Chromosomal Evolution and Phylogeny in the Nullicauda Group

Total Page:16

File Type:pdf, Size:1020Kb

Chromosomal Evolution and Phylogeny in the Nullicauda Group Gomes et al. BMC Evolutionary Biology (2018) 18:62 https://doi.org/10.1186/s12862-018-1176-3 RESEARCHARTICLE Open Access Chromosomal evolution and phylogeny in the Nullicauda group (Chiroptera, Phyllostomidae): evidence from multidirectional chromosome painting Anderson José Baia Gomes1,3, Cleusa Yoshiko Nagamachi1,4, Luis Reginaldo Ribeiro Rodrigues2, Malcolm Andrew Ferguson-Smith5, Fengtang Yang6, Patricia Caroline Mary O’Brien5 and Julio Cesar Pieczarka1,4* Abstract Background: The family Phyllostomidae (Chiroptera) shows wide morphological, molecular and cytogenetic variation; many disagreements regarding its phylogeny and taxonomy remains to be resolved. In this study, we use chromosome painting with whole chromosome probes from the Phyllostomidae Phyllostomus hastatus and Carollia brevicauda to determine the rearrangements among several genera of the Nullicauda group (subfamilies Gliphonycterinae, Carolliinae, Rhinophyllinae and Stenodermatinae). Results: These data, when compared with previously published chromosome homology maps, allow the construction of a phylogeny comparable to those previously obtained by morphological and molecular analysis. Our phylogeny is largely in agreement with that proposed with molecular data, both on relationships between the subfamilies and among genera; it confirms, for instance, that Carollia and Rhinophylla, previously considered as part of the same subfamily are, in fact, distant genera. Conclusions: The occurrence of the karyotype considered ancestral for this family in several different branches suggests that the diversification of Phyllostomidae into many subfamilies has occurred in a short period of time. Finally, the comparison with published maps using human whole chromosome probes allows us to track some syntenic associations prior to the emergence of this family. Keywords: Chromosome phylogeny, Molecular cytogenetics, Bat evolution, Genome mapping Background Traditionally, the subfamily Carolliinae consists of The family Phyllostomidae is the third most speciose genera Carollia (10 spp.) and Rhinophylla (3 spp.) within the order Chiroptera, with 60 genera and 200 [3, 4, 6, 7]. However, in the classification proposed species [1], being grouped into 11 subfamilies: Macroti- by Baker et al. [2] these two genera are not closely nae, Micronycterinae, Desmodontinae, Lonchorhininae, related. The subfamily Carolliinae (composed by the Phyllostominae, Glossophaginae, Lonchophyllinae, Car- genus Carollia) was included as sister group to Gly- olliinae, Glyphonycterinae, Rhinophyllinae, and Steno- phonycterinae, a new subfamily that includes Gly- dermatinae [2]. This family shows huge morphological, phonycteris and Trinycteris that were previously molecular and cytogenetic variation, both between and subgenera within Micronycteris [8–10], and later within species, in addition to much controversy about were raised to the genus level [3, 11]. Rhinophylla its taxonomy [2–5]. was included in its own subfamily (Rhinophyllinae) that was seen as closely related to the subfamily * Correspondence: [email protected] Stenodermatinae. 1Laboratório de Citogenética, CEABIO, ICB, Universidade Federal do Pará, Av. Bernardo Sayão, sn. Guamá, Belém, Pará 66075-900, Brazil In the Baker et al. [2] classification, the group of Car- 4CNPQ Researcher, Brasilia, Brazil olliinae + Glyphonycterinae + Rhinophyllinae + Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Gomes et al. BMC Evolutionary Biology (2018) 18:62 Page 2 of 10 Stenodermatinae was designated Nullicauda, an un- Methods ranked taxon, initially proposed by Wetterer et al. [3] for Specimens examined the group consisting of subfamilies Carolliinae and Chromosome banding and painting were used to analyze Stenodermatinae. the karyotypes of bats from three phyllostomid subfam- Cytogenetic studies in species of the Nullicauda ilies, Glossophaginae, Glyphonycterinae and Rhinophylli- group show extensive interspecific and intraspecific nae (Table 1), with the last two being members of the chromosome variation [12]. To further investigate the Nullicauda group. The specimens were captured with controversial phylogenetic hypotheses based on mor- mist nets. Chromosome preparations and tissue biopsies phological and molecular data in Nullicauda, we ana- were sent to the Cytogenetic Laboratory of the Federal lyzed chromosome evolution in this group through University of Pará. Specimens were deposited in the multidirectional chromosome painting using whole Mastozoology collection of the Emilio Goeldi Museum chromosome paint probes from two phyllostomid and Zoology Museum of the Western Pará University. bats, Phyllostomus hastatus (PHA) and Carollia brevi- cauda (CBR) [13], in the species Rhinophylla pumilio, Chromosome preparations, cell