Mission Design for NASA's Inner Heliospheric Sentinels and ESA's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 2: Earth in Space
Chapter 2: Earth in Space 1. Old Ideas, New Ideas 2. Origin of the Universe 3. Stars and Planets 4. Our Solar System 5. Earth, the Sun, and the Seasons 6. The Unique Composition of Earth Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Earth in Space Concept Survey Explain how we are influenced by Earth’s position in space on a daily basis. The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas • Why is Earth the only planet known to support life? • How have our views of Earth’s position in space changed over time? • Why is it warmer in summer and colder in winter? (or, How does Earth’s position relative to the sun control the “Earthrise” taken by astronauts aboard Apollo 8, December 1968 climate?) The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System sun • Geocentric orbit hypothesis - Ancient civilizations interpreted rising of sun in east and setting in west to indicate the sun (and other planets) revolved around Earth Earth pictured at the center of a – Remained dominant geocentric planetary system idea for more than 2,000 years The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Heliocentric orbit hypothesis –16th century idea suggested by Copernicus • Confirmed by Galileo’s early 17th century observations of the phases of Venus – Changes in the size and shape of Venus as observed from Earth The Good Earth, Chapter 2: Earth in Space Old Ideas, New Ideas From a Geocentric to Heliocentric System • Galileo used early telescopes to observe changes in the size and shape of Venus as it revolved around the sun The Good Earth, Chapter 2: Earth in Space Earth in Space Conceptest The moon has what type of orbit? A. -
Solar Orbiter and Sentinels
HELEX: Heliophysical Explorers: Solar Orbiter and Sentinels Report of the Joint Science and Technology Definition Team (JSTDT) PRE-PUBLICATION VERSION 1 Contents HELEX Joint Science and Technology Definition Team .................................................................. 3 Executive Summary ................................................................................................................................. 4 1.0 Introduction ........................................................................................................................................ 6 1.1 Heliophysical Explorers (HELEX): Solar Orbiter and the Inner Heliospheric Sentinels ........ 7 2.0 Science Objectives .............................................................................................................................. 8 2.1 What are the origins of the solar wind streams and the heliospheric magnetic field? ............. 9 2.2 What are the sources, acceleration mechanisms, and transport processes of solar energetic particles? ........................................................................................................................................ 13 2.3 How do coronal mass ejections evolve in the inner heliosphere? ............................................. 16 2.4 High-latitude-phase science ......................................................................................................... 19 3.0 Measurement Requirements and Science Implementation ........................................................ 20 -
The Living with a Star Geospace Missions
SSC03-IX-2 The Living With a Star Geospace Missions Andrew W. Lewin and Laurence J. Frank Johns Hopkins University Applied Physics Laboratory (JHU/APL) 11100 Johns Hopkins Road Laurel, MD 20723 443-778-8961 [email protected] Abstract The Geospace Missions are the second major mission element in NASA’s Living With a Star program. The missions are designed to help scientists understand, and eventually predict, the response of the geo- space system to solar activity. The investigations will be carried out by two pairs of spacecraft and a high-altitude far ultraviolet (FUV) imager. This observatory network provides the first opportunity to make multi-point in situ measurements of the ionosphere-thermosphere (I-T) system and the radiation belts (RB) with coordinated measurements between the two regions. The first two spacecraft are the I-T Storm Probes (I-TSP), which