Centaurea Stoebe)

Total Page:16

File Type:pdf, Size:1020Kb

Centaurea Stoebe) Chapter 11 Sustainable Control of Spotted Knapweed (Centaurea stoebe) D.G. Knochel and T.R. Seastedt Abstract Spotted knapweed is native to Eastern Europe, with a locally scarce but widespread distribution from the Mediterranean to the eastern region of Russia. The plant is one of over a dozen Centaurea species that were accidentally introduced into North America and now is found in over 1 million ha of rangeland in the USA and Canada. Land managers spend millions of dollars annually in an attempt to control spotted knapweed and recover lost forage production, and meanwhile the plant perse- veres as a detriment to native biodiversity and soil stability. These ecological concerns have motivated intense scientific inquiry in an attempt to understand the important fac- tors explaining the unusual dominance of this species. Substantial uncertainty remains about cause–effect relationships of plant dominance, and sustainable methods to control the plant remain largely unidentified or controversial. Here, we attempt to resolve some of the controversies surrounding spotted knapweed’s ability to dominate invaded com- munities, and focus on what we believe is a sustainable approach to the management of this species in grasslands, rangelands, and forests. Application of both cultural and bio- logical control tools, particularly the concurrent use of foliage, seed, and root feeding insects, is believed sufficient to decrease densities of spotted knapweed in most areas to levels where the species is no longer a significant ecological or economic concern. Keywords Biological control • Biological invasions • Centaurea stoebe L. ssp micranthos • Centaurea maculosa • Knapweed • Sustainable management 11.1 Introduction Knapweeds and yellow starthistle, plants belonging to the genus Centaurea and the closely related genus Acroptilon, are members of the Asteraceae that were acciden- tally introduced into North America from Eurasia over a century ago. These species D.G. Knochel () and T.R. Seastedt Department of Ecology and Evolutionary Biology and INSTAAR, an Earth Systems Institute, University of Colorado, Boulder, CO 80309, USA [email protected] Inderjit (ed.), Management of Invasive Weeds, 211 © Springer Science + Business Media B.V. 2009 212 D.G. Knochel and T.R. Seastedt have been identified as major problems for rangelands and forests of the western USA and Canada, occupying millions of hectares and causing millions of dollars of control costs and forage production losses (Duncan et al. 2004; Smith 2004). These species have also been identified as a threat to native biodiversity (Ortega et al. 2006). Sustainable, cost-effective management strategies to mitigate and diminish the negative effects of these knapweeds represent a priority activity desired by a broad spectrum of society, including ranchers, public land managers, and conserva- tion biologists. Smith et al. (2001) listed 495 research publications on various aspects of knap- weed ecology, with most of the research focused at perhaps the most aggressive and widespread of these species, spotted knapweed (C. stoebe micranthos, also identi- fied as C. maculosa and C. biebersteinii; see Ochsmann 2001; Hufbauer and Sforza 2008). A comprehensive review on management of spotted knapweed was provided in the late 1990s (Sheley et al. 1999); however, approximately 170 research articles on spotted knapweed have been published since then (Web of Science search by the authors, August 2007). In spite of this effort, our scientific understanding about cause–effect relationships of plant dominance has only slightly improved, and the important factors explaining the unusual dominance of this species remain largely unidentified or controversial. Sustainable management techniques are clearly desired, as Centaurea ranked as the most commonly cited noxious weed genus on government lists in the USA and Canada (Skinner et al 2000). Here, we define sus- tainable control as the process of using cost-effective management tools that cause a long-term reduction of the target weed to lower densities at which plants persist yet are no longer of ecological nor of economic concern. Ideally, such a sustainable management effort would employ both direct (reduction of plant fecundity and fit- ness via top–down controls by pathogens and herbivores) and indirect (bottom–up reduction in the available resources for the target plant via cultural methods that enhance native plant competition) methods that require minimal management inputs and reduce susceptibility to reinvasion. Here, we attempt to resolve some of the controversies surrounding spotted knapweed’s ability to dominate invaded com- munities, and focus on what we believe is a sustainable approach to the manage- ment of spotted knapweed in grasslands, rangelands, and forests. 