Physiography

Total Page:16

File Type:pdf, Size:1020Kb

Physiography .1· , Atlantic Continental Shelf and Slope ~. of the United States ·- •t.,........_,C',...,.~~~""' 11:'·~~. '"''"' ~.~..-.. ......-.,· ....... ~ ·-,}........ ·. '~':7'n:.~~-... "" • '•ilfl::.t,l.>.o;r,~... ,, ~· ·-·· ·-. - '··~~ ..~-~'·· ··_ -·· ·~~--~----1 .., Physiography GEOLOGICAL SURVEY PROFESSIONAL PAPER 529-C Atlantic Continental · Shelf and Slope of The United States- Physiography By ELAZAR UCHUPI GEOLOGICAL SURVEY PROFESSIONAL PAPER 529-C Description of the submarine physiography of the continental margin between Nova Scotia and the Florida Keys UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director ~ : . For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract __________________________________________ _ C1 Continental margin-Continued Introduction ______________________________________ _ 1 Intermediate provinces _________________________ _ C17 General statement _____________________________ _ 1 Blake Plateau_·____________________________ _ 17 Acknowledgments ______ -.- ______________________ _ 3 Straits of Florida __________________________ _ 19 Continental margin ________________________________ _ 3 Continental slope ______________________________ _ 21 General setting________________________________ _ 3 Provinces seaward of the continental slope ________ _ 27 Continental shelf ______________________________ _ 3 Continental rise ___________________________ _ 27 Scotian Shelf ______________________________ _ 5 Blake Basin and Blake Ridge _______________ _ 28 Summary _________________________________________ _ Georges Bank _____________________________ _ 5 28 Gulf of Maine _____________________________ _ 7 References cited ____________________________________ _ 29 East Coast Shelf ___________________________ _ 10 ILLUSTRATIONS [Plates are in pocket] PLATES 1-3. Maps showing bottom topography of the continental margin: 1. Nova Scotia to New Jersey. 2. New Jersey to South Carolina. 3. South Carolina to the Florida Keys. Page FIGURE 1. Model of the continental margin from Nova Scotia to the Florida Keys ________________ -_------------- C2 2-5. Maps showing: 2. Density of soundings used in construction of charts ___________________ ----------------------- 3 3. Physiographic provinces of the continental margin, Nova Scotia to the Florida Keys______________ 4 4. Distribution of sand waves on Georges Bank-------------------------------------------.,.----- 6 5. Bathymetry of Cultivator ShoaL----------------------------------------------------------- 8 6. Trace of a Precision Depth Recorder profile of a series of small channels along the north slope of the Gulf of Maine--------------------------------------------------------------------------------------- 9 7. Map showing outline of the basins within the Gulf of Maine----------------------------------·------- 10 8. Bottom profile showing sub bottom reflector in the deeper parts of Jordan Basin ______ ------ ------ ____ -- 11 9. Map and profiles showing morphology of the continental shelf from Juniper Inlet to Marquesas Key, Fla_- 12 10. Variation in depth along the shelf-break___________________________________________________________ 13 11. Map showing distribution of sand shoalsand sand waves on Nantucket Shoals and Nantucket Sound_____ 14 12. Detailed map of a section of Nantucket Shoals ________________________________________ ---------_-_- 15 i3. Map showing bathymetry of sand swells south of Long Island ___________ ._____________________________ 16 14. Map showing sand swells on the continental shelf ___________________________________________ --______ 18 15. Bottom profiles of the northern edge of the Blake Plateau___________________________________________ 19 16-19. Maps showing: 16. Bathymetry of the Blake Plateau ___________________________ :.. ____________________ ---_-----_ 20 }, 17. Topography of a part of the rough zone at the base of Florida-Hatteras Slope___________________ 21 18. Zone of rough topography along the western boundary of the Blake Plateau and the northern tip of the Straits of Florida ___________________________________________________ ._______________ 22 19. Bathymetry of the Straits of Florida________________________________________________________ 23 20. Bottom profiles of Miami and Pourtales Terraces___________________________________________________ 24 21. Map showing topography of Miami Terrace________________________________________________________ 25 22. Bottom profiles of the continental slope------------------------------------------------------------ 26 23. Map showing bathymetry of the continental slope and rise near Northeast ChanneL____________________ 27 TABLES Pa~re TABLE 1. Depth, area, and volume of basins in the Gulf of Maine _ _:________________________ C9 2. Depth to outer edge of terraces of the continental shelf, slope, and Florida-Hatteras Slope___________________________________________________________________ 13 III ATLANTIC CONTINENTAL SHELF AND SLOPE OF THE UNITED STATES-PHYSIOGRAPHY 1 By ELAZAR UcHUPI, Woods Hole Oceanographic Institution ABSTRACT scription of the topographic provinces of the margin The continental margin from Nova Scotia to the Florida Keys from Nova Scotia to the Florida Keys and a discussion exhibits a variety of physiographic forms. On the basis of sur­ of the origin of these provinces are the prime objectives face morphology it can be divided into three zones. In the of this report. This paper is one of a series on the ma­ northern zone, the continental shelf extending from Nova Scotia rine geology