The Sun-Earth Connected System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017
Shock Connectivity and the Late Cycle 24 Solar Energetic Particle Events in July and September 2017 J.G. Luhmann1, M.L. Mays2, Yan Li1, C.O. Lee1, H. Bain3, D. Odstrcil4, R.A. Mewaldt5, C.M.S. Cohen5, D. Larson1, Gordon Petrie6 1Space Sciences Laboratory, University of California, Berkeley. 2CCMC, NASA Goddard Space Flight Center. 3NOAA Space Weather Prediction Center. 4George Mason University. 5California Institute of Technology. 6NSO. Corresponding author: Janet Luhmann ([email protected]) Key Points: Observer shock connectivity explains the SEP observations during the July and September 2017 events. The July and September 2017 solar and SEP events had similar characteristics due to similar source region and eruptions. The July and September 2017 events seemed to arise in conjunction with the appearance of a pseudostreamer, a possible alternate ICME source. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2018SW001860 © 2018 American Geophysical Union. All rights reserved. Abstract As solar activity steadily declined toward the cycle 24 minimum in the early months of 2017, the expectation for major Solar Energetic Particle (SEP) events diminished with the sunspot number. It was thus surprising (though not unprecedented) when a new, potentially significant active region rotated around the East limb in early July that by mid-month was producing a series of coronal eruptions, reaching a crescendo around July 23. This series, apparently associated with the birth of a growing pseudostreamer, produced the largest SEP event(s) seen since the solar maximum years. -
The Van Allen Probes' Contribution to the Space Weather System
L. J. Zanetti et al. The Van Allen Probes’ Contribution to the Space Weather System Lawrence J. Zanetti, Ramona L. Kessel, Barry H. Mauk, Aleksandr Y. Ukhorskiy, Nicola J. Fox, Robin J. Barnes, Michele Weiss, Thomas S. Sotirelis, and NourEddine Raouafi ABSTRACT The Van Allen Probes mission, formerly the Radiation Belt Storm Probes mission, was renamed soon after launch to honor the late James Van Allen, who discovered Earth’s radiation belts at the beginning of the space age. While most of the science data are telemetered to the ground using a store-and-then-dump schedule, some of the space weather data are broadcast continu- ously when the Probes are not sending down the science data (approximately 90% of the time). This space weather data set is captured by contributed ground stations around the world (pres- ently Korea Astronomy and Space Science Institute and the Institute of Atmospheric Physics, Czech Republic), automatically sent to the ground facility at the Johns Hopkins University Applied Phys- ics Laboratory, converted to scientific units, and published online in the form of digital data and plots—all within less than 15 minutes from the time that the data are accumulated onboard the Probes. The real-time Van Allen Probes space weather information is publicly accessible via the Van Allen Probes Gateway web interface. INTRODUCTION The overarching goal of the study of space weather ing radiation, were the impetus for implementing a space is to understand and address the issues caused by solar weather broadcast capability on NASA’s Van Allen disturbances and the effects of those issues on humans Probes’ twin pair of satellites, which were launched in and technological systems. -
Living with a Star Targeted Research and Technology (TR&T) Steering
Living with a Star Targeted Research and Technology (TR&T) Steering Committee Steering Committee Members: Liaison Members: Co-Chair: Eftyhia Zesta (GSFC) Terry Onsager (NOAA) Co-Chair: Mark Linton (NRL) Rodney Vierick (NOAA) Yuri Shprits (MIT) Ilia Roussev (NSF) Scott McIntosh (NCAR / HAO) Vyacheslav Lukin (NSF) Nathan Schwadron (UNH ex-chair) Masha Kuznetsova (GSFC / Community Karel Schrijver (Lockheed Martin) Coordinated Modeling Center) Jim Slavin (U Michigan) Mona Kessel (NASA HQ / Chadi Salem (UC Berkeley) Van Allen Probes) Alexa Halford (GSFC) Dean Pesnell (GSFC / Pontus Brandt (APL) Solar Dynamics Observatory) Tim Bastian (NRAO) David Sibeck (GSFC / Van Allen Probes) Kent Tobiska Adam Szabo (GSFC / Solar Probe Plus) (Space Environment Tech.) Chris St. Cyr (GSFC / Solar Orbiter) LWS Program Ex Officio: Elsayed Talaat & Jeff Morrill (NASA HQ), Shing Fung (GSFC) 2003 Science Definition Team Report: Living with a Star Objectives LWS initiative: goal-oriented research program targeting those aspects of the Sun-Earth system that directly affect life and society. The objectives of LWS will advance research in Sun-Earth system science to new territory, producing knowledge and understanding that society can ultimately utilize. 2003 LWS Science Definition Team Report: TR&T Program The Targeted Research and Technology (TR&T) component of LWS provides the theory, modeling, and data analysis necessary to enable an integrated, system-wide picture of Sun-Earth connection science with societal relevance. Science Definition Team (SDT) … formed -