11.2 Life History Information on Spotted Knapweed Spotted knapweed is native to Eastern Europe, with a locally scarce but widespread distribution from the Mediterranean to the eastern region of Russia (Hufbauer and Sforza 2008). The plant is one of over a dozen Centaurea species that were acci- dentally introduced into the North America and now is found in 45 states within the USA. It occupies over 1 million ha of rangeland in the western USA and occurs in over 60,000 ha of Canada (Story 1992). Spotted knapweed is a C3 perennial forb with a central taproot that grows as a rosette the first year and forms between one and ten flowering stems per year throughout its lifespan (Story et al. 2001). A review by 11 Sustainable Control of Spotted Knapweed (Centaurea stoebe) 213 Sheley et al. (1999) indicated that the plant may live up to 9 years, and is capable of producing 5,000–40,000 seeds per m2 per year. Schirman (1981) reported that spot- ted knapweed produced an average of 24–33 seeds per flower head during a 4-year interval, and over the same time period estimated seed production at 11,300–29,600 seeds per m2. The large seed bank that this species can create within the soil is also persistent, with 25% of seed viable after 8 years (Davis et al. 1993). Given such persistence, any management activities used to reduce densities of this weed must be sustained for a substantial period of time to prevent reestablishment from the seed bank. The plant has some nutritional value to wildlife, but tends to be an inferior food source for most generalist native species as well as to cattle. While sheep consume this species as a forage crop, sociological and economic issues have not favored the use of sheep in control activities or as a logical alternative to grazing by cattle (Alper 2004). 11.3 Dominance of Knapweed Species As previously mentioned, the mechanism(s) that allow Centaurea spp to achieve a high degree of dominance in many plant communities remain poorly identified and controversial. The ability of top–down controls (herbivores) to suppress this species has been debated for over a decade (e.g., Müller-Schärer and Schoeder 1993; Callaway and Ridenour 2004), and the competitive responses of this species across gradients of plant competition and soil resources (e.g., Maron and Marler 2007), and effects on those resources (e.g., Hook et al. 2004) have likewise been a major research topic. Allelopathy has been identified as a potentially significant competi- tive mechanism. Callaway and Ridenour (2004) and Callaway et al. (2005) argued that the relatively high levels of allelopathic compounds produced by the knap- weeds and released upon a plant community that had not evolved tolerance to these chemicals could explain the dominance of invasive Centaurea species in North America. Alternatively, a reduction in soil pathogens and/or enhanced positive feedbacks from microflora, including mycorrhizae, encountered in the new envi- ronments could also explain this dominance (e.g., Mitchell and Power 2003; Mitchell et al. 2006). The possibility also exists that both allelopathy and positive feedbacks from microbial communities contribute to the dominance and abundance of this species. Additional mechanisms and alternative hypotheses explaining Centaurea abun- dance have been proposed. Gerlach and Rice (2003) indicated that C. solstitialis was successful as an invader due to its abilities to persist within a community and exploit resource opportunities, a characteristic also shared by diffuse knapweed (LeJeune et al. 2006; Seastedt and Suding, 2007). Suding et al. (2004) demon- strated that rosettes of diffuse knapweed were strong competitors under ambient nutrient conditions, but were less competitive under lower nutrient conditions that may have characterized North American grasslands until recently. Further, the 214 D.G. Knochel and T.R. Seastedt superior ability of knapweeds to access soil water beyond the reach of native plants was suggested to allow greater photosynthetic-related advantages (Hill et al. 2006). Elsewhere, experiments on soil biota have tested the collective benefits provided by mycorrhizae and the absence of soil pathogens in the success of invasive species of Centaurea. Mycorrhizae fungi provided a competitive advantage to spotted knap- weed (Marler et al 1999; Callaway et al. 2004), but in another study were not bene- ficial to plants losing tissue due to simulated herbivory (Walling & Zabinski 2006). However, Callaway et al. (2001) demonstrated that mycorrhizal interactions with C. melitensis allowed the plant to exhibit compensation to grazing damage. Somewhat surprisingly, low to intermediate levels of herbivory can apparently benefit knapweeds (Callaway et al. 1999;
Recommended publications
  • Spotted Knapweed Centaurea Stoebe Ssp. Micranthos (Gugler) Hayek
    spotted knapweed Centaurea stoebe ssp. micranthos (Gugler) Hayek Synonyms: Acosta maculosa auct. non Holub, Centaurea biebersteinii DC., C. maculosa auct. non Lam, C. maculosa ssp. micranthos G. Gmelin ex Gugler Other common names: None Family: Asteraceae Invasiveness Rank: 86 The invasiveness rank is calculated based on a species’ ecological impacts, biological attributes, distribution, and response to control measures. The ranks are scaled from 0 to 100, with 0 representing a plant that poses no threat to native ecosystems and 100 representing a plant that poses a major threat to native ecosystems. Description Ecological Impact Spotted knapweed is a biennial to short-lived perennial Impact on community composition, structure, and plant. Stems are 30½ to 91 cm tall and generally interactions: Spotted knapweed often forms dense branched. Rosette leaves are compound with several stands in natural communities. Infestations reduce the irregularly lobed segments. Stem leaves are alternate, 5 vigor of native plants, decrease the species diversity of to 15 cm long, more or less hairy, and resin-dotted. plant communities, and degrade the forage quality of Lower stem leaves are narrowly divided, while the wildlife habitats. Winter-ranging elk may avoid foraging upper stem leaves are undivided. Flower heads are 19 to in spotted knapweed dominated communities (Rice et al. 25½ mm wide and are composed of purple disc florets 1997). Knapweeds are allelopathic, inhibiting the (Royer and Dickinson 1999, Whitson et al. 2000). establishment and growth of surrounding vegetation (Whitson et al. 2000). Impact on ecosystem processes: Infestations of spotted knapweed have been shown to increase the erosion of topsoil.
