Flow, Heat Transfer, and Pressure Drop Interactions in Louvered-Fin Arrays
Total Page:16
File Type:pdf, Size:1020Kb
Flow, Heat Transfer, and Pressure Drop Interactions in Louvered-Fin Arrays N. C. Dejong and A. M. Jacobi ACRC TR-I46 January 1999 For additional information: Air Conditioning and Refrigeration Center University of Illinois Mechanical & Industrial Engineering Dept. 1206 West Green Street Prepared as part ofACRC Project 73 Urbana. IL 61801 An Integrated Approach to Experimental Studies ofAir-Side Heat Transfer (217) 333-3115 A. M. Jacobi, Principal Investigator The Air Conditioning and Refrigeration Center was founded in 1988 with a grant from the estate of Richard W Kritzer, the founder of Peerless of America Inc. A State of Illinois Technology Challenge Grant helped build the laboratory facilities. The ACRC receives continuing support from the Richard W. Kritzer Endowment and the National Science Foundation. The following organizations have also become sponsors of the Center. Amana Refrigeration, Inc. Brazeway, Inc. Carrier Corporation Caterpillar, Inc. Chrysler Corporation Copeland Corporation Delphi Harrison Thermal Systems Eaton Corporation Frigidaire Company General Electric Company Hill PHOENIX Hussmann Corporation Hydro Aluminum Adrian, Inc. Indiana Tube Corporation Lennox International, Inc. rvfodine Manufacturing Co. Peerless of America, Inc. The Trane Company Thermo King Corporation Visteon Automotive Systems Whirlpool Corporation York International, Inc. For additional information: .Air.Conditioning & Refriger-ationCenter Mechanical & Industrial Engineering Dept. University ofIllinois 1206 West Green Street Urbana IL 61801 2173333115 ABSTRACT In many compact heat exchanger applications, interrupted-fin surfaces are used to enhance air-side heat transfer performance. One of the most common interrupted surfaces is the louvered fin. The goal of this work is to develop a better understanding of the flow and its influence on heat transfer and pressure drop behavior for both louvered and convex-louvered fins. Specifically, this research explores the unavoidable end effects of heat exchanger walls; the role of vortex shedding on heat transfer and pressure drop enhancement; and the effect of using convex louvers rather than conventional flat parallel fins. Flow visualization is performed using dye in a water tunnel, and pressure drop is measured in a wind tunnel. Heat transfer is inferred from mass transfer data obtained using the naphthalene sublimation technique. Mass transfer data are acquired on a row-by row basis through the louvered arrays over a Reynolds number range (based on louver pitch) of 75- 1400, and local mass transfer data on fins are acquired for the convex-louver geometry over a Reynolds number range (based on hydraulic diameter) of 200 to 5400. Compared to flow far from the walls where spanwise periodic conditions exist, flow near array walls is louver-directed to a lesser degree and is characterized by deviations in flow velocity, large separation and recirculation zones, and an earlier transition to unsteady flow. At low Reynolds numbers, heat transfer is lower for louvers near the walls than for louvers far from the walls due to the large separation zones. At higher Reynolds numbers unsteady flow causes increases in heat transfer for louvers near the walls. The walls cause a large pressure-drop increase at all Reynolds numbers. In the transitional Reynolds number ~ange, transverse vortices shed from fins far from array walls are smaller and result in much less mixing than vortices shed near array walls or in the similar offset-strip geometry. These small scale vortices have little effect on heat transfer. For the convex-louver geometry, the results clarify the effects of boundary-layer restarting, shear-layer unsteadiness, spanwise vortices, and separation, reattachment and recirculation on heat transfer. iii TABLE OF CONTENTS Page LIST OF TABLES ................................................................................. viii LIST OF FIGURES ................................................................................ ix NOMENCLATURE ............................................................................. xviii CHAPTER 1 - IN"TRODUCTION ............................... " ................................ 1 1.1 Background ......................................................................... 1 1.2 Literature Review ................................................................... 1 1.2.1 Louvered Fins ............................................................. 2 1.2.2 Vortex Shedding .......................................................... ll 1.2.3 Convex-Louvered Fins .................................................. 15 1.3 Objectives .......................................................................... 