Sentinelssentinels
SentinelsSentinels This LWS program element includes the Inner Heliospheric Sentinels (IHS) and the Far Side Sentinel (FSS) missions, each with its own distinct concept. And post o’er land and ocean without rest, They also serve who only stand and wait. On His Blindness Goddard Space Flight Center John Milton SentinelsSentinels StudyStudy ChronologyChronology Date Event Concept 1/13/00 Sentinels Briefing By A. Szabo Far Side Observer, L1 Cluster, NG STEREO 1/20/00 Preformulation Team Meeting Imaging/In-Situ Libration Point Measurements 2/2/00 Preformulation Team Meeting Emphasis On Heliospheric Elements 2/3/00 to 3/31/00 Libration Point Orbit Studies Orbit Trajectory Options 3/31/00 Preformulation Team Meeting Far Side Sentinel/4 Inner Heliospheric Sentinels 4/6/00 Sentinels Workshop 4 Satellite Constellation/Far Side Options 4/7/00 JPL Preliminary FSS Concept 3-Axis Spacecraft/5 Instruments/1 Launch 4/10/00 IMDC IHS Briefing 4 Spinning Satellites/4 Instruments/1 Launch 4/17/00 to 4/20/00 IMDC IHS Study 4 Spinning Satellites/4 Instruments/1 Launch 4/20/00 to 4/27/00 JPL FSS Concept/Cost Update Custom Spacecraft/5 Instruments/1 Launch 4/21/00 to 5/5/00 GSFC Mission Costing Far Side Sentinel/4 Inner Heliospheric Sentinels 5/25/00 FSS Mission Concept Summary Defined In Attached System/Subsystem Charts 5/31/00 Program Operating Plan Costed As Two Separate Missions Goddard Space Flight Center SentinelsSentinels ConceptConcept EvolutionEvolution LWS scientists initially considered a complement of spacecraft for the Sentinels mission that included a spacecraft observing the far side of the Sun, a cluster of satellites at L1, and two next-generation STEREO spacecraft. -
Solar Orbiter and Sentinels
HELEX: Heliophysical Explorers: Solar Orbiter and Sentinels Report of the Joint Science and Technology Definition Team (JSTDT) PRE-PUBLICATION VERSION 1 Contents HELEX Joint Science and Technology Definition Team .................................................................. 3 Executive Summary ................................................................................................................................. 4 1.0 Introduction ........................................................................................................................................ 6 1.1 Heliophysical Explorers (HELEX): Solar Orbiter and the Inner Heliospheric Sentinels ........ 7 2.0 Science Objectives .............................................................................................................................. 8 2.1 What are the origins of the solar wind streams and the heliospheric magnetic field? ............. 9 2.2 What are the sources, acceleration mechanisms, and transport processes of solar energetic particles? ........................................................................................................................................ 13 2.3 How do coronal mass ejections evolve in the inner heliosphere? ............................................. 16 2.4 High-latitude-phase science ......................................................................................................... 19 3.0 Measurement Requirements and Science Implementation ........................................................ 20 -
The New Heliophysics Division Template
NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO. -
The Living with a Star Geospace Missions
SSC03-IX-2 The Living With a Star Geospace Missions Andrew W. Lewin and Laurence J. Frank Johns Hopkins University Applied Physics Laboratory (JHU/APL) 11100 Johns Hopkins Road Laurel, MD 20723 443-778-8961 [email protected] Abstract The Geospace Missions are the second major mission element in NASA’s Living With a Star program. The missions are designed to help scientists understand, and eventually predict, the response of the geo- space system to solar activity. The investigations will be carried out by two pairs of spacecraft and a high-altitude far ultraviolet (FUV) imager. This observatory network provides the first opportunity to make multi-point in situ measurements of the ionosphere-thermosphere (I-T) system and the radiation belts (RB) with coordinated measurements between the two regions. The first two spacecraft are the I-T Storm Probes (I-TSP), which will study mid-latitude ionospheric vari- ability. They will be launched on a Taurus-class launch vehicle into a 450km circular orbit at 60° inclina- tion. The second pair of spacecraft is the RB Storm Probes (RBSP) that will study the dynamics of radiation belt ions and electrons. These spacecraft will be launched on a Delta II-class launch vehicle into a low inclination, near-GTO orbit. The launch timelines are phased to enable all four spacecraft to make observations at or near solar maximum when solar and geospace activity are the most frequent and severe. The FUV imager will fly on a mission of opportunity in conjunction with I-TSP and RBSP as a payload on a high-altitude spacecraft. -
Living with a Star Pre-Formulation Study
Living With a Star Pre-Formulation Study Volume 2 Mission Concept Descriptions August 1, 2000 G O D D A R D S P A C E F L I G H T C E N T E R AcknowledgementAcknowledgement The Living With a Star (LWS) study management acknowledges with gratitude the significant contributions to this volume made by GSFC engineering team and Integrated Mission Design Center (IMDC) personnel. A special note of thanks also goes to NASA Jet Propulsion Laboratory personnel who developed the concept for the Far Side Sentinel mission and provided timely input to the mission study team. G O D D A R D S P A C E F L I G H T C E N T E R OverviewOverview This volume summarizes the results of a 6-month LWS pre-formulation study to develop initial concepts for a set of missions that form the basis for the NASA proposed space weather research network. Pre-formulation begins the process to define a viable and affordable concept for new NASA programs and projects. This step is followed by a more formal formulation phase to ensure that the program or project is ready to proceed into implementation. The policy and process are defined in NPD 7120.4A and NPG 7120.5A. G O D D A R D S P A C E F L I G H T C E N T E R TraceabilityTraceability A concerted effort has been made to maintain traceability of concepts and associated costs throughout the LWS program study. This added rigor will allow intelligent trade-offs to be performed and assessed as the program evolves over the months and years ahead. -
Mission Design for NASA's Inner Heliospheric Sentinels and ESA's
International Symposium on Space Flight Dynamics Mission Design for NASA’s Inner Heliospheric Sentinels and ESA’s Solar Orbiter Missions John Downing, David Folta, Greg Marr (NASA GSFC) Jose Rodriguez-Canabal (ESA/ESOC) Rich Conde, Yanping Guo, Jeff Kelley, Karen Kirby (JHU APL) Abstract This paper will document the mission design and mission analysis performed for NASA’s Inner Heliospheric Sentinels (IHS) and ESA’s Solar Orbiter (SolO) missions, which were conceived to be launched on separate expendable launch vehicles. This paper will also document recent efforts to analyze the possibility of launching the Inner Heliospheric Sentinels and Solar Orbiter missions using a single expendable launch vehicle, nominally an Atlas V 551. 1.1 Baseline Sentinels Mission Design The measurement requirements for the Inner Heliospheric Sentinels (IHS) call for multi- point in-situ observations of Solar Energetic Particles (SEPs) in the inner most Heliosphere. This objective can be achieved by four identical spinning spacecraft launched using a single launch vehicle into slightly different near ecliptic heliocentric orbits, approximately 0.25 by 0.74 AU, using Venus gravity assists. The first Venus flyby will occur approximately 3-6 months after launch, depending on the launch opportunity used. Two of the Sentinels spacecraft, denoted Sentinels-1 and Sentinels-2, will perform three Venus flybys; the first and third flybys will be separated by approximately 674 days (3 Venus orbits). The other two Sentinels spacecraft, denoted Sentinels-3 and Sentinels-4, will perform four Venus flybys; the first and fourth flybys will be separated by approximately 899 days (4 Venus orbits). Nominally, Venus flybys will be separated by integer multiples of the Venus orbital period. -
Ten Year Assessment Report
