / published online: 2013-01-19 Autoren / Authors: SEYYED SAEED HOSSEINIAN YOUSEFKHANI, Iranian Plateau Herpetology Research Group (IPHRG), Faculty of Science, Razi University, 6714967346 Kermanshah, Iran. E-Mail: [email protected] ESKANDAR RASTEGAR POUYANI, Iranian Plateau Herpetology Research Group (IPHRG), Faculty of Science, Razi University, 6714967346 Kermanshah, Iran. Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran Zitat / Citation: HOSSEINIAN YOUSEFKHANI, S.S. & RASTEGAR POUYANI, E.(2013): Severe conditions on Eremias intermedia (STRAUCH, 1876) and Eremias lineolata (NIKOLSKY, 1896) (Sauria: Lacertidae) in Sarakhs, Northeastern Iran - L@CERTIDAE (Eidechsen Online), 2013 [3]: 17-20. 2013 № 3 - 17 - Severe conditions on Eremias intermedia and Eremias lineolata in Sarakhs, Northeastern Iran. Severe conditions on Eremias intermedia (STRAUCH, 1876) and Eremias lineolata (NIKOLSKY, 1896) (Sauria: Lacertidae) in Sarakhs, Northeastern Iran SEYYED SAEED HOSSEINIAN YOUSEFKHANI and ESKANDAR RASTEGAR-POUYANI, January 2013 Abstract Eremias intermedia and Eremias lineolata are two species from the genus Eremias that are found in the Sarakhs region (at the border of Iran and Turkmenistan) (N: 36º 19’ 32.4” ; E: 61º 08’ 35.4”; altitude: 330 m). That particular region has very unfavorable conditions for lizards. Aridity and Human activity (agriculture) affected on their habitat. A water channel was being constructed to carry water to the city and for this reason, machines were employed which destroyed the sand dunes. Keywords: Eremias intermedia, Eremias lineolata, Sarakhs, Water channel, Sand dune. 2013 № 3 - 18 - HOSSEINIAN YOUSEFKHANI and RASTEGAR POUYANI Introduction Genus Eremias FITZINGER, 1834 consists of 16 species in Iran (ANDERSON 1999; RASTEGAR- POUYANI et al.
    [Show full text]
  • A NEW SPECIES of the GENUS Tropiocolotes PETERS, 1880 from HORMOZGAN PROVINCE, SOUTHERN IRAN (REPTILIA: GEKKONIDAE)
    South Western Journal of Vol.9, No.1, 2018 Horticulture, Biology and Environment pp.15-23 P-Issn: 2067- 9874, E-Issn: 2068-7958 Art.no. e18102 A NEW SPECIES OF THE GENUS Tropiocolotes PETERS, 1880 FROM HORMOZGAN PROVINCE, SOUTHERN IRAN (REPTILIA: GEKKONIDAE) Iman ROUNAGHI1, Eskandar RASTEGAR-POUYANI1,* and Saeed HOSSEINIAN2 1. Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran 2. Young Researchers and Elite Club, Islamic Azad University, Shirvan branch, Shirvan, Iran *Corresponding author: Email: [email protected] ABSTRACT. We have described a new species of gekkonid lizard of the genus Tropiocolotes from southern Iran, on the coastal regions of Persian Gulf from Bandar-e Lengeh, Hormozgan province. Tropiocolotes hormozganensis sp. nov. belongs to the eastern clade of the genus Tropiocolotes (wolfganboehmei-nattereri complex) that is distributed in western Asia. It can be distinguished from the recent described species by having four pairs of postmentals and four nasal scales around the nostril. Postmental scales also differentiate it from T. wolfgangboehmei. The new identification key for the Iranian species of genus Tropiocolotes is provided. KEY WORDS: Endemic, Hormozgan province, Iranian Plateau, Tropiocolotes, Zagros Mountains. ZOO BANK: urn:lsid:zoobank.org:pub:C49EA333-2BEE-4D8C-85CC-CDAC0AF27902 INTRODUCTION During recent years, many lizard species have been described from Iran, with most from the Phylodctylidae and Gekkonidae families (Smid et al. 2014). The Zagros Mountains is a high endemism area in Iran that has an important role in most speciation events during recent periods (Macey et al. 1998; Gholamifard 2011; Esmaeili-Rineh et al. 2016). Many species from Phylodacthylidae were described recently, all of which are endemic to the 16 I.
    [Show full text]
  • An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae
    International Journal of Animal and Veterinary Advances 3(5): 322-329, 2011 ISSN: 2041-2908 © Maxwell Scientific Organization, 2011 Submitted: July 28, 2011 Accepted: September 25, 2011 Published: October 15, 2011 An Etymological Review of the Lizards of Iran: Families Lacertidae, Scincidae, Uromastycidae, Varanidae 1Peyman Mikaili and 2Jalal Shayegh 1Department of Pharmacology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran 2Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, Shabestar Branch, Islamic Azad University, Shabestar, Iran Abstract: The etymology of the reptiles, especially the lizards of Iran has not been completely presented in other published works. Iran is a very active geographic area for any animals, and more especially for lizards, due to its wide range deserts and ecology. We have attempted to ascertain, as much as possible, the construction of the Latin binomials of all Iranian lizard species. We believe that a review of these names is instructive, not only in codifying many aspects of the biology of the lizards, but in presenting a historical overview of collectors and taxonomic work in Iran and Middle East region. We have listed all recorded lizards of Iran according to the order of the scientific names in the book of Anderson, The Lizards of Iran. All lizard species and types have been grouped under their proper Families, and then they have been alphabetically ordered based on their scientific binominal nomenclature. We also examined numerous published works in addition to those included in the original papers presenting each binomial. Key words: Etymology, genera, iran, lizards, Middle East, species, taxonomy. INTRODUCTION comprising the fauna of Iran, including Field guide to the reptiles of Iran, (Vol.
    [Show full text]