    [Show full text]
  • Influence of Seed Head–Attacking Biological Control Agents
    BIOLOGICAL CONTROLÑWEEDS Influence of Seed Head–Attacking Biological Control Agents on Spotted Knapweed Reproductive Potential in Western Montana Over a 30-Year Period 1,2 3 1 1 JIM M. STORY, LINCOLN SMITH, JANELLE G. CORN, AND LINDA J. WHITE Environ. Entomol. 37(2): 510Ð519 (2008) ABSTRACT Five insect biological control agents that attack ßower heads of spotted knapweed, Centaurea stoebe L. subsp. micranthos (Gugler) Hayek, became established in western Montana between 1973 and 1992. In a controlled Þeld experiment in 2006, seed-head insects reduced spotted knapweed seed production per seed head by 84.4%. The seed production at two sites in western Montana where these biological control agents were well established was 91.6Ð93.8% lower in 2004Ð2005 than 1974Ð1975, whereas the number of seed heads per square meter was 70.7% lower, and the reproductive potential (seeds/m2) was 95.9Ð99.0% lower. The average seed bank in 2005 at four sites containing robust spotted knapweed populations was 281 seeds/m2 compared with 19 seeds/m2 at four sites where knapweed density has declined. Seed bank densities were much higher at sites in central Montana (4,218 seeds/m2), where the insects have been established for a shorter period. Urophora affinis Frauenfeld was the most abundant species at eight study sites, infesting 66.7% of the seed heads, followed by a 47.3% infestation by Larinus minutus Gyllenhal and L. obtusus Gyllenhal. From 1974 to 1985, Urophora spp. apparently reduced the number of seeds per seed head by 34.5Ð46.9%; the addition of Larinus spp. further reduced seed numbers 84.2Ð90.5% by 2005.
    [Show full text]
  • Native Plant Establishment Success Influenced Yb Spotted Knapweed (Centaurea Stoebe) Control Method
    Grand Valley State University ScholarWorks@GVSU Funded Articles Open Access Publishing Support Fund 2014 Native Plant Establishment Success Influenced yb Spotted Knapweed (Centaurea stoebe) Control Method Laurelin M. Martin Grand Valley State University Neil W. MacDonald Grand Valley State University, [email protected] Tami E. Brown Grand Valley State University Follow this and additional works at: https://scholarworks.gvsu.edu/oapsf_articles Part of the Biology Commons ScholarWorks Citation Martin, Laurelin M.; MacDonald, Neil W.; and Brown, Tami E., "Native Plant Establishment Success Influenced by Spotted Knapweed (Centaurea stoebe) Control Method" (2014). Funded Articles. 15. https://scholarworks.gvsu.edu/oapsf_articles/15 This Article is brought to you for free and open access by the Open Access Publishing Support Fund at ScholarWorks@GVSU. It has been accepted for inclusion in Funded Articles by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. RESEARCH ARTICLE Native Plant Establishment Success Influenced by Spotted Knapweed (Centaurea stoebe) Control Method Laurelin M. Martin, Neil W. MacDonald and Tami E. Brown ABSTRACT Invasive species frequently need to be controlled as part of efforts to reestablish native species on degraded sites. While the effectiveness of differing control methods are often reported, the impacts these methods have on the establishment of a native plant community are often unknown. To determine methods that effectively reduce spotted knapweed (Cen- taurea stoebe) while enhancing native species establishment, we tested 12 treatment combinations consisting of an initial site preparation (mowing, mowing + clopyralid, or mowing + glyphosate), in factorial combination with annual adult knapweed hand pulling and/or burning. We established 48 plots and applied site preparation treatments during summer 2008, seeded 23 native forbs and grasses during spring 2009, pulled adult knapweed annually from 2009–2012, and burned in the early spring 2012.
