Europe's Coastal Erosion in a Changing Climate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coastal Monitoring Project 2004-2006
COASTAL MONITORING PROJECT 2004-2006 By Tim Ryle, Anne Murray, Kieran Connolly & Melinda Swann A Report to the National Parks and Wildlife Service, Dublin. 2009 Coastal Monitoring Project Coastal Monitoring Project EXECUTIVE SUMMARY The Irish coastline, including the islands, extends to 6,000 kilometres, of which approximately 750 kilometres is sandy. The sand dune resource is under threat from a number of impacts – primarily natural erosion, changes in agricultural practices and development of land for housing, tourism and recreational purposes. This project, carried out on behalf of the National Parks and Wildlife Service (NPWS), is designed to meet Ireland’s obligation under Article 17 of the EU Habitats Directive, in relation to reporting on the conservation status of Annex I sand dune habitats in Ireland. The following habitats were assessed: 1210 – Annual vegetation of driftlines 1220 – Perennial vegetation of stony banks 2110 – Embryonic shifting dunes 2120 – Shifting dunes along the shoreline with Ammophila arenaria 2130 – Fixed coastal dunes with herbaceous vegetation (grey dunes) 2140 – Decalcified fixed dunes with Empetrum nigrum 2150 – Atlantic decalcified fixed dunes (Calluno-Ulicetea) 2170 – Dunes with Salix repens ssp. argentea (Salicion arenariea) 2190 – Humid dune slacks 21A0 – Machairs The project is notable in that it represents the first comprehensive assessments of sand dune systems and their habitats in Ireland. Over the course of the three field seasons (2004-2006), all known sites for sand dunes in Ireland were assessed (only 4 sites were not visited owing to access problems). The original inventory of sand dune systems by Curtis (1991a) listed 168 sites for the Republic of Ireland. -
Ramsar Sites in Order of Addition to the Ramsar List of Wetlands of International Importance
Ramsar sites in order of addition to the Ramsar List of Wetlands of International Importance RS# Country Site Name Desig’n Date 1 Australia Cobourg Peninsula 8-May-74 2 Finland Aspskär 28-May-74 3 Finland Söderskär and Långören 28-May-74 4 Finland Björkör and Lågskär 28-May-74 5 Finland Signilskär 28-May-74 6 Finland Valassaaret and Björkögrunden 28-May-74 7 Finland Krunnit 28-May-74 8 Finland Ruskis 28-May-74 9 Finland Viikki 28-May-74 10 Finland Suomujärvi - Patvinsuo 28-May-74 11 Finland Martimoaapa - Lumiaapa 28-May-74 12 Finland Koitilaiskaira 28-May-74 13 Norway Åkersvika 9-Jul-74 14 Sweden Falsterbo - Foteviken 5-Dec-74 15 Sweden Klingavälsån - Krankesjön 5-Dec-74 16 Sweden Helgeån 5-Dec-74 17 Sweden Ottenby 5-Dec-74 18 Sweden Öland, eastern coastal areas 5-Dec-74 19 Sweden Getterön 5-Dec-74 20 Sweden Store Mosse and Kävsjön 5-Dec-74 21 Sweden Gotland, east coast 5-Dec-74 22 Sweden Hornborgasjön 5-Dec-74 23 Sweden Tåkern 5-Dec-74 24 Sweden Kvismaren 5-Dec-74 25 Sweden Hjälstaviken 5-Dec-74 26 Sweden Ånnsjön 5-Dec-74 27 Sweden Gammelstadsviken 5-Dec-74 28 Sweden Persöfjärden 5-Dec-74 29 Sweden Tärnasjön 5-Dec-74 30 Sweden Tjålmejaure - Laisdalen 5-Dec-74 31 Sweden Laidaure 5-Dec-74 32 Sweden Sjaunja 5-Dec-74 33 Sweden Tavvavuoma 5-Dec-74 34 South Africa De Hoop Vlei 12-Mar-75 35 South Africa Barberspan 12-Mar-75 36 Iran, I. R. -
Bunduff Lough and Machair Trawalua Mullaghmore