of the continental margin off the Atlantic to Nantucket Island, has broad basins separated by shallow coast of the United States. Emery ( 1966) discussed the flat-topped banks, undulating swells, and irregularly crested ridges; some of the basins reach depths greater than 200 meters. general aspects of the investigation, and Prn,tt ( 1968) This type of shelf topography is characteristic of shelves off described the physiography and sediments of the ad­ glaciated areas and terminates at or near the southern limit of jacent deep-sea basins. Description of the topographic Pleistocene glaciation. Seaward of the shelf most of the conti­ provinces of the continental margin from Nova Scotia nental slope is deeply entrenched by submarine canyons. At the to the Florida l(eys is based principally on the three foot of the slope is a large sedimentary apron known as the continental rise. charts included with this report and on more than 5,000 The central zone from Nantucket Island to Cape Lookout also kilometers of PDR (Precision Depth Recorder) traces consists of continental shelf, slope, and rise. Although smoother obtained during the present investigation. Physio­ than in the northern zone, the surface of the shelf is disrupted graphic interpretations presented in this paper are based by sand swells, channels, coral mounds, and terraces. Most of largely on published reports. The conclusions are tenta­ these features may be related to lower stands of sea level during the Pleistocene. The continental slope in this zone is as deeply tive and may be affected by the continuous seismic entrenched by submarine canyons as the slope in the northern studies to be undertaken by this and other projects. zone. The continental rise seaward of the continental slope is Studies of the sea bottom along the east coast of similar to that in the northern zone. United States and Canada were initiated well over a The continental margin in the southern zone from Cape Look­ out to the Florida Keys is more complicated than the areas century ago. As early as the middle of the 19th century, farther north. The continental slope is relatively smooth and has leadline soundings were taken by the U.S. Coast: ~nd gradients as high as 20°-five times steeper than the slope Geodetic Survey and the British Admiralty along the farther north. The area landward of the slope does not consist coast, on offshore banks, and on the continental shelf. of a simple continental shelf as it does farther north but instead Later these surveys were extended seaward to include consists of a shelf, a marginal plateau (the Blake Plateau), a trough (the Straits of Florida), and the Bahama Banks. In the continental slope, continental rise, and the abyssal this sector of the continental margin, the topographic position plains. Data from these surveys were used by Agassiz occupied by the continental rise farther north is occupied by (1888) to compile a topographic 1nap of the continental the broad flat-bottomed Blake Basin and Blake Ridge. East of margin from the Gulf of Maine to the Florida l(eys. Nantucket Island, topographic differences are believed to be due Because of the great length of time required to make to glacial erosion, which has deepened the normal shallow shelf; south of Cape Lookout, they are believed to be due to folding wire soundings, the concentration of soundings was so or faulting, erosion by the Gulf Stream, and calcareous low that it prevented accurate determination of the accretion. diagnostic details of the continental margin. Since the INTRODUCTION development of echo-sounding devices and accurate GENERAL STATEMENT navigational methods, enough soundings have been col­ lected for a regional study of the continental margin. The submarine topography of the continental mar­ The first detailed investigation of the physiography gin (fig. 1) offers abundant
Recommended publications
  • The Strait of Anian and British Northwest America: Cook's Third Voyage in Perspective*
    The Strait of Anian and British Northwest America: Cook's Third Voyage in Perspective* JOHNNORRIS For local patriots of British Columbia, Captain Cook's third voyage is unsatisfactory. His stay at Nootka was so brief, his exploration of the coast so perfunctory, and his preoccupation with Alaska so much to be deplored. We are driven, in asking the reasons for these solecisms, to examine his instructions from the Admiralty for the third voyage. Alas, they hardly mention the coast of Northwest America between 45 ° and 65 ° North. Did their Lordships of the Admiralty slip up? Was Cook, that supreme professional who had had a hand in drawing up his own instructions, at less than his expert best? Did Palinurus nod at the helm? Cook's landing at Nootka was the result of his instructions "to put into the first convenient Port to recruit your Wood and Water and procure Refreshments . .Jîl But the prolongation of his stay to four weeks (29 March to 26 April 1778) was traceable to the bad fitting-out of his ships by the Navy Board, which resulted in the rotten foretop and mizzen masts of the Resolution having to be replaced after the strain of the spring gales of the North Pacific. Further, the avoidance of virtually all the rest of the British Columbia coast was in accordance with those instructions, since Cook was ordered to: ... proceed Northward along the Coast as far as the Latitude of 65 °, or farther, if you are not obstructed by Lands or Ice; taking care not to lose any time in exploring Rivers or Inlets, or upon any other account, until you get into the before-mentioned latitude of 65 °...
