Modelling, Meteorology, Impacts Preparedness
Total Page:16
File Type:pdf, Size:1020Kb
ADVANCES IN HURRICANE RESEARCH MODELLING, METEOROLOGY, PREPAREDNESS AND IMPACTS Edited by Kieran Hickey ADVANCES IN HURRICANE RESEARCH - MODELLING, METEOROLOGY, PREPAREDNESS AND IMPACTS Edited by Kieran Hickey Advances in Hurricane Research - Modelling, Meteorology, Preparedness and Impacts http://dx.doi.org/10.5772/3399 Edited by Kieran Hickey Contributors Eric Hendricks, Melinda Peng, Alexander Grankov, Vladimir Krapivin, Svyatoslav Marechek, Mariya Marechek, Alexander Mil`shin, Evgenii Novichikhin, Sergey Golovachev, Nadezda Shelobanova, Anatolii Shutko, Gary Moynihan, Daniel Fonseca, Robert Gensure, Jeff Novak, Ariel Szogi, Ken Stone, Xuefeng Chu, Don Watts, Mel Johnson, Gunnar Schade, Qin Chen, Kelin Hu, Patrick FitzPatrick, Dongxiao Wang, Kieran Richard Hickey Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Lipovic Technical Editor InTech DTP team Cover InTech Design team First published December, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Advances in Hurricane Research - Modelling, Meteorology, Preparedness and Impacts, Edited by Kieran Hickey p. cm. ISBN 978-953-51-0867-2 Contents Preface VII Section 1 Modelling 1 Chapter 1 Initialization of Tropical Cyclones in Numerical Prediction Systems 3 Eric A. Hendricks and Melinda S. Peng Chapter 2 Elaboration of Technologies for the Diagnosis of Tropical Hurricanes Beginning in Oceans with Remote Sensing Methods 7 A. G. Grankov, S. V. Marechek, A. A. Milshin, E. P. Novichikhin, S. P. Golovachev, N. K. Shelobanova and A. M. Shutko Chapter 3 Assessment of a Parametric Hurricane Surface Wind Model for Tropical Cyclones in the Gulf of Mexico 23 Kelin Hu, Qin Chen and Patrick Fitzpatrick Section 2 Meteorology 73 Chapter 4 The Variations of Atmospheric Variables Recorded at Xisha Station in the South China Sea During Tropical Cyclone Passages 43 Dongxiao Wang, Jian Li, Lei Yang and Yunkai He Chapter 5 Characteristics of Hurricane Ike During Its Passage over Houston, Texas 75 Gunnar W. Schade VI Contents Section 3 Preparedness and Impacts 115 Chapter 6 Application of Simulation Modeling for Hurricane Contraflow Evacuation Planning 89 Gary P. Moynihan and Daniel J. Fonseca Chapter 7 Transport of Nitrate and Ammonium During Tropical Storm and Hurricane Induced Stream Flow Events from a Southeastern USA Coastal Plain In-Stream Wetland - 1997 to 1999 117 J. M. Novak, A. A. Szogi, K.C. Stone, X. Chu, D. W. Watts and M. H. Johnson Chapter 8 Meeting the Medical and Mental Health Needs of Children After a Major Hurricane 139 Robert C. Gensure and Adharsh Ponnapakkam Chapter 9 The Impact of Hurricane Debbie (1961) and Hurricane Charley (1986) on Ireland 159 Kieran R. Hickey and Christina Connolly-Johnston Preface Although extensive research has been carried out on tropical cyclones, there is still much more to be done in order to understand them. This includes how they form, develop and move, their predictability, their meteorological signatures and their impacts, along with issues of how different societies prepare and manage or in many cases fail to manage the risk when tropical cyclones make contact with human societies. The recent effects of Hurricane Sandy /Tropical Storm Sandy in 2012 emphasises these issues especially in the context of the vulnerability of different communities to the catastrophic impacts of these events whether in a developing country or developed urban areas such as New Jersey and New York. It is estimated that over 200 people have died in the USA, Haiti, Cuba and other countries and the cost of Sandy will be well in excess of $52 billion, of this figure at least $50 billion will be the cost of the damage done in the USA alone. But we must not forget that tropical cyclones are a devastating global phenomenon with major events affecting many parts of the world on an annual basis. For example, in 2012 the NW Pacific typhoon season has been very active, generating over 500 fatalities and around $4.4 billion dollars in damage , affecting many countries in this region. This book provides a wealth of new information, ideas and analysis on some of the key unknowns in hurricane research at present including modelling, predictability, the meteorological footprint of cyclones, the issue of evacuation, impact of event on nutrient movement during hurricane-induced high stream flow events, the critical provision of children’s medical services and the general impact of events. The book