A Formalism for Argument Over Rules of Inference

Total Page:16

File Type:pdf, Size:1020Kb

A Formalism for Argument Over Rules of Inference Tenacious Tortoises: A Formalism for Argument over Rules of Inference Peter McBurney and Simon Parsons Department of Computer Science University of Liverpool Liverpool L69 7ZF U.K. g fP.J.McBurney,S.D.Parsons @csc.liv.ac.uk May 31, 2000 Abstract Eighty years later, philosopher Susan Haack [9] took up the question of how one justifies the use of MP as a As multi-agent systems proliferate and employ different deductive rule of inference. If one does so by means of and more sophisticated formal logics, it is increasingly examples of its valid application, then this is in essence likely that agents will be reasoning with different rules a form of induction, which (as she remarks) seems too of inference. Hence, an agent seeking to convince an- weak a means of justification for a rule of deduction. If, other of some proposition may first have to convincethe on the other hand, one uses a deductive means of justi- latter to use a rule of inference which it has not thus far fication, such as demonstrating the preservation of truth adopted. We define a formalism to represent degrees across the inference step in a truth-table, one risks us- of acceptability or validity of rules of inference, to en- ing the very rule being justified. So how can one person able autonomous agents to undertake dialogue concern- convince another of the validity of a rule of deductive ing inference rules. Even when they disagree over the inference? acceptability of a rule, two agents may still use the pro- That rules of inference may be the subject of fierce posed formalism to reason collaboratively. argument is shown by the debate over Constructivism in pure mathematics in the twentieth century [21]: here the rule of inference being contested was double negation 1 Introduction elimination in a Reductio Ad Absurdum (RAA) proof: :È ! ɵ ´:È ! :ɵ FROM ´ and È In 1895, the logician Charles Dodgson (aka Lewis Car- INFER :: È roll) famously imagined a dialogue between Achilles FROM :: and a tortoise, in which the application of Modus Po- INFER È nens (MP) was contested as a valid rule of inference Although the choice of inference rules in purely for- mal mathematics may be arbitrary,1 the question of ac- É [4]. Given arbitrary propositions È and , and the two ceptability of rules of inference is important for Arti- ´È ! ɵ É premises È and , one can only conclude from these premises if one accepts that Modus Ponens ficial Intelligence for a number of reasons. Firstly, it is a valid rule of inference. This the tortoise refuses is relevant to modeling scientific reasoning. Construc- to do, much to the exasperation of Achilles. Instead, tivism, for example, has been proposed as a formalism the tortoise insists that a new premise be added to the for modern physics [3], as have other, non-standard log- ics. In the propositional calculus proposed for quantum È ^ ´È ! ɵµ ! É argument, namely: ´ . When Achilles does this, the tortoise still refuses to accept mechanics by Birkhoff and von Neumann [2], for ex- ample, the distributive laws did not hold: É as the conclusion, insisting on yet another premise: È ^ ´È ! ɵ ^ ´´È ^ ´È ! ɵµ ! ɵµ ! É ´ . The 1Goguen [8], for example, argues that standards of mathematical tortoise continues in this vein, ad infinitum. proof are socially constructed. 1 A _ B µ ^ ´A _ C µ ` A _ ´B ^ C µ Ê ´ does not include. For example, may be the use of the A _ B µ ^ C ` ´A ^ C µ _ ´B ^ C µ ´ contrapositive or RAA. There are three ways in which Indeed, it is possible to view scientific debates over al- the dialogue between A and B could then proceed. ternative causal theories as concerned with the validity First, A could attempt to demonstrate that Ê can be of particularmodes of inference, as we have shown with derived from the rules of inference which are contained regard to claims of carcinogenicity of chemicals based in B’s logic. Similarly, A could attempt to demonstrate Ê on animal evidence[13]. Intelligent systems which seek that Ê is admissible in B’s logic [20], i.e. that is to formally model such domains will need to represent an element of that set of inference rules under which these arguments [14]. the theorems of B’s logic remain unchanged.2 In ei- Secondly, it is not obvious that one logical formal- ther of these two cases, it would then be rational for ism is appropriate for all human reasoning, a subject B to accept , being a proposition whose proof com- of much past debate in philosophy (e.g. see [10]). A mences from agreed assumptions and which uses infer- many-valued logic proposed for quantum physics, for ence rules