    [Show full text]
  • U N C O R R Ec Ted Pr O
    SED 773 Dispatch: 1.2.06 Journal: SED CE: Hari Journal Name Manuscript No. B Author Received: No. of pages: 18 PE: Revathi Sedimentology (2006) 1–18 doi: 10.1111/j.1365-3091.2006.00773.x Sedimentology and stratigraphy of a transgressive, muddy gravel beach: waterside beach, Bay of Fundy, Canada F SHAHIN E. DASHTGARD*, MURRAY K. GINGRAS* and KARL E. BUTLER *Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, Canada T6E 2G3 (E-mail: [email protected]) O Department of Geology, University of New Brunswick, PO Box 4400, Fredericton, NB, Canada E3B 5A3 ABSTRACT O Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutinyR of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent threeP depositional environments: (1) sandy foreshore and shoreface; (2) tidal-creek braid-plain and delta; and, (3) wave-formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and, a shallowlyD seaward-dipping terrace of sandy middle and lower intertidal, and muddy sub-tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal-creek braid plain and delta. Wave-formedE sand and gravel bars and associated deposits include: sediment sourced from low-amplitude, unstable sand bars; gravel deposited from large (up to 5Æ5 m high, 800 m long), landward-migrating gravel bars; and, zones ofT mud deposition developed on the landward side of the gravel bars.
    [Show full text]
  • “Major World Deltas: a Perspective from Space
    “MAJOR WORLD DELTAS: A PERSPECTIVE FROM SPACE” James M. Coleman Oscar K. Huh Coastal Studies Institute Louisiana State University Baton Rouge, LA TABLE OF CONTENTS Page INTRODUCTION……………………………………………………………………4 Major River Systems and their Subsystem Components……………………..4 Drainage Basin………………………………………………………..7 Alluvial Valley………………………………………………………15 Receiving Basin……………………………………………………..15 Delta Plain…………………………………………………………...22 Deltaic Process-Form Variability: A Brief Summary……………………….29 The Drainage Basin and The Discharge Regime…………………....29 Nearshore Marine Energy Climate And Discharge Effectiveness…..29 River-Mouth Process-Form Variability……………………………..36 DELTA DESCRIPTIONS…………………………………………………………..37 Amu Darya River System………………………………………………...…45 Baram River System………………………………………………………...49 Burdekin River System……………………………………………………...53 Chao Phraya River System……………………………………….…………57 Colville River System………………………………………………….……62 Danube River System…………………………………………………….…66 Dneiper River System………………………………………………….……74 Ebro River System……………………………………………………..……77 Fly River System………………………………………………………...…..79 Ganges-Brahmaputra River System…………………………………………83 Girjalva River System…………………………………………………….…91 Krishna-Godavari River System…………………………………………… 94 Huang He River System………………………………………………..……99 Indus River System…………………………………………………………105 Irrawaddy River System……………………………………………………113 Klang River System……………………………………………………...…117 Lena River System……………………………………………………….…121 MacKenzie River System………………………………………………..…126 Magdelena River System……………………………………………..….…130
    [Show full text]
  • A Geomorphic Classification System
    A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals
    [Show full text]
  • The Colorado River Damming Impact on the Shrimp Fishery in the Upper
    FRONTERA NORTE VOL. 33, ART. 9, 2021 https://doi.org/10.33679/rfn.v1i1.2137 The Colorado River Damming Impact on the Shrimp Fishery in the Upper Gulf of California, Mexico El impacto del represamiento del Río Colorado en la pesquería del camarón en el Alto Golfo de California, México Manuel Salvador Galindo Bect,1 Carlos Israel Vázquez León,2 & David Aguilar Montero3 ABSTRACT The objective oF this work is to demonstrate the relationship among the Colorado River Flows and volumes of shrimp caught in the Upper GulF of CaliFornia (AGC). A correlation analysis was applied to historical series of data about landed shrimp catch, fishing effort and flow from the Colorado River towards the gulf. Dependence, proportionality, and linear relationship indicators were obtained. The main results showed that the interannual captures were