will study mid-latitude ionospheric vari- ability. They will be launched on a Taurus-class launch vehicle into a 450km circular orbit at 60° inclina- tion. The second pair of spacecraft is the RB Storm Probes (RBSP) that will study the dynamics of radiation belt ions and electrons. These spacecraft will be launched on a Delta II-class launch vehicle into a low inclination, near-GTO orbit. The launch timelines are phased to enable all four spacecraft to make observations at or near solar maximum when solar and geospace activity are the most frequent and severe. The FUV imager will fly on a mission of opportunity in conjunction with I-TSP and RBSP as a payload on a high-altitude spacecraft. -
The Sun-Earth Connected System
Living With A Star (LWS) SEC MISSIONS AND PLANS Solar Terrestrial Probes (STP) Madhulika Guhathakurta([email protected]) SUN-EARTH CONNECTIONS DIVISION NASA, OFFICE OF SPACE SCIENCE Alpbach Summer School, July 23- August 1, 2002 M. Guhathakurta NASA The Sun-Earth Connected Headquarters7/23/02-8/1/02 System Planet Variable Star Varying • Radiation • Solar Wind • Energetic Particles Interacting • Solar Wind • Energetic Particles Interacting Interacting • Magnetic Fields • Plasmas • Magnetic fields • Energetic Particles • Atmosphere QUESTIONS: • Plasma • Energetic Particles • How and why does the Sun vary? • How do the Earth and planets respond? • What are the impacts on humanity? Summer School Alpbach M. Guhathakurta NASA Sun-Earth System -- Driven by 11 Year Solar Cycle Headquarters7/23/02-8/1/02 Solar Maximum: • Increased flares, solar mass ejections, radiation belt enhancements. • 100 Times Brighter X-ray Emissions 0.1% Brighter in Visible • Increased heating of Earth’s upper atmosphere; solar event induced ionospheric effects. Declining Phase, Solar Mnimum: • High speed solar wind streams, solar mass ejections cause geomagnetic storms. Solar Flares Geomagnetic Storms Year 98 00 02 04 06 08 10 12 14 16 18 Summer School Alpbach M. Guhathakurta NASA Why Do We Care? Headquarters7/23/02-8/1/02 • Solar Variability Affects Human Technology, Humans in Space, and Terrestrial Climate. • The Sphere of the Human Environment Continues to Expand Above and Beyond Our Planet. - Increasing dependence on space-based systems - Permanent presence of humans in Earth orbit and beyond Summer School Alpbach M. Guhathakurta NASA Living With a Star: Objectives Headquarters7/23/02-8/1/02 LWS is a systems study of three linked questions: • How and why does the Sun vary? • How does the Earth respond? • What are the impacts on life and society? - Understand solar variability and its effects on space and Earth environments. -
FAST MARS TRANSFERS THROUGH ON-ORBIT STAGING. D. C. Folta1 , F. J. Vaughn2, G.S. Ra- Witscher3, P.A. Westmeyer4, 1NASA/GSFC
Concepts and Approaches for Mars Exploration (2012) 4181.pdf FAST MARS TRANSFERS THROUGH ON-ORBIT STAGING. D. C. Folta1 , F. J. Vaughn2, G.S. Ra- witscher3, P.A. Westmeyer4, 1NASA/GSFC, Greenbelt Md, 20771, Code 595, Navigation and Mission Design Branch, [email protected], 2NASA/GSFC, Greenbelt Md, 20771, Code 595, Navigation and Mission Design Branch, [email protected], 3NASA/HQ, Washington DC, 20546, Science Mission Directorate, JWST Pro- gram Office, [email protected] , 4NASA/HQ, Washington DC, 20546, Office of the Chief Engineer, [email protected] Introduction: The concept of On-Orbit Staging with pre-positioned fuel in orbit about the destination (OOS) combined with the implementation of a network body and at other strategic locations. We previously of pre-positioned fuel supplies would increase payload demonstrated multiple cases of a fast (< 245-day) mass and reduce overall cost, schedule, and risk [1]. round-trip to Mars that, using OOS combined with pre- OOS enables fast transits to/from Mars, resulting in positioned propulsive elements and supplies sent via total round-trip times of less than 245 days. The OOS fuel-optimal trajectories, can reduce the propulsive concept extends the implementation of ideas originally mass required for the journey by an order-of- put forth by Tsiolkovsky, Oberth, Von Braun and oth- magnitude. ers to address the total mission design [2]. Future Mars OOS can be applied with any class of launch vehi- exploration objectives are difficult to meet using cur- cle, with the only measurable difference being the rent propulsion architectures and fuel-optimal trajecto- number of launches required to deliver the necessary ries. -