equivalent (in the sense of derivability or ad- instance, has also been suggested to describe religious missibility) to those B has adopted. In such a case, the reasoning in Azande and Nuer societies, reasoning difference of opinion is resolved, to the satisfaction of which appeared to contravene Modus Ponens [5]. In- both agents. deed, some anthropologists have argued that formal hu- Suppose then that A is unable to prove that Ê is man reasoning processes are culturally-dependent and derivable from or admissible in B’s logic. The second hence different across cultures [18]. To the extent that approach which A may pursue is to attempt to give non- this is the case, systems of autonomous software agents deductive reasons for B to adopt Ê. Examples of such acting on behalf of humans will need to reflect the di- reasons could include: scientific evidence for the causal versity of formal processes. In such circumstances, it mechanism possibly represented by Ê, where the rea- is possible that interacting agents may be using logics soning is in a scientific domain; instances of its valid ap- with different rules of inference, as is possible in the plication (e.g. the use of precedents in legal arguments); agent negotiation system of [15]. If one agent seeks the (possibly non-deductive) positive consequences for to convince another of a particular proposition then that B of adopting Ê (e.g. that doing so will improve the first agent may have to demonstratethe validity of a rule welfare of B, of A and/or of third parties); the (possi- of inference used to prove the proposition. Our objec- bly non-deductive) negative consequences for B of not tive in this work is to develop a formalism in which such adopting Ê (e.g. that not doing so will be to the detri- a debate between agents could be conducted. ment of B, of A and/or of third parties); or empirical evidence which would impact the choice of a particular logic.3 The precise nature of such arguments will de- 2 Arguments over rules of infer- pend upon the domain represented by the multi-agent system, and the nature of the proposition . Moreover, ence for A to successfully convince B using such arguments, B would require some formal means of assessing them, We begin by noting that a dialogue between two agents perhaps using a logic of values as outlined in [7]. Al- in which one only asserts, and the other only denies, a though currently being explored, these ideas are not rule of inferencewill not likely lead very far. A dialogue pursued further here. between agents concerning a rule of inference will need Suppose, however, that A exhausts all such argu- to express more than simply their respective positions ments, and still fails to convince B to adopt either Ê if either agent is to be persuaded to change its position. or . Then, a third approach which A could pursue is What more may be expressed? to represent B’s misgivings over the use of Ê in an ap- Suppose we have two agents, denoted A and B, and propriate formalism and use this to seek compromise that A seeks to convince B of a proposition . For ex- 2 ample, this may be a joint intention which A desires Note that Ê could be admissible in B’s logic yet not derivable from the axioms and inference rules of that logic. All derivable rules both agents to adopt. B asks for a proof of . Suppose that A provides a proof which commences from axioms are admissible, however [20]. 3Theory change in logic on the basis of empirical evidence has which are all accepted by B. Assume, however, that this been much discussed in philosophy, typically in a context of holist proof uses a rule of inference Ê which B says its logic epistemology [17]. 2 between the two of them. We term such a formalism for the probability that the application of the inference an Acceptability Formalism (AF) and see it as akin to rule is invalid. Thus, we cannot say that the application formalisms for representing uncertainty regarding the of the inference rule is valid in any one case, but we truth of propositions. Note that while B’s misgivings can say that, if applied to repeated samples drawn from concerning rule Ê may arise from uncertainty as to its the same population, it will be invalidly applied (say) at validity, they need not: B may be quite certain in reject- most 5% of the time. Thus, the calculation of Ô-values ing the rule. for statistical hypothesis tests, which is common prac- What would be an appropriate formalism for repre- tice in the biological and medical sciences [19], effec- senting degrees of acceptability of a rule of inference? tively associates each inference with a value from the fÔ : Ô ¾ ´¼; ½µg ½¼¼´½ Ôµ± At this point, A has adopted Ê and B has not, so that, in set .