lower in periods without water input From the river and higher with the water inputs to the estuary. In addition, the results showed that the contributions of nutrients carried in the river water to the estuary could increase the Carbon Fixation. This study is important because it contributes to the discussion and strengthens the Fact that this river is important in the environmental and fishing dynamics in the AGC. Keywords: 1. Colorado River, 2. Fisheries, 3. shrimp, 4. damming, 5. Upper GulF oF CaliFornia. RESUMEN El objetivo de este trabajo es demostrar la relación entre los Flujos del Río Colorado y los volúmenes de camarón capturados en el Alto GolFo de CaliFornia (AGC). Se aplicó un análisis de correlación a series históricas de datos de captura del desembarque de camarón, el esfuerzo pesquero y el flujo del Río Colorado hacia el Delta.
    [Show full text]
  • The Second Twenty Years, 1971-1991
    Northwestern Michigan College The Second IVvenfy Years 1971 -1991 Al Shumsky Assisted by Carole Marlatt NORTHWESTERN MICHIGAN COLLEGE The Second Twenty Years 1971-1991 A1 Shumsky Assisted by Carole Marlatt February 1994 ACKNOWLEDGMENTS Thanks are due many people who helped with this project. First to the two people without whom it could not have been done: Tim Quinn and Carole Marlatt. Tim initiated the project and supported it with released time, and with no directions whatsoever beyond "Have a good time!" Carole not only prepared the manuscript, assembled the rosters in the appendix, chose the pictures, and both provided her own and edited my memories; she also is the one who recorded the Board minutes for these twenty years and then indexed them and preserved the hard copy so it was available to this amateur historian. (She, in fact, is the one to go to if you want to know what really went on during these years.) Thanks are also due these many others who graciously provided information or corroborated memories: Bob Buttleman, Doug Campbell, Becky Chartier, Jan Gasnik, Kathleen Guy, Chet Janik, Bill King, George Kuhn, Keith MacPhee, Nancy McArthur, Shelley Merrill, Dick Minor, Shirley Okerstrom, Barbara Raehl, Joe Rogers, PatSalathiel, Bill Shaw, Don Shikoski, Chuck Shreve, Robbie Teahen, Bob Warner, and Steve Westphal. Recognition is also due the hundreds of people—Board members, faculty and staff—whose names do not appear in this account, but who in fact constituted the College. Without them, there would be no history to write. I apologize to all whose contributions have not been specifically mentioned.
    [Show full text]
  • Impacts of Sand Mining on Beaches in Suriname
    Impacts of sand mining on beaches in Suriname Braamspunt beach, February 2016 Edward J. Anthony Consultant in Geomorphology and Shoreline Management June, 2016. Background p. 3 Abstract p. 4 Summary of recommendations p. 5 Part 1. The environment, context and formation of sandy beaches in Suriname p. 6 1.1. Introduction p. 7 1.2. The Guianas mud-bank system p. 11 1.3. Cheniers and chenier beaches: natural wave-energy buffers and ecosystems p. 15 1.4. Bank and inter-bank phases, and inter-bank chenier development p. 17 1.5. River mouths and chenier development p. 19 1.6. The Suriname Coastal Plain and long-term chenier development p. 22 Part 2. Recent shoreline changes in Suriname: general morphodynamics, methodology and results for Braamspunt beach p. 27 2.1. Chenier morphodynamics – cross-shore and longshore processes p. 28 2.1. The Maroni and Surniname river-mouth contexts and Braamspunt beach p. 33 2.2. Methodology: recent shoreline changes and evolution of Braamspunt beach p. 35 2.2.1. Mesoscale (multi-decadal changes) p. 35 2.2.2. Field surveys of the morphology and dynamics of Braamspunt beach p. 38 2.3. Recent bank and inter-bank phases on the Suriname coast p. 43 2.3.1. The Maroni-Suriname sector p. 44 2.3.2. The Suriname-Coppename sector p. 44 2.3.3. The Coppename-Corantijn sector p. 45 2.4. Morphodynamics of Braamspunt beach p. 45 2.4.1. Offshore and nearshore hydrodynamic conditions p. 45 2.4.2. Grain-size and sedimentology of Braamspunt beach p.