Sdo Sdt Report.Pdf
Solar Dynamics Observatory “…to understand the nature and source of the solar variations that affect life and society.” Report of the Science Definition Team Solar Dynamics Observatory Science Definition Team David Hathaway John W. Harvey K. D. Leka Chairman National Solar Observatory Colorado Research Division Code SD50 P.O. Box 26732 Northwest Research Assoc. NASA/MSFC Tucson, AZ 85726 3380 Mitchell Lane Huntsville, AL 35812 Boulder, CO 80301 Spiro Antiochos Donald M. Hassler David Rust Code 7675 Southwest Research Institute Applied Physics Laboratory Naval Research Laboratory 1050 Walnut St., Suite 426 Johns Hopkins University Washington, DC 20375 Boulder, Colorado 80302 Laurel, MD 20723 Thomas Bogdan J. Todd Hoeksema Philip Scherrer High Altitude Observatory Code S HEPL Annex B211 P. O. Box 3000 NASA/Headquarters Stanford University Boulder, CO 80307 Washington, DC 20546 Stanford, CA 94305 Joseph Davila Jeffrey Kuhn Rainer Schwenn Code 682 Institute for Astronomy Max-Planck-Institut für Aeronomie NASA/GSFC University of Hawaii Max Planck Str. 2 Greenbelt, MD 20771 2680 Woodlawn Drive Katlenburg-Lindau Honolulu, HI 96822 D37191 GERMANY Kenneth Dere Barry LaBonte Leonard Strachan Code 4163 Institute for Astronomy Harvard-Smithsonian Naval Research Laboratory University of Hawaii Center for Astrophysics Washington, DC 20375 2680 Woodlawn Drive 60 Garden Street Honolulu, HI 96822 Cambridge, MA 02138 Bernhard Fleck Judith Lean Alan Title ESA Space Science Dept. Code 7673L Lockheed Martin Corp. c/o NASA/GSFC Naval Research Laboratory 3251 Hanover Street Code 682.3 Washington, DC 20375 Palo Alto, CA 94304 Greenbelt, MD 20771 Richard Harrison John Leibacher Roger Ulrich CCLRC National Solar Observatory Department of Astronomy Chilton, Didcot P.O. -
Why Atens Enjoy Enhanced Accessibility for Human Space Flight
(Preprint) AAS 11-449 WHY ATENS ENJOY ENHANCED ACCESSIBILITY FOR HUMAN SPACE FLIGHT Daniel R. Adamo* and Brent W. Barbee† Near-Earth objects can be grouped into multiple orbit classifications, among them being the Aten group, whose members have orbits crossing Earth's with semi-major axes less than 1 astronomical unit. Atens comprise well under 10% of known near-Earth objects. This is in dramatic contrast to results from recent human space flight near-Earth object accessibility studies, where the most favorable known destinations are typically almost 50% Atens. Geocentric dynamics explain this enhanced Aten accessibility and lead to an understanding of where the most accessible near-Earth objects reside. Without a com- prehensive space-based survey, however, highly accessible Atens will remain largely un- known. INTRODUCTION In the context of human space flight (HSF), the concept of near-Earth object (NEO) accessibility is highly subjective (Reference 1). Whether or not a particular NEO is accessible critically depends on mass, performance, and reliability of interplanetary HSF systems yet to be designed. Such systems would cer- tainly include propulsion and crew life support with adequate shielding from both solar flares and galactic cosmic radiation. Equally critical architecture options are relevant to NEO accessibility. These options are also far from being determined and include the number of launches supporting an HSF mission, together with whether consumables are to be pre-emplaced at the destination. Until the unknowns of HSF to NEOs come into clearer focus, the notion of relative accessibility is of great utility. Imagine a group of NEOs, each with nearly equal HSF merit determined from their individual characteristics relating to crew safety, scientific return, resource utilization, and planetary defense. -
4.1.6 Interplanetary Travel