NPWS Bunduff Lough and Machair/Trawalua/Mullaghmore SAC (site code: 625) Conservation objectives supporting document - Marine Habitats Version 1 February 2015 Introduction Bunduff Lough and Machair/Trawalua/Mullaghmore SAC is designated for the marine Annex I qualifying interests of Mudflats and sandflats not covered by seawater at low tide, Large shallow inlets and bays and Reefs (Figures 1, 2 and 3). The Annex I habitat Large shallow inlets and bays is a large physiographic feature that may wholly or partly incorporate other Annex I habitats including mudflats and sandflats and reefs within its area. A BioMar survey of this site was carried out in 1994 (Picton and Costello, 1997) and subtidal and intertidal surveys were undertaken in 2011 and 2012 (MERC, 2012a and b); InfoMar (Ireland’s national marine mapping programme) data from the site was also reviewed. These data were used to determine the physical and biological nature of this SAC. Aspects of the biology and ecology of the Annex I habitat are provided in Section 1. The corresponding site-specific conservation objectives will facilitate Ireland delivering on its surveillance and reporting obligations under the EU Habitats Directive (92/43/EC). Ireland also has an obligation to ensure that consent decisions concerning operations/activities planned for Natura 2000 sites are informed by an appropriate assessment where the likelihood of such operations or activities having a significant effect on the site cannot be excluded. Further ancillary information concerning the practical application of the site-specific objectives and targets in the completion of such assessments is provided in Section 2. 2 Section 1 Principal Benthic Communities Within Bunduff Lough and Machair/Trawalua/Mullaghmore SAC, three community types are recorded. -
The Strait of Anian and British Northwest America: Cook's Third Voyage in Perspective*
The Strait of Anian and British Northwest America: Cook's Third Voyage in Perspective* JOHNNORRIS For local patriots of British Columbia, Captain Cook's third voyage is unsatisfactory. His stay at Nootka was so brief, his exploration of the coast so perfunctory, and his preoccupation with Alaska so much to be deplored. We are driven, in asking the reasons for these solecisms, to examine his instructions from the Admiralty for the third voyage. Alas, they hardly mention the coast of Northwest America between 45 ° and 65 ° North. Did their Lordships of the Admiralty slip up? Was Cook, that supreme professional who had had a hand in drawing up his own instructions, at less than his expert best? Did Palinurus nod at the helm? Cook's landing at Nootka was the result of his instructions "to put into the first convenient Port to recruit your Wood and Water and procure Refreshments . .Jîl But the prolongation of his stay to four weeks (29 March to 26 April 1778) was traceable to the bad fitting-out of his ships by the Navy Board, which resulted in the rotten foretop and mizzen masts of the Resolution having to be replaced after the strain of the spring gales of the North Pacific. Further, the avoidance of virtually all the rest of the British Columbia coast was in accordance with those instructions, since Cook was ordered to: ... proceed Northward along the Coast as far as the Latitude of 65 °, or farther, if you are not obstructed by Lands or Ice; taking care not to lose any time in exploring Rivers or Inlets, or upon any other account, until you get into the before-mentioned latitude of 65 °... -
Rosslare Wexford County (Ireland)
EUROSION Case Study ROSSLARE WEXFORD COUNTY (IRELAND) Contact: Paul SISTERMANS Odelinde NIEUWENHUIS DHV group Laan 1914 nr.35, 3818 EX Amersfoort 21 PO Box 219 3800 AE Amersfoort The Netherlands Tel: +31 (0)33 468 37 00 Fax: +31 (0)33 468 37 48 [email protected] e-mail: [email protected] 1 EUROSION Case Study 1. GENERAL DESCRIPTION OF THE AREA 1.1 Physical process level 1.1.1 Classification Unlike the UK, Ireland has been rising out of the sea since the last ice age. Scientists think that the island has stopped rising and the sea level rise will become a bigger threat in the future. The biggest threat is climate change. The increase in sea level and high tides will produce a new threat to the coastline and with it fears for buildings and infrastructure along the shore. The case area is located at St. Georges Channel. The case area consists of soft glacial cliffs at the southern end and sandy beaches at the northern end. According to the typology in the scoping study the case area consists of: 1b. Tide-dominated sediment. Plains. Barrier dune coasts Fig. 1: Location of case area. 2a. Soft cliffs High and low glacial sea cliffs. 