Recommended publications
  • Formalism Or “The Regime of Truth”: a Reading of Adrienne Rich’S
    International Journal of Linguistics and Literature (IJLL) ISSN 2319-3956 Vol. 2, Issue 4, Sep 2013, 19-28 © IASET FORMALISM OR “THE REGIME OF TRUTH”: A READING OF ADRIENNE RICH’S A CHANGE OF WORLD NAHID MOHAMMADI Department of English Language and Literature, Alzahra University, Tehran, Iran ABSTRACT Formalism in Adrienne Rich‟s first book, A Change of World, has attracted different critics and scholars so far. In their interpretations, it seems that they have taken it for granted that Adrienne Rich was a formalist. But none of them has ever presented the cause for the emergence of formalism in Adrienne Rich‟s early poetry. In this paper, I draw upon Michel Foucault‟s theory of “repressive power” and demonstrate that formalism was actually “the regime of truth” which determined „true/false‟ poetry for the young poet and excluded some poetic discourses and permitted only some particular ones to come into being in her first book. KEYWORDS: Adrienne Rich, A Change of World, Formalism, Michel Foucault, Discourse Analysis, Repressive Power, Exclusion, Truth, The Regime of Truth INTRODUCTION Almost all critics of Adrienne Rich‟s poetry agree that her early poems in A Change of World (1951) have been the poet‟s practice of distancing devices of modernist formalism which was dominant among the poets in the United States in the 1950s. Trudi Dawne Witonsky, who has examined Adrienne Rich‟s works in terms of Paulo Freire‟s theory of praxis1, admits that, in her early poetry, Rich wrote under the doctrine of New Critical formalism. She goes further and states that Rich‟s transition from formalism in her early poetry to feminism in her later volumes happens because of the „inadequacy of formalist‟ theory (Witonsky)2.
    [Show full text]
  • From Frames to Inference
    From Frames to Inference Nancy Chang, Srini Narayanan, and Miriam R.L. Petruck International Computer Science Institute 1947 Center St., Suite 600, Berkeley, CA 94704 nchang,miriamp,snarayan ¡ @icsi.berkeley.edu Abstract money ($1000) to another (Jerry) in exchange for some goods (a car) – but differ in the perspective This paper describes a computational they impose on the scene. formalism that captures structural rela- The shared inferential structure of verbs like buy tionships among participants in a dy- and sell is captured in FrameNet by the COMMERCE namic scenario. This representation is frame, which is associated with a set of situational used to describe the internal structure of roles, or frame elements (FEs), corresponding to FrameNet frames in terms of parameters event participants and props. These FEs are used for active event simulations. We apply our as annotation tags for sentences like those in (1), formalism to the commerce domain and yielding, for example: show how it provides a flexible means of handling linguistic perspective and other Buyer Goods challenges of semantic representation. (2) a. [Chuck] bought [a car] [from Jerry]Seller [for $1000]Payment. 1 Introduction b. [Jerry]Seller sold [a car]Goods [to Chuck]Buyer [for $1000]Payment. The development of lexical semantic resources is widely recognized as a prerequisite to progress in FE tags act as a shorthand that allows diverse verbs scalable natural language understanding. One of the to tap into a common subset of encyclopedic knowl- most semantically sophisticated efforts in this direc- edge. Moreover, regularities in the set of FEs real- tion is FrameNet (Baker et al., 1998; Fillmore et al., ized with specific lexical items can be taken as cor- 2001), an online lexical resource1 designed accord- related with their favored perspective.
    [Show full text]
  • Formalism and Realism in Ruins (Mapping the Logics of Collapse)
    University of Colorado Law School Colorado Law Scholarly Commons Articles Colorado Law Faculty Scholarship 2009 Formalism and Realism in Ruins (Mapping the Logics of Collapse) Pierre Schlag University of Colorado Law School Follow this and additional works at: https://scholar.law.colorado.edu/articles Part of the Jurisprudence Commons, and the Law and Politics Commons Citation Information Pierre Schlag, Formalism and Realism in Ruins (Mapping the Logics of Collapse), 95 Iowa L. Rev. 195 (2009) (reprinted with permission), available at . Copyright Statement Copyright protected. Use of materials from this collection beyond the exceptions provided for in the Fair Use and Educational Use clauses of the U.S. Copyright Law may violate federal law. Permission to publish or reproduce is required. This Article is brought to you for free and open access by the Colorado Law Faculty Scholarship at Colorado Law Scholarly Commons. It has been accepted for inclusion in Articles by an authorized administrator of Colorado Law Scholarly Commons. For more information, please contact [email protected]. +(,121/,1( Citation: 95 Iowa L. Rev. 195 2009-2010 Provided by: William A. Wise Law Library Content downloaded/printed from HeinOnline Thu Mar 2 17:47:48 2017 -- Your use of this HeinOnline PDF indicates your acceptance of HeinOnline's Terms and Conditions of the license agreement available at http://heinonline.org/HOL/License -- The search text of this PDF is generated from uncorrected OCR text. -- To obtain permission to use this article beyond the scope of your HeinOnline license, please use: Copyright Information Formalism and Realism in Ruins (Mapping the Logics of Collapse) PierreSchlag* ABSTRACT: After laying out a conventional account of the formalism vs.