    [Show full text]
  • Multi-Trophic Level Interactions Between the Invasive Plant
    MULTI-TROPHIC LEVEL INTERACTIONS BETWEEN THE INVASIVE PLANT CENTAUREA STOEBE, INSECTS AND NATIVE PLANTS by Christina Rachel Herron-Sweet A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Land Resources and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2014 ©COPYRIGHT by Christina Rachel Herron-Sweet 2014 All Rights Reserved ii DEDICATION To my parents and grandparents, who instilled in me the value of education and have been my biggest supporters along the way. iii ACKNOWLEDGEMENTS Special thanks go to my two advisers Drs. Jane Mangold and Erik Lehnhoff for all their tremendous support, advice and feedback during my graduate program. My two other committee members Drs. Laura Burkle and Jeff Littlefield also deserve a huge thank you for the time and effort they put into helping me with various aspects of my project. This research would not have been possible without the dedicated crew of field and lab helpers: Torrin Daniels, Darcy Goodson, Daniel France, James Collins, Ann de Meij, Noelle Orloff, Krista Ehlert, and Hally Berg. The following individuals deserve recognition for their patience in teaching me pollinator identification, and for providing parasitoid identifications: Casey Delphia, Mike Simanonok, Justin Runyon, Charles Hart, Stacy Davis, Mike Ivie, Roger Burks, Jim Woolley, David Wahl, Steve Heydon, and Gary Gibson. Hilary Parkinson and Matt Lavin also offered their expertise in plant identification. Statistical advice and R code was generously offered by Megan Higgs, Sean McKenzie, Pamela Santibanez, Dan Bachen, Michael Lerch, Michael Simanonok, Zach Miller and Dave Roberts. Bryce Christiaens, Lyn Huyser, Gil Gale and Craig Campbell provided instrumental consultation on locating field sites, and the Circle H Ranch, Flying D Ranch and the United States Forest Service graciously allowed this research to take place on their property.
    [Show full text]
  • Agent Name Here)
    9999999999 Urophora affinis Frfld. INVASIVE SPECIES ATTACKED: Diffuse knapweed (Centaurea diffusa) Spotted knapweed (C. biebersteinii) TYPE OF AGENT: Seed feeding fly COLLECTABILITY: Mass ORIGIN: France and Russia DESCRIPTION AND LIFE CYCLE Adult: The 1 - 3 mm long flies have dark bodies and clear wings marked with faint dark bars. When at rest their wings are often held close in line with the body. Females can be identified by their long, pointed, black ovipositor. Urophora affinis adults emerge in June and July which coincides with the flower budding stage. Adults mate immediately and start to lay eggs between immature flower bracts within three days. Each female lays 120 eggs. There is a narrow egg-laying phase for U. affinis where the host plant’s floral buds must be a specific size to ensure egg hatching coincides with a particular stage necessary for larvae development. Egg: Fig. 1. U. affinis adult female with The eggs incubate for 3 - 4 days. prominent ovipositor (credit Powell et al. 1994) Larva: Creamy, white larvae penetrate into the flower head and develop into a plump, 'barrel-like' shape. The plant objects to the intruding larvae and over 10 - 15 days produces a woody gall around each of them. The galls are lined with nutritive cells that the larvae feed upon. After 28 days, all the cells inside the gall will be consumed and the larvae development will be complete. Under normal conditions 1 - 2 galls are produced in diffuse knapweed, whereas, 2 - 5 galls are produced in spotted knapweed. The hard galls provide protection for the larvae and pupae during their development from most other seed-feeding insects.