    [Show full text]
  • River Channel Bars and Dunes- Theory of Kinematic Waves
    River Channel Bars and Dunes- Theory of Kinematic Waves GEOLOGICAL SURVEY PROFESSIONAL PAPER 422-L River Channel Bars and Dunes- Theory of Kinematic Waves By WALTER B. LANGBEIN and LUNA B. LEOPOLD PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS GEOLOGICAL SURVEY PROFESSIONAL PAPER 422-L UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 20 cents (paper cover) CONTENTS Page Page Abstract_________________________________________ LI Effect of rock spacing on rock movement in an ephemeral Introduction.______________________________________ 1 stream._________________________________________ L9 Flux-concentration relations________________________ 2 Waves in bed form________________________________ 12 Relation of particle speed to spacing a flume experi- General features________________________________ 12 ment______-_____-____-____-_-____________--____. 4 Kinematic properties_._______-._________________ 15 Transport of sand in pipes and flumes_________________ 5 Gravel bars____________________________________ 17 Flux-concentration curve for pipes________________ 6 Summary__________________________________________ 19 Flume transport of sand_________________________ 7 References________________.______________________ 19 ILLUSTRATIONS Page FIGURE 1. Flux-concentration curve for traffic___________________________________________________-_-_-__-___-
    [Show full text]
  • Mission: History Studiorum Historiam Praemium Est
    See story on page 5 Naval Order of the United States – San Francisco Co m m a n d e r y Mission: History Studiorum Historiam Praemium Est Volume 1, Issue 9 HHHHHH 4 October 1999 1944: With the World’s Eyes on Europe, U.S. Fights History’s Largest Sea Battle This Month’s Contents Ambush at Palawan Passage Page 7 Leyte Gulf Actions See Destruction Sibuyan Sea Air Attacks 7 Loss of Princeton 13 Battle of Surigao Strait 2 Of Japanese Navy as Fighting Force Main Event off Samar 3 In October 1944, the attention of American newspapers and radio was firmly fo- Halsey Abandons Kinkaid 3 Leyte Charts 2 cused on Europe, particularly on the German fortress at Metz, in northeast France. Battle of Trafalgar 5 General George S. Patton’s seemingly invincible Third Army had bounced off Metz Trafalgar Chart 16 without leaving a dent. Americans had grown to expect great things from Patton, so they sat by their radios and read the newspapers waiting for Metz to fall. In this vacuum of news from the Pacific, the greatest of all naval battles was fought. The Japanese Navy rolled the dice with everything they had on the line. Two hundred seventy-six war- ships ranging in size from destroyer to the world’s largest battleships took part in the Battle of Leyte Gulf. When it was over, the Jap navy had ceased to exist as a fighting force. There were no replacements in the pipeline and, in fact, there had never been a pipeline to begin with.
    [Show full text]
  • Understanding Sediment Bypassing Processes Through Analysis of High- Frequency Observations of Ameland Inlet, the Netherlands T ⁎ Edwin P.L
    Marine Geology 415 (2019) 105956 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Understanding sediment bypassing processes through analysis of high- frequency observations of Ameland Inlet, the Netherlands T ⁎ Edwin P.L. Eliasa, , Ad J.F. Van der Spekb,c, Stuart G. Pearsonb,d, Jelmer Cleveringae a Deltares USA, 8601 Georgia Ave, Silver Spring, MD 20910, USA b Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands c Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands d Faculty of Civil Engineering and Geosciences, Delft University of Technology, PO Box 5048, 2600GA Delft, the Netherlands e Arcadis Nederland B.V., P.O. Box 137, 8000 AC Zwolle, the Netherlands ARTICLE INFO ABSTRACT Editor: Edward Anthony Ameland inlet is centrally located in the chain of West Frisian Islands (the Netherlands). A globally unique Keywords: dataset of detailed bathymetric charts starting in the early 19th century, and high-resolution digital data since Ameland Inlet 1986 allows for detailed investigations of the ebb-tidal delta morphodynamics and sediment bypassing over a The Netherlands wide range of scales. The ebb-tidal delta exerts a large influence on the updrift and downdrift shorelines, leading Coastal morphodynamics to periodic growth and decay (net erosion) of the updrift (Terschelling) island tip, while sequences of sediment Ebb-tidal delta bypassing result in shoal attachment to the downdrift coastline of Ameland. Distinct differences in location, Sediment bypassing shape and volume of the attachment shoals result from differences in sediment bypassing, which can be driven Tidal inlet by morphodynamic interactions at the large scale of the inlet system (O(10 km)), and through interactions that Wadden Sea originate at the smallest scale of individual shoal instabilities (O(0.1 km)).