1.1.2 Geology Coast of Ireland Topography, together with linked geological controls, result in extensive rock dominated- and cliffed coastlines for the southwest, west and north of Ireland. In contrast, the east and southeastern coasts are comprised of unconsolidated Quaternary aged sediments and less rock exposures. Glacial and fluvial action however, has also created major sedimentary areas on western coasts. -
Characterising Archaeology in Machair
Characterising archaeology in machair John Barber AOC Archaeology Group Scottish Archaeological Internet Report 48, 2011 www.sair.org.uk CONTENTS List of Illustrations. 40 1 Abstract . .41 2 Introduction. 42 3 Distinguishing ‘Archaeology’ from ‘Not Archaeology’. 44 4 Characterising Archaeological Deposits and Formations . .45 4.1 Dynamism and sensitivity: processes of whole-site formation. 4 4.1.1 Deflation . 47 4.1.2 Conflation. 47 4.1.3 Diachronic deposits. 47 5 Deposit Formation . .48 .1 Dump deposits. 48 .2 Midden . 48 .3 Anthropic deposits . 48 .4 Midden sites . 49 . Cultivated deposits . 49 6 Preservation in Machair Soils . 50 6.1 Chronology building on machair sites . 0 6.2 Loss of sediments . 0 6.3 Practical problems in the use of radiocarbon dating on machair sites . 0 7 Curatorial Response. 52 8 References . .53 39 LIST OF ILLUStrations 1 Models of machair evolution (after Ritchie 1979). 43 2 a, b, c Plates showing development of settlement-related deposits. 4 3 The domed structure of the site at Baleshare, with cross-section.. 46 40 1 ABSTRACT This paper deals with methodological issues building can lead to misleading results. Rather, the involved in excavating in the machair, shell-sand focus must be on understanding and dating the systems of the Outer Hebrides and the West Coast sedimentary sequence and then intercalating the of Scotland. The machair system is character- sequence of human activities into that depositional ised by high rates of change, driven by Aeolian chronology. The almost universal availability of forces, interspersed with which human settle- radiometrically datable organic materials is vitiated ment intermittently occupied sites and altered by the difficulties they pose for dating, and careful the depositional regime, only in turn to have its selection from taphonomically sound contexts is deposits altered by subsequent human and natural a sine qua non. -
U N C O R R Ec Ted Pr O
SED 773 Dispatch: 1.2.06 Journal: SED CE: Hari Journal Name Manuscript No. B Author Received: No. of pages: 18 PE: Revathi Sedimentology (2006) 1–18 doi: 10.1111/j.1365-3091.2006.00773.x Sedimentology and stratigraphy of a transgressive, muddy gravel beach: waterside beach, Bay of Fundy, Canada F SHAHIN E. DASHTGARD*, MURRAY K. GINGRAS* and KARL E. BUTLER *Department of Earth and Atmospheric Sciences, 1-26 Earth Sciences Building, University of Alberta, Edmonton, AB, Canada T6E 2G3 (E-mail: [email protected]) O Department of Geology, University of New Brunswick, PO Box 4400, Fredericton, NB, Canada E3B 5A3 ABSTRACT O Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutinyR of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent threeP depositional environments: (1) sandy foreshore and shoreface; (2) tidal-creek braid-plain and delta; and, (3) wave-formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and, a shallowlyD seaward-dipping terrace of sandy middle and lower intertidal, and muddy sub-tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal-creek braid plain and delta. Wave-formedE sand and gravel bars and associated deposits include: sediment sourced from low-amplitude, unstable sand bars; gravel deposited from large (up to 5Æ5 m high, 800 m long), landward-migrating gravel bars; and, zones ofT mud deposition developed on the landward side of the gravel bars. -