    [Show full text]
  • Mechanism, Mentalism, and Metamathematics Synthese Library
    MECHANISM, MENTALISM, AND METAMATHEMATICS SYNTHESE LIBRARY STUDIES IN EPISTEMOLOGY, LOGIC, METHODOLOGY, AND PHILOSOPHY OF SCIENCE Managing Editor: JAAKKO HINTIKKA, Florida State University Editors: ROBER T S. COHEN, Boston University DONALD DAVIDSON, University o/Chicago GABRIEL NUCHELMANS, University 0/ Leyden WESLEY C. SALMON, University 0/ Arizona VOLUME 137 JUDSON CHAMBERS WEBB Boston University. Dept. 0/ Philosophy. Boston. Mass .• U.S.A. MECHANISM, MENT ALISM, AND MET AMA THEMA TICS An Essay on Finitism i Springer-Science+Business Media, B.V. Library of Congress Cataloging in Publication Data Webb, Judson Chambers, 1936- CII:J Mechanism, mentalism, and metamathematics. (Synthese library; v. 137) Bibliography: p. Includes indexes. 1. Metamathematics. I. Title. QA9.8.w4 510: 1 79-27819 ISBN 978-90-481-8357-9 ISBN 978-94-015-7653-6 (eBook) DOl 10.1007/978-94-015-7653-6 All Rights Reserved Copyright © 1980 by Springer Science+Business Media Dordrecht Originally published by D. Reidel Publishing Company, Dordrecht, Holland in 1980. Softcover reprint of the hardcover 1st edition 1980 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage and retrieval system, without written permission from the copyright owner TABLE OF CONTENTS PREFACE vii INTRODUCTION ix CHAPTER I / MECHANISM: SOME HISTORICAL NOTES I. Machines and Demons 2. Machines and Men 17 3. Machines, Arithmetic, and Logic 22 CHAPTER II / MIND, NUMBER, AND THE INFINITE 33 I. The Obligations of Infinity 33 2. Mind and Philosophy of Number 40 3. Dedekind's Theory of Arithmetic 46 4.
    [Show full text]
  • Aesthetic Formalism, Reactions and Solutions
    Hekmat va Falsafe (Wisdom and Philosophy) vol.6, no.4, 2011, pp. 101-112 Aesthetic Formalism, Reactions and Solutions Khosrow Bagheri Noaparast Mohammad Zoheir Bagheri Noaparast Abstract It seems necessary to introduce the basic concepts used in this article i.e. formalism, anti-formalism and moderate formalism. Formalists believe that the aesthetic appreciation of an artwork generally involves an attentive awareness of its sensory or perceptual qualities and does not require knowledge about its non-perceptual properties. Anti-formalists on the other hand hold that none of the aesthetic properties in a work of art are formal. A number of philosophers have recently advocated a more moderate formalism. According to this view, although not all aesthetic qualities are formal, many are, and some artworks possess only formal aesthetic qualities. The quarrel among these three rival views concerns what sort of knowledge, if any, is required for appropriate aesthetic appreciation of an artwork. In what follows, we will give a brief exposition of these three viewpoints. Subsequently, we will give our preferred position with regard to these views. Keywords: Aesthetic formalism, anti-formalism, aesthetics, Nick Zangwill. 101 1. Formalism, anti-formalism and moderate formalism Before getting involved with the details of the three viewpoints, it seems necessary to introduce the notions of aesthetic and non-aesthetic properties and formal and non- formal properties. Observable properties are properties that can make a difference in our perceptual experience of the artwork. In contrast, non-observable properties refer to instances such as the artist‟s intention, the artist‟s love life, the artist‟s mental health, the artwork‟s history.
    [Show full text]
  • The Place of Formalism in Legal Theory, 70 N.C
    NORTH CAROLINA LAW REVIEW Volume 70 | Number 5 Article 4 6-1-1992 The lP ace of Formalism in Legal Theory Michael Corrado Follow this and additional works at: http://scholarship.law.unc.edu/nclr Part of the Law Commons Recommended Citation Michael Corrado, The Place of Formalism in Legal Theory, 70 N.C. L. Rev. 1545 (1992). Available at: http://scholarship.law.unc.edu/nclr/vol70/iss5/4 This Comments is brought to you for free and open access by Carolina Law Scholarship Repository. It has been accepted for inclusion in North Carolina Law Review by an authorized administrator of Carolina Law Scholarship Repository. For more information, please contact [email protected]. ESSAY THE PLACE OF FORMALISM IN LEGAL THEORY MICHAEL CORRADO* I understand formalism to be the claim that law is an autonomous area of knowledge. To say that it is autonomous is to say that it is self- contained, that it is not dependent on other areas of knowledge like mo- rality or politics or sociology. In particular it is to say that law is not reducible to those other areas, in a sense of reducibility I will try to make clear. There is a version of formalism that is true. This version of formal- ism does not claim that law is unrelated to other areas of knowledge. It admits that legal argument makes use of moral, political, and sociologi- cal information. But it insists that, although much that is extra-legal is taken into account in deciding a question of law, it remains extra-legal; it does not become part of the law.' I.