    [Show full text]
  • Europe's Coastal Erosion in a Changing Climate
    Europe’s coastal erosion in a changing climate www.climatechangepost.com Latest update: 19 March 2019 Coastal erosion in Europe Overview All European coastal states are to some extent affected by coastal erosion. About twenty thousand kilometres of coasts is eroding, of which three-quarters is actively retreating, and a quarter is artificially stabilised. Coastal erosion results in • loss of land with economical value • destruction of natural sea defences (usually a dune system) as a result of storm events, which may result in flooding of the hinterland • undermining of artificial sea defences as a result of chronic sediment shortage The cost of coastal erosion (coastline protection against the risk of erosion and flooding) has been estimated to average 5,400 million euro per year between 1990 and 2020. Source: Salman et al. (2004); Pranzini and Williams (2013) 3/4 retreating 20,000 km 5,400 million euro/year 1/4 stabilised www.climatechangepost.com Coastal erosion patterns in Europe Overview Status of coastline (EUROSION 2004): Aggradation Mixed aggradation/erosion Erosion Stable Mostly stable Modified after EUROSION map (European Environment Agency, downloaded February 2019) www.climatechangepost.com Coastal erosion patterns in Europe Overview Status of coastline (EUROSION 2004): Aggradation Mixed aggradation/erosion Erosion Stable Mostly stable Part of the national coastline ..% that is eroding according to Pranzini and Williams (2013) 24% 27% 41% 20% 17% 13% 66% 30% 71% 21% 36% 29% 69% 30% Modified after EUROSION map (European Environment Agency, downloaded February 2019) www.climatechangepost.com Overview Beach erosion: Upper limit erosion rate is generally about 2 metres per year, with exceptions up to 10 metres.
    [Show full text]
  • Landslide-Induced River Channel Avulsions in Mountain Catchments of Southwest New Zealand
    Geomorphology 63 (2004) 57–80 www.elsevier.com/locate/geomorph Landslide-induced river channel avulsions in mountain catchments of southwest New Zealand Oliver Korup* School of Earth Sciences, Victoria University of Wellington, P.O. Box 600, New Zealand Received 3 April 2003; received in revised form 19 March 2004; accepted 22 March 2004 Available online 20 May 2004 Abstract Pulsed or chronic supply of landslide debris to valley floors has historically caused substantial aggradation and channel instability in several alpine catchments of SW New Zealand. In this regional investigation of landslide impacts on river morphology, three types of landslide-induced channel avulsion are discerned: (i) upstream/backwater avulsions, (ii) contact avulsions, and (iii) downstream/loading avulsions. The basis for this qualitative geomorphic process-response framework is the principal direction of fluvial response with respect to its position relative to the causative landslide emplacement site. Downstream avulsions have the highest damage potential to land use and infrastructure on unconfined mountain-fringe alluvial fans. In the wake of such events, catastrophic aggradation may obliterate up to several km2 of mature floodplain forests by burial under several metres within a few decades. Estimates of mean aggradation rates are high (<220 mm yearÀ1) and exceed long-term (103 year) trends of fluvial degradation by an order of magnitude. Future potential avulsion routeways may be detected by geomorphic mapping of abandoned channels, which are preferentially reactivated in the wake of landslide-induced sediment waves. D 2004 Elsevier B.V. All rights reserved. Keywords: Avulsion; River channel; Landslide; Channel–hillslope coupling; Aggradation 1. Introduction sediment loads maintained over years or decades.
    [Show full text]