ASSESSMENT OF THE LIVING WITH A STAR (LWS) TARGETED RESEARCH AND TECHNOLOGY (TR&T) PROGRAM WITH DISCUSSION OF POSSIBLE FUTURE DIRECTIONS AND PROGRAM ELEMENTS NASA LWS TR&T 2012 STEERING COMMITTEE JULY 2014 July 7, 2014 NASA Living With a Star (LWS) Targeted Research and Technology (TR&T) 2012 Steering Committee Steering Committee Members: Glenn Mason, JHU/APL (Chair) William Abbett, UCBerkeley Geoff Crowley, ASTRA Frank Eparvier, LASP Tamas Gombosi, UMichigan Charles Goodrich, UMD Farzad Kamalabadi, UIllinois Justin Kasper, CFA Anthony Mannucci, JPL Barry Mauk, JHU/APL Peter Riley, Predictive Science Karel Schrijver, LMSAL Nathan Schwadron, UNH Harlan Spence, UNH Liaison to Committee: Kent Miller, Civ USAF AFMC AFOSR/RSE Terry Onsager, NOAA Rodney Viereck, NOAA Anja Stromme, NSF Raymond Walker, NSF Therese Moretto-Jorgensen, NSF Amitava Bhattacharjee, Princeton University and PPPL (former Chair) Spiro Antiochos, GSFC (former Chair) Masha Kuznetsova, CCMC, GSFC David Sibeck, GSFC Dean Pesnell, GSFC Adam Szabo, GSFC Chris St. Cyr, GSFC Ex Officio: Madhulika Guhathakurta, Lead Program Scientist, NASA HQ Ramona Kessel, RBSP Program Scientist, NASA HQ Robert Leamon, NASA HQ Climate Group Additional Contributors: L. Hood, JPL C. Jackman, GSFC P. Pilewskie, LASP 2 July 7, 2014 Table of contents: Page 1. Introduction .......................................................................................................... 4 2. Summary of Strategic Goals ................................................................................ 5 3. Progress -
Heliophysics Division Committee on Solar and Space Physics
Heliophysics Division Committee on Solar and Space Physics Dr. Nicky Fox Heliophysics Division Director March 24, 2021 1 Update on Heliophysics COVID-19 Impacts We recognize everyone’s enormous personal and professional challenges at this time. Everyone’s physical safety and emotional wellness remains our priority. Missions • Minimal impacts to operating missions • Many missions in formulation or development have already submitted, and amended, re-plans to accommodate COVID impacts Research • NASA instituted a number of grant administration flexibilities to ease the burden on grant recipients during the COVID-19 emergency • Post-COVID-19 Recovery: Heliophysics R&A augmentation requests received in early March and under evaluation 2 2020 Year in Review: Heliophysics is Experiencing Incredible Growth • NASEM conducted a mid-term assessment of progress toward implementation of the 2013 Decadal Survey. • Heliophysics program reflects the results of a concerted effort to successfully launch missions developed over the past decade and to increase cadence of flight opportunities. • Heliophysics is driving growth in other areas of the program: • Space weather, space situational awareness, scientific discovery, application of the revolutionary new capabilities in Artificial Intelligence, Machine Learning, citizen science, data analysis and archiving to enhance data assimilation and modeling, and technology development. • In 2018-20, HPD successfully launched 5 missions: GOLD, Space Environment Testbeds, Parker Solar Probe, ICON, and Solar Orbiter Collaboration. • Leaning forward to accelerate mission selections and cadence as outlined in the 2013 Decadal Survey. Heliophysics currently has 12 missions in formulation or development and another 7 under study, representing the largest increase in missions in the history of the Division. -
Sdo Sdt Report.Pdf
Solar Dynamics Observatory “…to understand the nature and source of the solar variations that affect life and society.” Report of the Science Definition Team Solar Dynamics Observatory Science Definition Team David Hathaway John W. Harvey K. D. Leka Chairman National Solar Observatory Colorado Research Division Code SD50 P.O. Box 26732 Northwest Research Assoc. NASA/MSFC Tucson, AZ 85726 3380 Mitchell Lane Huntsville, AL 35812 Boulder, CO 80301 Spiro Antiochos Donald M. Hassler David Rust Code 7675 Southwest Research Institute Applied Physics Laboratory Naval Research Laboratory 1050 Walnut St., Suite 426 Johns Hopkins University Washington, DC 20375 Boulder, Colorado 80302 Laurel, MD 20723 Thomas Bogdan J. Todd Hoeksema Philip Scherrer High Altitude Observatory Code S HEPL Annex B211 P. O. Box 3000 NASA/Headquarters Stanford University Boulder, CO 80307 Washington, DC 20546 Stanford, CA 94305 Joseph Davila Jeffrey Kuhn Rainer Schwenn Code 682 Institute for Astronomy Max-Planck-Institut für Aeronomie NASA/GSFC University of Hawaii Max Planck Str. 2 Greenbelt, MD 20771 2680 Woodlawn Drive Katlenburg-Lindau Honolulu, HI 96822 D37191 GERMANY Kenneth Dere Barry LaBonte Leonard Strachan Code 4163 Institute for Astronomy Harvard-Smithsonian Naval Research Laboratory University of Hawaii Center for Astrophysics Washington, DC 20375 2680 Woodlawn Drive 60 Garden Street Honolulu, HI 96822 Cambridge, MA 02138 Bernhard Fleck Judith Lean Alan Title ESA Space Science Dept. Code 7673L Lockheed Martin Corp. c/o NASA/GSFC Naval Research Laboratory 3251 Hanover Street Code 682.3 Washington, DC 20375 Palo Alto, CA 94304 Greenbelt, MD 20771 Richard Harrison John Leibacher Roger Ulrich CCLRC National Solar Observatory Department of Astronomy Chilton, Didcot P.O.