    [Show full text]
  • Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO
    Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area August 2015 CNHP’s mission is to preserve the natural diversity of life by contributing the essential scientific foundation that leads to lasting conservation of Colorado's biological wealth. Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University 1475 Campus Delivery Fort Collins, CO 80523 (970) 491-7331 Report Prepared for: United States Air Force Academy Department of Natural Resources Recommended Citation: Smith, P., S. S. Panjabi, and J. Handwerk. 2015. Integrated Noxious Weed Management Plan: US Air Force Academy and Farish Recreation Area, El Paso County, CO. Colorado Natural Heritage Program, Colorado State University, Fort Collins, Colorado. Front Cover: Documenting weeds at the US Air Force Academy. Photos courtesy of the Colorado Natural Heritage Program © Integrated Noxious Weed Management Plan US Air Force Academy and Farish Recreation Area El Paso County, CO Pam Smith, Susan Spackman Panjabi, and Jill Handwerk Colorado Natural Heritage Program Warner College of Natural Resources Colorado State University Fort Collins, Colorado 80523 August 2015 EXECUTIVE SUMMARY Various federal, state, and local laws, ordinances, orders, and policies require land managers to control noxious weeds. The purpose of this plan is to provide a guide to manage, in the most efficient and effective manner, the noxious weeds on the US Air Force Academy (Academy) and Farish Recreation Area (Farish) over the next 10 years (through 2025), in accordance with their respective integrated natural resources management plans. This plan pertains to the “natural” portions of the Academy and excludes highly developed areas, such as around buildings, recreation fields, and lawns.
    [Show full text]
  • Impact of Biological Control on Two Knapweed Species in British Columbia
    Impact of Biological Control on Two Knapweed Research Report Species in British Columbia Don Gayton, FORREX & Val Miller, B.C. Ministry of Forests, Lands and Natural Resource Operations Abstract Diffuse and spotted knapweed ( Centaurea diffusa Lam and C. stoebe L.) are two closely re - lated invasives found in many parts of British Columbia’s Southern Interior, causing sub - stantial economic losses in rangelands. Beginning in 1970, the provincial government initiated a long-term biological control effort against the knapweeds, introducing 10 dif - ferent insect agents from 1970 to 1987. In an effort to evaluate the efficacy of the program, archival (1983–2008) data was amassed from 19 vegetation monitoring sites that contained knapweed. In 2010, these sites were relocated and re-monitored and cover values were an - alyzed. Diffuse knapweed showed significant declines at 14 of 15 sites; spotted knapweed declined at three of four sites. Possible alternative explanations for the decline are dis - cussed. Evidence strongly points to a suite of biocontrol agents (seed feeders and root feed - ers) as the primary drivers of knapweed decline in British Columbia’s Southern Interior. KEYWORDS : biological control; British Columbia; Centaurea ; knapweed; monitoring Introduction iffuse knapweed ( Centaurea diffusa Lam.) and spotted knapweed ( Centaurea stoebe L.) are two introduced, closely related invasive forbs. These species are most com - Dmon in the northwestern United States and in western Canada. Centaurea stoebe (also referred to as C. maculosa Lam. and C. biebersteinii DC) is particularly widespread, reported in 45 US states and all provinces of Canada (Marshall 2004; Zouhar 2001). The drought-tolerant C. diffusa has an altitudinal range of 150–900 m, whereas C.
    [Show full text]
  • How Many of Cassini Anagrams Should There Be? Molecular
    TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group.
    [Show full text]
  • Thesis Sci 2009 Bergh N G.Pdf
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Systematics of the Relhaniinae (Asteraceae- Gnaphalieae) in southern Africa: geography and evolution in an endemic Cape plant lineage. Nicola Georgina Bergh Town Thesis presented for theCape Degree of DOCTOR OF ofPHILOSOPHY in the Department of Botany UNIVERSITY OF CAPE TOWN University May 2009 Town Cape of University ii ABSTRACT The Greater Cape Floristic Region (GCFR) houses a flora unique for its diversity and high endemicity. A large amount of the diversity is housed in just a few lineages, presumed to have radiated in the region. For many of these lineages there is no robust phylogenetic hypothesis of relationships, and few Cape plants have been examined for the spatial distribution of their population genetic variation. Such studies are especially relevant for the Cape where high rates of species diversification and the ongoing maintenance of species proliferation is hypothesised. Subtribe Relhaniinae of the daisy tribe Gnaphalieae is one such little-studied lineage. The taxonomic circumscription of this subtribe, the biogeography of its early diversification and its relationships to other members of the Gnaphalieae are elucidated by means of a dated phylogenetic hypothesis. Molecular DNA sequence data from both chloroplast and nuclear genomes are used to reconstruct evolutionary history using parsimony and Bayesian tools for phylogeny estimation.