Interplanetary 4.1.6 Travel In This Section You’ll Learn to... Outline ☛ Describe the basic steps involved in getting from one planet in the solar 4.1.6.1 Planning for Interplanetary system to another Travel ☛ Explain how we can use the gravitational pull of planets to get “free” Interplanetary Coordinate velocity changes, making interplanetary transfer faster and cheaper Systems 4.1.6.2 Gravity-assist Trajectories he wealth of information from interplanetary missions such as Pioneer, Voyager, and Magellan has given us insight into the history T of the solar system and a better understanding of the basic mechanisms at work in Earth’s atmosphere and geology. Our quest for knowledge throughout our solar system continues (Figure 4.1.6-1). Perhaps in the not-too-distant future, we’ll undertake human missions back to the Moon, to Mars, and beyond. How do we get from Earth to these exciting new worlds? That’s the problem of interplanetary transfer. In Chapter 4 we laid the foundation for understanding orbits. In Chapter 6 we talked about the Hohmann Transfer. Using this as a tool, we saw how to transfer between two orbits around the same body, such as Earth. Interplanetary transfer just extends the Hohmann Transfer. Only now, the central body is the Sun. Also, as you’ll see, we must be concerned with orbits around our departure and Space Mission Architecture. This chapter destination planets. deals with the Trajectories and Orbits segment We’ll begin by looking at the basic equation of motion for interplane- of the Space Mission Architecture. -
Aas 19-829 Trajectory Design for a Solar Polar
AAS 19-829 TRAJECTORY DESIGN FOR A SOLAR POLAR OBSERVING CONSTELLATION Thomas R. Smith,∗ Natasha Bosanac,y Thomas E. Berger,z Nicole Duncan,x and Gordon Wu{ Space-based observatories are an invaluable resource for forecasting geomagnetic storms caused by solar activity. Currently, most space weather satellites obtain measurements of the Sun’s magnetic field along the Sun-Earth line and in the eclip- tic plane. To obtain complete and regular polar coverage of the Sun’s magnetic field, the University of Colorado Boulder’s Space Weather Technology, Research, and Education Center (SWx TREC) and Ball Aerospace are currently developing a mission concept labeled the Solar Polar Observing Constellation (SPOC). This concept comprises two spacecraft in low-eccentricity and high-inclination helio- centric orbits at less than 1 astronomical unit (AU) from the Sun. The focus of this paper is the design of a trajectory for the SPOC concept that satisfies a variety of hardware and mission constraints to improve solar magnetic field models and wind forecasts via polar viewpoints of the Sun. INTRODUCTION Space weather satellites are essential in developing accurate solar magnetic field models and so- lar wind forecasts to provide advance warnings of geomagnetic storms. Measurements of the solar magnetic field are the primary inputs to forecasts of the solar wind and, thus, the arrival times of coronal mass ejections (CMEs). Space-based magnetogram and doppler velocity measurements of the Sun’s magnetic field are valuable in developing these models and forecasts. -
Circulating Transportation Orbits Between Earth and Mars
CIRCULATING TRANSPORTATION ORBITS BETWEEN EARTH AND MRS 1 2 Alan L. Friedlander and John C. Niehoff . Science Applications International Corporation Schaumburg, Illinois 3 Dennis V. Byrnes and James M. Longuski . Jet Propulsion Laboratory Pasadena, Cal iforni a Abstract supplies in support of a sustained Manned Mars Sur- This paper describes the basic characteristics face Base sometime during the second quarter of the of circulating (cyclical ) orbit design as applied next century. to round-trip transportation of crew and materials between Earth and Mars in support of a sustained A circulating orbit may be defined as a multi- manned Mars Surface Base. The two main types of ple-arc trajectory between two or more planets non-stopover circulating trajectories are the so- which: (1) does not stop at the terminals but called VISIT orbits and the Up/Down Escalator rather involves gravity-assist swingbys of each orbits. Access to the large transportation facili- planet; (2) is repeatable or periodic in some ties placed in these orbits is by way of taxi vehi- sense; and (3) is continuous, i.e., the process can cles using hyperbolic rendezvous techniques during be carried on indefinitely. Different types of the successive encounters with Earth and Mars. circulating orbits between Earth and Mars were Specific examples of real trajectory data are pre- identified in the 1960s 1iterat~re.l'*'~'~ Re- sented in explanation of flight times, encounter examination of this interesting problem during the frequency, hyperbol ic velocities, closest approach past year has produced new solution^.^'^'^ Some distances, and AV maneuver requirements in both involve only these two bodies while others incor- interplanetary and planetocentric space. -