    [Show full text]
  • What Does It Mean to Say That Logic Is Formal?
    WHAT DOES IT MEAN TO SAY THAT LOGIC IS FORMAL? by John Gordon MacFarlane A.B., Philosophy, Harvard College, 1991 M.A., Philosophy, University of Pittsburgh, 1994 M.A., Classics, University of Pittsburgh, 1997 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2000 i Robert Brandom, Distinguished Service Professor of Philosophy (Director) Nuel Belnap, Alan Ross Anderson Distinguished Professor of Philosophy (Second Reader) Joseph Camp, Professor of Philosophy Danielle Macbeth, Associate Professor of Philosophy, Haverford College (Outside Reader) Kenneth Manders, Associate Professor of Philosophy Gerald Massey, Distinguished Service Professor of Philosophy ii WHAT DOES IT MEAN TO SAY THAT LOGIC IS FORMAL? John Gordon MacFarlane, PhD University of Pittsburgh, 2000 Much philosophy of logic is shaped, explicitly or implicitly, by the thought that logic is distinctively formal and abstracts from material content. The distinction between formal and material does not appear to coincide with the more familiar contrasts between a pri- ori and empirical, necessary and contingent, analytic and synthetic—indeed, it is often invoked to explain these. Nor, it turns out, can it be explained by appeal to schematic inference patterns, syntactic rules, or grammar. What does it mean, then, to say that logic is distinctively formal? Three things: logic is said to be formal (or “topic-neutral”) (1) in the sense that it provides constitutive norms for thought as such, (2) in the sense that it is indifferent to the particular identities of objects, and (3) in the sense that it abstracts entirely from the semantic content of thought.
    [Show full text]
  • Logic in Philosophy of Mathematics
    Logic in Philosophy of Mathematics Hannes Leitgeb 1 What is Philosophy of Mathematics? Philosophers have been fascinated by mathematics right from the beginning of philosophy, and it is easy to see why: The subject matter of mathematics| numbers, geometrical figures, calculation procedures, functions, sets, and so on|seems to be abstract, that is, not in space or time and not anything to which we could get access by any causal means. Still mathematicians seem to be able to justify theorems about numbers, geometrical figures, calcula- tion procedures, functions, and sets in the strictest possible sense, by giving mathematical proofs for these theorems. How is this possible? Can we actu- ally justify mathematics in this way? What exactly is a proof? What do we even mean when we say things like `The less-than relation for natural num- bers (non-negative integers) is transitive' or `there exists a function on the real numbers which is continuous but nowhere differentiable'? Under what conditions are such statements true or false? Are all statements that are formulated in some mathematical language true or false, and is every true mathematical statement necessarily true? Are there mathematical truths which mathematicians could not prove even if they had unlimited time and economical resources? What do mathematical entities have in common with everyday objects such as chairs or the moon, and how do they differ from them? Or do they exist at all? Do we need to commit ourselves to the existence of mathematical entities when we do mathematics? Which role does mathematics play in our modern scientific theories, and does the em- pirical support of scientific theories translate into empirical support of the mathematical parts of these theories? Questions like these are among the many fascinating questions that get asked by philosophers of mathematics, and as it turned out, much of the progress on these questions in the last century is due to the development of modern mathematical and philosophical logic.
    [Show full text]
  • Fourteen Arguments in Favor of a Formalist Philosophy of Real
    Baltic J. Modern Computing, Vol. 3 (2015), No. 1, pp. 1–15 Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics Karlis PODNIEKS University of Latvia, Rain¸a bulvaris¯ 19, Riga, LV-1586, Latvia [email protected] Abstract. The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaning- less game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or were neglected in past discussions. Keywords: foundations of mathematics, philosophy of real mathematics, formalism, platonism, consistency, inconsistency 1 Introduction The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited and hopeless position”. This pure and extreme version of for- malism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols (for references, see the account by A. Weir (2011)). Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or were neglected in past discussions. 2 Carl Johannes Thomae as Founder of Game Formalism The idea of the game formalist foundations of mathematics can be traced to 1898 when Carl Johannes Thomae stated in his book: “The formal conception of numbers..