17 CHAPTER 2 - EXPERIMENTAL APPARATUS ..............................................25 2.1 Water Tunnel and Test Section .................................................. 25 2.2 Wind Tunnel and Test Section .................................................. .30 2.3 Instrumentation and Data Acquisition .......................................... .33 2.4 Laser Profilometer ................................................................. 34 CHAPTER 3 - PROCEDURE AND DATA INTERPRETATION ........................... .46 3'.1 Water Tunnel Experiments ...................................................... .46 3.2 Preparation of Naphthalene Specimens ........................................ .47 3.3 Mass-Averaged Experiments .................................................... .49 3.4 Local Mass Transfer Experiments ...............................................54 CHAPTER 4 - FLOW, HEAT TRANSFER, AND PRESSURE DROP BEHAVIOR IN" LOUVERED-FIN" ARRAYS UNDER SPANWISE PERIODIC CONDITIONS ..................................................................... 58 v 4.1 Flow Visualization ................................................................ 58 4.2 Pressure Drop Results ............................................................ 63 4.3 Mass Transfer Results ............................................................ 65 4.4 Effects of Vortex Shedding on Mass Transfer ................................. 68 CHAPTER 5 - EFFECTS OF WALLS ON FLOW, HEAT TRANSFER, AND PRESSURE DROP IN LOUVERED-FIN ARRAyS ........................ 83 5.1 Flow Behavior Near Heat Exchanger Walls ................................... 83 5.1.1 Flow Efficiency and Velocity ........................................... 83 5.1.2 Flow Separation and Recirculation ..................................... 87 5.1.3 Flow Unsteadiness ....................................................... 88 5.2 Number of Columns Necessary to Model Flow through a Louvered-Fin Array ................................................................................ 89 5.3 Flow and Mass Transfer in Three-Column Arrays ............................92 5.3.1 Flow in Three-Column Arrays .......................................... 92 5.3.2 Mass Transfer in Three-Column Arrays ...............................94 CHAPTER 6 - LOCAL FLOW AND HEAT TRANSFER BEHAVIOR IN CONVEX- LOUVERED FIN" ARRAyS ................................................... 122 CHAPTER 7 - CONCLUSIONS ............................................................... 132 7.1 Summary of Results ........................................................... 132 7.1.1 Louvered Fins .......................................................... 132 7.1.1 a Flow, Heat Transfer, and Pressure Drop Behavior in Louvered-Fin Arrays Under Spanwise Periodic Conditions ....................................... 133 7.1.1b Effects of Walls on Flow, Heat Transfer, and Pressure Drop in Louvered-Fin Arrays ................ 134 vi 7. 1. 2 Convex-Louvered Fin Results ........................................ 136 7.2 Practical Applications .......................................................... 138 REFERENCES ........... q; •••.•••••••••••••••.•••••••••.....••.•••••••••••••••••••.•.•••••.•••••• 140 APPENDIX A - THE HEAT AND MASS ANALOGY ...................................... 144 A.1 Derivation of Heat and Mass Analogy ...................................... 144 A.2 Justification of Zero Transverse Velocity Assumption ................... 149 APPENDIX B - DATA REDUCTION EQUATIONS ........................................ 151 B.l Reynolds Number ............................................................. 151 B.2 Mass-Averaged Sherwood Number ........................................ 153 B.3 Modified Colburnj Factor ................................................... 154 B.4 Friction Factor and Euler Number .......................................... 155 B.5 Local Sherwood Number .................................................... 155 APPENDIX C - CALIBRATION PROCEDURE ............................................. 157 C.1 RID Calibration ................................................................. 157 C.2 Pressure Transmitter Calibration ............................................ 158 APPENDIXD- UNCERTAINTY ANALYSIS .............................................. 161 D.l Errors in Experimental Data.................................................. 161 D.2 Error Propagation and Uncertainty .......................................... 163 APPENDIX E - EXTRA FLOW VISUALIZATION PHOTOGRAPHS .................. 167 APPENDIX F - DEVELOPMENT OF A SIMPLE LOUVERED-FIN HEAT EXCHANGER MODEL ..................................................... 172 F.1 Relationship between Louvered Fins and Offset-Strip Fins ............. 172 F.2 Louvered-Fin Heat Exchanger Model ...................................... 173 vii LIST OF TABLES Page