An Experimental Plasma Dynamo Program for Investigations of Fundamental Processes in Heliophysics
A Science White Paper in response to the 2012 Heliophysics Decadal Survey \Solar & Heliospheric Physics" and \Solar Wind-Magnetospheric Interactions" An Experimental Plasma Dynamo Program for Investigations of Fundamental Processes in Heliophysics Benjamin Brown (U Wisc & CMSO), Cary Forest (U Wisc & CMSO), Mark Nornberg (U Wisc & CMSO), Ellen Zweibel (U Wisc & CMSO), Fausto Cattaneo (U Chicago & CMSO) and Steven Cowley (Imperial College & CCFE, England) Plasma experiments in laboratory settings offer the opportunity to address fundamental aspects of the solar dynamo and magnetism in the solar atmosphere. Experiments are currently under construction that can investigate the self-generation of magnetic fields and related processes in large, weakly magnetized, fast flowing, and hot (conducting) plasmas. These and future experiments will probe questions that are of crucial importance to heliophysics in the solar interior, atmosphere and wind. Uniquely, laboratory plasma experiments coupled with theoretical explorations can serve to calibrate the simulation codes which are being used to understand the solar dynamo, magnetic reconnection and flares in the solar atmosphere, the nature of CMEs, and the interactions between planetary magnetospheres and the solar wind. Laboratory plasma experiments are likely to contribute new understanding complementary to the traditional observational and modeling approach normally used by space physicists. We argue here that ground-based laboratory experiments have direct connections to NASA based missions and NSF programs, and that a small investment in laboratory heliophysics may have a high payoff. We will use the Madison Plasma Dynamo Experiment (MPDX)1 as an example, but advocate here for broad involvement in community-scale plasma experiments. Fundamental plasma processes in heliophysics and connection to NASA missions and NSF programs The 22-year solar cycle stands out as one of the most remarkable and enigmatic examples of magnetic self-organization in nature. -
Solar Sentinels: Report of the Science and Technology Definition Team
NASA/TM—2006–214137 Solar Sentinels: Report of the Science and Technology Definition Team August 2006 EXECUTIVE SUMMARY Executive Summary: The Living With a Star Sentinels Mission NASA’s Sentinels mission is a multispacecraft mis- sion that will study () the acceleration and transport of solar energetic particles (SEPs) and (2) the initia- tion and evolution of coronal mass ejections (CMEs) and interplanetary shocks in the inner heliosphere. As presently envisioned, the Sentinels mission com- prises () a constellation of four identically instru- mented Inner Heliospheric Sentinels to make in-situ measurements of the plasma, energetic particle, and fields environment as close to the Sun as 0.25 AU as well as multipoint remote-sensing observations of solar X-ray, radio, gamma-ray, and neutron emis- sions; (2) a Near-Earth Sentinel in Sun-synchronous orbit for ultraviolet and white-light observations of the corona; and (3) a Farside Sentinel in heliocen- tric orbit at AU to measure the photospheric mag- Intense solar energetic particle (SEP) events will present a netic field from positions 60° to 20° ahead of the serious health hazard for astronauts on future expeditions Earth. During the 3-year nominal mission, Sentinels to the Moon and Mars. Sentinels science will enable the observations will be supplemented by observations development of a forecasting capability for SEP events. both from other spacecraft such as the Solar Terres- to ensure that the Sentinels mission described in trial Relations Observatories (STEREO), the Solar this report can achieve the scientific objectives Dynamics Observatory (SDO), and Solar Orbiter established by the STDT and can be implemented and from ground-based observatories such as the with no new technology development.