    [Show full text]
  • The Semantics of Grammar Formalisms Seen As Computer Languages
    The semantics of grammar formalisms seen as computer languages The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Fernando C. N. Pereira and Stuart M. Shieber. The semantics of grammar formalisms seen as computer languages. In Proceedings of the Tenth International Conference on Computational Linguistics, pages 123-129, Stanford University, Stanford, California, July 2-6 1984. Published Version http://dx.doi.org/10.3115/980491.980518 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2309658 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Semantics of Grammar Formalisms Seen as Computer Languages Fernando C. N. Pereira and Stuart M. Shieber Artificial Intelligence Center SRI International and Center for the Study of Language and Information Stanford University Abstract a declarative semantics z extended in the natural way from the declarative semantics of context-free grammars. The design, implementation, and use of grammar for- The last point deserves amplification. Context-free ma]isms for natural language have constituted a major grammars possess an obvious declarative semantics in branch of coml)utational linguistics throughout its devel- which nonterminals represent sets of strings and rules rep- opment. By viewing grammar formalisms as just a spe- resent n-ary relations over strings. This is brought out by cial ease of computer languages, we can take advantage of the reinterpretation familiar from formal language theory the machinery of denotational semantics to provide a pre- of context-free grammars as polynomials over concatena- cise specification of their meaning.
    [Show full text]
  • Why Has Aesthetic Formalism Fallen on Hard Times? David E.W
    University of North Florida UNF Digital Commons Philosophy Faculty Publications Department of Philosophy Fall 2010 Why Has Aesthetic Formalism Fallen on Hard Times? David E.W. Fenner University of North Florida, [email protected] Follow this and additional works at: http://digitalcommons.unf.edu/aphi_facpub Part of the Esthetics Commons Recommended Citation Fenner, David E.W., "Why Has Aesthetic Formalism Fallen on Hard Times?" (2010). Philosophy Faculty Publications. 2. http://digitalcommons.unf.edu/aphi_facpub/2 This Article is brought to you for free and open access by the Department of Philosophy at UNF Digital Commons. It has been accepted for inclusion in Philosophy Faculty Publications by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © Fall 2010 All Rights Reserved Why Has Aesthetic Formalism Fallen on Hard Times? David E. W. Fenner University of North Florida 1. Introduction Nick Zangwill has done more than any person recently to resuscitate aesthetic formalism.1 I say ―resuscitate‖ because formalism has not been in favor for several decades. Zangwill writes that ―Aesthetic Formalism has fallen on hard times. At best it receives unsympathetic discussion and swift rejection. At worse it is the object of abuse and derision.‖2 The reasons many today believe aesthetic formalism is not viable have been the subject of discussion since the pendulum swing away from New Criticism, via the work of William Wimsatt, Cleanth Brooks, Clement Greenberg, André Levinson, and Heinrich Wolfflin. Most of these reasons have been discussed thoroughly, and those that I will review here that have been discussed I will spend little time reconsidering.
    [Show full text]
  • Curry's Formalism As Structuralism∗
    Curry’s Formalism as Structuralism∗ Jonathan P. Seldin Department of Mathematics and Computer Science University of Lethbridge Lethbridge, Alberta, Canada [email protected] http://www.cs.uleth.ca/ seldin ∼ September 8, 2005 Abstract In 1939, Curry proposed a philosophy of mathematics he called formalism. He made this proposal in two works originally written in 1939. These are the two philosophical works for which Curry is known, and they have left a false impression of his views. In this article, I propose to clarify Curry’s views by referring to some of his later writings on the subject. I claim that Curry’s philosophy was not what is now usually called formalism, but is really a form of structuralism. 1 Curry’s early philosophy of mathematics In [2], which is a shortened form of the original manuscript of [4], Curry proposed a philosophy of mathematics he called formalism. These two works, which represent Curry’s views in 1939, early in his career, are often the only works by which Curry’s philosophical ideas are known; see, for example, [15, Chapter 6, 5], where [4] is mistakenly identified as a mature work. § ∗This work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada. 1 In these early works, Curry proposed defining mathematics as the science of formal systems. For some writers on the philosophy of mathematics, formalism seems to mean that all mathematics can be interpreted inside a formal system. See, for example, [9].1 But this was not Curry’s view. In [4, p.
    [Show full text]