is divided into three parts and each part is organized by topic. Each part in turn is organised as logically as possible. The first part of the book is concerned with a number of aspects of the modelling of tropical cyclones. The first chapter reviews numerical prediction systems for tropical cyclone development and the strengths and weaknesses of each of the three major approaches are identified. The second chapter in this section assesses the use of remote sensing methods for tropical cyclone development in oceans. Two case studies are considered, that of Hurricane Katrina in 2005 and Hurricane Humberto in 2007. The final chapter here assesses a parametric surface wind model for tropical cyclones in the Gulf of Mexico and in particular focussing on ten hurricanes which affected this region between 2002 and 2008, starting with Hurricane Isidore and finishing with Hurricane Ike, and again, including Hurricane Katrina. VIII Preface The second part of the book examines the meteorological context of tropical cyclones. The first chapter here presents a detailed micrometeorological analysis of the wind as Hurricane Ike passed over Houston, Texas in 2008. Temperature, pressure and humidity were also incorporated into the analysis. The second chapter in this section analyses the meteorological passage of 52 tropical cyclones as they pass over part of the South China Sea, a particular focus being on wind fields, air temperature and heavy rainfall. The third part of the book focuses on the preparation for and impact of tropical cyclones in a number of contexts. The first chapter uses simulation modelling in order to evaluate evacuations by motorised vehicles in Alabama and this has significant implications for not just the USA but also all vulnerable areas with a high usage of motor vehicles. The second chapter looks at the influence of high stream-flow events in the post hurricane period and the direct effect of this on nutrient flows into wetlands, in particular the focus is on nitrate and ammonium flows. The third chapter in this section reviews the medical needs, both physical and psychological of children in a post hurricane scenario. Much of this research having being carried out as a result of the impact of Hurricane Katrina in the USA and in particular the need for systematic intervention is identified in the case of psychological health problems being presented by individual children. The final chapter assesses the meteorological and human impact of both Hurricanes Debbie and Charley on Ireland but also with reference to the UK and Europe. Both caused significant damage and loss of life but were very different in character, Hurricane Debbie bringing record high winds to Ireland and Hurricane Charley bringing record rainfall to Ireland and consequently severe flooding in some locations. Kieran R. Hickey School of Geography and Archaeology AC125, Arts Concourse Building National University of Ireland Galway Galway City, Republic of Ireland Section 1 Modelling Chapter 1 Initialization of Tropical Cyclones in Numerical Prediction Systems Eric A. Hendricks and Melinda S. Peng Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51177 1. Introduction Tropical cyclones (here after TCs) are intense atmospheric vortices that form over warm ocean waters. Strong TCs (called hurricanes in the North Atlantic basin, or typhoons in the western north Pacific basin) can cause significant loss of lives and property when making landfall due to destructive winds, torrential rainfall, and powerful storm surges. In order to warn people of hazards from incoming TCs, forecasters must make predictions of the future position and intensity of the TC. In order to make these forecasts, a forecaster uses a wide suite of tools ranging from his or her subjective assessment of the situation based on experience, the climatology and persistence characteristics of the storm, and most impor‐ tantly, models, which make a prediction of the future state of the atmosphere given the current state. In this chapter, the focus is on dynamical models. A dynamical model is based on the governing laws of the system, which for the atmosphere are the conservation of momentum, mass, and energy. Since the system of partial differential equations that gov‐ ern the atmosphere is highly nonlinear, a numerical approximation must be made in or‐ der to obtain a solution to these equations. Short term (less than 7 days) numerical weather prediction is largely an initial value problem.