The Invertebrate Fauna of Dune and Machair Sites In
INSTITUTE OF TERRESTRIAL ECOLOGY (NATURAL ENVIRONMENT RESEARCH COUNCIL) REPORT TO THE NATURE CONSERVANCY COUNCIL ON THE INVERTEBRATE FAUNA OF DUNE AND MACHAIR SITES IN SCOTLAND Vol I Introduction, Methods and Analysis of Data (63 maps, 21 figures, 15 tables, 10 appendices) NCC/NE RC Contract No. F3/03/62 ITE Project No. 469 Monks Wood Experimental Station Abbots Ripton Huntingdon Cambs September 1979 This report is an official document prepared under contract between the Nature Conservancy Council and the Natural Environment Research Council. It should not be quoted without permission from both the Institute of Terrestrial Ecology and the Nature Conservancy Council. (i) Contents CAPTIONS FOR MAPS, TABLES, FIGURES AND ArPENDICES 1 INTRODUCTION 1 2 OBJECTIVES 2 3 METHODOLOGY 2 3.1 Invertebrate groups studied 3 3.2 Description of traps, siting and operating efficiency 4 3.3 Trapping period and number of collections 6 4 THE STATE OF KNOWL:DGE OF THE SCOTTISH SAND DUNE FAUNA AT THE BEGINNING OF THE SURVEY 7 5 SYNOPSIS OF WEATHER CONDITIONS DURING THE SAMPLING PERIODS 9 5.1 Outer Hebrides (1976) 9 5.2 North Coast (1976) 9 5.3 Moray Firth (1977) 10 5.4 East Coast (1976) 10 6. THE FAUNA AND ITS RANGE OF VARIATION 11 6.1 Introduction and methods of analysis 11 6.2 Ordinations of species/abundance data 11 G. Lepidoptera 12 6.4 Coleoptera:Carabidae 13 6.5 Coleoptera:Hydrophilidae to Scolytidae 14 6.6 Araneae 15 7 THE INDICATOR SPECIES ANALYSIS 17 7.1 Introduction 17 7.2 Lepidoptera 18 7.3 Coleoptera:Carabidae 19 7.4 Coleoptera:Hydrophilidae to Scolytidae -
The Implications of Climate Change for Coastal Habitats in the Uists, Outer Hebrides
Ocean & Coastal Management 94 (2014) 38e43 Contents lists available at ScienceDirect Ocean & Coastal Management journal homepage: www.elsevier.com/locate/ocecoaman The implications of climate change for coastal habitats in the Uists, Outer Hebrides Stewart Angus* Scottish Natural Heritage, Great Glen House, Leachkin Road, Inverness, Scotland IV3 8NW, United Kingdom article info abstract Article history: The low-lying, relatively flat landscape of the western seaboard of the Uists has a particular vulnerability Available online 27 March 2014 to climate change, especially to rising sea levels. Winter water tables are high, and a high proportion of the area is permanent open water and marsh. Any changes in aquatic relationships could pose serious problems for the Uist environment, where the closely inter-connected habitats are internationally rec- ognised for their conservation value. The uncertainty of most aspects of climate change is imposed upon an existing level of high climatic variability in the Western Isles, greatly complicating local habitat and land use scenarios, but rising sea level, possibly the most threatening aspect of climate change, is a certainty. Rising sea level alone has the potential to raise water levels within the islands by progressively reducing the effectiveness of an ageing drainage network, not only raising water levels, but possibly also facilitating saline infiltration of the water table. This raises problems for habitats, species, and for land users, in islands where habitat processes and human interaction with the environment have always been particularly closely linked. Ó 2014 Elsevier Ltd. All rights reserved. 1. Introduction generally alkaline because of its high shell content, while the landward blanket bogs are often highly acid. -
4 South Harris Settlement-Names