    [Show full text]
  • Montana Knapweeds
    Biology, Ecology and Management of Montana Knapweeds EB0204 revised August 2017 Celestine Duncan, Consultant, Weed Management Services, Helena, MT Jim Story, Research Professor, retired, MSU Western Ag Research Center, Corvallis, MT Roger Sheley, former MSU Extension Weed Specialist, Bozeman, MT revised by Hilary Parkinson, former MSU Research Associate, and Jane Mangold, MSU Extension Invasive Plant Specialist Table of Contents Plant Biology . 3 SpeedyWeed ID . 5 Ecology . 4 Habitat . 4 Spread and Establishment Potential . 6 Damage Potential . 7 Origins, Current Status and Distribution . 8 Management Alternatives . 8 Prevention . 8 Mechanical Control . .9 Cultural Control . .10 Biological Control . .11 Chemical Control . .14 Integrated Weed Management (IWM) . 16 Additional Resources . 17 Acknowledgements . .19 COVER PHOTOS large - spotted knapweed by Marisa Williams, University of Arkansas, Fayetteville, bugwood.org top inset - diffuse knapweed by Cindy Roche, bugwood.org bottom inset - Russain knapweed by Steve Dewey, Utah State University, bugwood.org Any mention of products in this publication does not constitute a recommendation by Montana State University Extension. It is a violation of Federal law to use herbicides in a manner inconsistent with their labeling. Copyright © 2017 MSU Extension The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status. Issued in furtherance of cooperative extension work in agriculture and home economics, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Jeff Bader, Director of Extension, Montana State University, Bozeman, MT 59717.
    [Show full text]
  • Centaurea Stoebe Ssp. Micranthos
    Species: Centaurea stoebe ssp. micranthos http://www.fs.fed.us/database/feis/plants/forb/cenmac/all.html SPECIES: Centaurea maculosa Introductory Distribution and occurrence Management Considerations Botanical and ecological characteristics Fire ecology Fire effects References INTRODUCTORY SPECIES: Centaurea maculosa AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS AUTHORSHIP AND CITATION: Zouhar, Kris. 2001. Centaurea maculosa. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: CENMAC SYNONYMS: Centaurea biebersteinii DC. [82] Centaurea stoebe L. ssp. micranthos (Gugler) Hayek [137] NRCS PLANT CODE [212]: CEBI2 1 of 58 9/24/2007 4:04 PM Species: Centaurea stoebe ssp. micranthos http://www.fs.fed.us/database/feis/plants/forb/cenmac/all.html COMMON NAMES: spotted knapweed TAXONOMY: The scientific name for spotted knapweed is Centaurea maculosa Lam. (Asteraceae) [45,67,217,233]. Oschmann [137] suggests that in North America, the name Centaurea maculosa has been misapplied to Centaurea stoebe ssp. micranthos. The taxonomy of spotted knapweed is discussed in Ochsmann [137] and on the Centaurea website. Oschsmann [136] also cites evidence of hybridization between spotted and diffuse knapweed (Centaurea diffusa) in at least 7 U.S. states. The hybrid is named Centaurea × psammogena Gayer. LIFE FORM: Forb FEDERAL LEGAL STATUS: No special status OTHER STATUS: Spotted knapweed has been declared a noxious or restricted weed in at least 15 states in the U.S. and 4 Canadian provinces [213].
    [Show full text]
  • Sotwp 2016.Pdf
    STATE OF THE WORLD’S PLANTS OF THE WORLD’S STATE 2016 The staff and trustees of the Royal Botanic Gardens, Kew and the Kew Foundation would like to thank the Sfumato Foundation for generously funding the State of the World’s Plants project. State of the World’s Plants 2016 Citation This report should be cited as: RBG Kew (2016). The State of the World’s Plants Report – 2016. Royal Botanic Gardens, Kew ISBN: 978-1-84246-628-5 © The Board of Trustees of the Royal Botanic Gardens, Kew (2016) (unless otherwise stated) Printed on 100% recycled paper The State of the World’s Plants 1 Contents Introduction to the State of the World’s Plants Describing the world’s plants 4 Naming and counting the world’s plants 10 New plant species discovered in 2015 14 Plant evolutionary relationships and plant genomes 18 Useful plants 24 Important plant areas 28 Country focus: status of knowledge of Brazilian plants Global threats to plants 34 Climate change 40 Global land-cover change 46 Invasive species 52 Plant diseases – state of research 58 Extinction risk and threats to plants Policies and international trade 64 CITES and the prevention of illegal trade 70 The Nagoya Protocol on Access to Genetic Resources and Benefit Sharing 76 References 80 Contributors and acknowledgments 2 Introduction to the State of the World’s Plants Introduction to the State of the World’s Plants This is the first document to collate current knowledge on as well as policies and international agreements that are the state of the world’s plants.
    [Show full text]