Anderson, Emma Jane (2014) The South Harris machair: sources and settlements. MRes thesis. http://theses.gla.ac.uk/5744/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] The South Harris Machair: Sources and Settlements Emma Jane Anderson BA, MA (Hons) Submitted in fulfilment of the requirements for the Degree of Master of Research in Celtic Studies School of Humanities College of Arts University of Glasgow November 2014 2 Acknowledgements This project has been made possible by financial support from the Thomas Reid award (University of Glasgow College List), and the Duncan and Morag MacLean Studentship awarded by Celtic and Gaelic, University of Glasgow. Friends in Harris and Glasgow, staff at the School of Scottish Studies, Edinburgh, particularly Ian Fraser, who took a morning out of his retirement to set me on my path, and the School’s wonderful archivist, Caroline Milligan. Also Jake King, Bill Lawson (who suggested the machair area as a suitable study) and the many others who have helped me to locate sources and provided stimulating discussion on names. -
“Major World Deltas: a Perspective from Space
“MAJOR WORLD DELTAS: A PERSPECTIVE FROM SPACE” James M. Coleman Oscar K. Huh Coastal Studies Institute Louisiana State University Baton Rouge, LA TABLE OF CONTENTS Page INTRODUCTION……………………………………………………………………4 Major River Systems and their Subsystem Components……………………..4 Drainage Basin………………………………………………………..7 Alluvial Valley………………………………………………………15 Receiving Basin……………………………………………………..15 Delta Plain…………………………………………………………...22 Deltaic Process-Form Variability: A Brief Summary……………………….29 The Drainage Basin and The Discharge Regime…………………....29 Nearshore Marine Energy Climate And Discharge Effectiveness…..29 River-Mouth Process-Form Variability……………………………..36 DELTA DESCRIPTIONS…………………………………………………………..37 Amu Darya River System………………………………………………...…45 Baram River System………………………………………………………...49 Burdekin River System……………………………………………………...53 Chao Phraya River System……………………………………….…………57 Colville River System………………………………………………….……62 Danube River System…………………………………………………….…66 Dneiper River System………………………………………………….……74 Ebro River System……………………………………………………..……77 Fly River System………………………………………………………...…..79 Ganges-Brahmaputra River System…………………………………………83 Girjalva River System…………………………………………………….…91 Krishna-Godavari River System…………………………………………… 94 Huang He River System………………………………………………..……99 Indus River System…………………………………………………………105 Irrawaddy River System……………………………………………………113 Klang River System……………………………………………………...…117 Lena River System……………………………………………………….…121 MacKenzie River System………………………………………………..…126 Magdelena River System……………………………………………..….…130 -
A Geomorphic Classification System
A Geomorphic Classification System U.S.D.A. Forest Service Geomorphology Working Group Haskins, Donald M.1, Correll, Cynthia S.2, Foster, Richard A.3, Chatoian, John M.4, Fincher, James M.5, Strenger, Steven 6, Keys, James E. Jr.7, Maxwell, James R.8 and King, Thomas 9 February 1998 Version 1.4 1 Forest Geologist, Shasta-Trinity National Forests, Pacific Southwest Region, Redding, CA; 2 Soil Scientist, Range Staff, Washington Office, Prineville, OR; 3 Area Soil Scientist, Chatham Area, Tongass National Forest, Alaska Region, Sitka, AK; 4 Regional Geologist, Pacific Southwest Region, San Francisco, CA; 5 Integrated Resource Inventory Program Manager, Alaska Region, Juneau, AK; 6 Supervisory Soil Scientist, Southwest Region, Albuquerque, NM; 7 Interagency Liaison for Washington Office ECOMAP Group, Southern Region, Atlanta, GA; 8 Water Program Leader, Rocky Mountain Region, Golden, CO; and 9 Geology Program Manager, Washington Office, Washington, DC. A Geomorphic Classification System 1 Table of Contents Abstract .......................................................................................................................................... 5 I. INTRODUCTION................................................................................................................. 6 History of Classification Efforts in the Forest Service ............................................................... 6 History of Development .............................................................................................................. 7 Goals