culture and chromosome Rhinophylla aff. fischerae, Trinycteris nicefori and banding Glossophaga soricina. The results obtained here were Metaphase chromosomes were obtained from direct compared with those previously published with the bone marrow extraction [16], and through primary same probes in other species, in order to construct a culture of fibroblasts [17]. G-banding patterns were phylogeny based on chromosomal homology data. We obtained from incubation in enzymatic trypsin solu- also integrated the comparative chromosome maps tion [18], and subsequent incubation in saline solu- obtained with these probes with maps generated using tion (0.5X SSC) and Wright dye staining diluted in human probes in Glossophaga soricina [14, 15]. phosphate buffer at a ratio of 1: 3 v / v. Staining time Table 1 Species and karyotypes analyzed in the present work and data from literature used on mapping comparison Scientific Names and Subfamilies 2 N FN Locality Number and Cross-species Abbreviations sex FISH Rhinophylla aff. fischeraea, Rhinophyllinae 38 68 Juruti (2°08′40”S; 56°05′28”W) and Santarém (2°26″54”S; 3 (1 M, 2F) This study RFI 54°42″07”W) Rhinophylla pumilio, RPU Rhinophyllinae 34 62 Santa Barbara (1°13′31”S; 48°17″51”W) 3 (2 M, 1F) This study Glossophaga soricina, GSO Glossophaginae 32 60 Belém (1°28′05”S; 48°26′35”W) 1 (1F) This study Trinycteris nicefori, TNI Glyphonycterinae 28 52 Oriximiná (1°45′40”S; 55°51′52”W) and Santarém (2°26″ 3 (1 M, 2F) This study 54”S; 54°42″07”W) Phyllostomus hastatus, PHA Phyllostominae 32 60 Pieczarka et al. 2005 Carollia brevicauda, CBR Carolliinae 20/ 36 Pieczarka et al. 21 2005 Artibeus obscurus, AOB Stenodermatinae 30/ 56 Pieczarka et al. 31 2013 Uroderma magnirostrum, Stenodermatinae 36 62 Pieczarka et al. UMA 2013 Uroderma bilobatum, UBI Stenodermatinae 42 50 Pieczarka et al. 2013 Chiroderma villosum, CVI Stenodermatinaeb 26 48 Gomes et al. 2016 Mesophylla macconnelli, Stenodermatinaeb 21/ 18 Gomes et al. MMA 22 2016 Vampyressa thyone, VTH Stenodermatinaeb 23/ 20 Gomes et al. 24 2016 Vampyriscus bidens, VBI Stenodermatinaeb 26 48 Gomes et al. 2016 Vampyriscus brocki, VBR Stenodermatinaeb 24 44 Gomes et al. 2016 aThe species here is called aff.(=affinis) because Gomes et al. (2010) demonstrated that, despite morphologically similar to Rhinophylla fischerae, its karyotype diverges clearly from the one described previously for that species by Baker and Bleier (1971) in a sample from Colombia. However, further studies are necessary to formally confirm that it is a different species. bSubtribe Vampyressina. M = male; F = female Gomes et al. BMC Evolutionary Biology (2018) 18:62 Page 3 of 10 was 5 min. Karyotypes were organized following the its karyotype is similar to Macrotus californicus pattern in the literature for each species. (MCA), a species of the most basal genus of Phyllos- tomidae according to Baker et al. [2]; and 3) its Fluorescence in situ hybridization (FISH) karyotype is similar to the ancestral karyotype [22]. Multidirectional chromosome painting was performed The analysis of Maximum Parsimony was made using using whole chromosome probes from CBR and PHA PAUP 4.0b10 (Phylogenetic Analysis Using Parsi- (Phyllostomidae), generated by flow cytometry [13]. The mony) [23]. A heuristic search to find the most par- probes were amplified and labeled by DOP-PCR [19, 20] simonious tree(s) was performed using Tree Bisection and hybridized following procedures previously de- Reconnection (TBR) branch-swapping; the posterior scribed [13, 20]. Briefly, the slides were incubated in a bootstrap probability was obtained with one thousand pepsin enzyme solution, washed in 2× SSC and dehy- replicates. drated in an alcohol series (70%, 90% and 100%). Subse- quently the slides were oven aged at 65 °C for 1 hour, Results denatured for 1 min in formamide solution (70% form- Rhinophylla pumilio amide/ 2× SSC) and incubated in hybridization solution Rhinophylla pumilio (RPU) shows a karyotype with (14 μl of solution containing: 50% formamide, 2× SSC, 2n = 34, and FN = 62 (Fig. 1a), as well as G-, C- 10% dextran sulfate, 5 μg of salmon sperm DNA, 2 μg banding and Ag-NOR staining,
Recommended publications
  • Diversity and Abundance of Roadkilled Bats in the Brazilian Atlantic Forest
    diversity Article Diversity and Abundance of Roadkilled Bats in the Brazilian Atlantic Forest Lucas Damásio 1,2 , Laís Amorim Ferreira 3, Vinícius Teixeira Pimenta 3, Greiciane Gaburro Paneto 4, Alexandre Rosa dos Santos 5, Albert David Ditchfield 3,6, Helena Godoy Bergallo 7 and Aureo Banhos 1,3,* 1 Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Biologia, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema, Alegre 29500-000, ES, Brazil; [email protected] 2 Programa de Pós-Graduação em Ecologia, Instituto de Ciências Biológicas, Campus Darcy Ribeiro, Universidade de Brasília, Brasília 70910-900, DF, Brazil 3 Programa de Pós-Graduação em Ciências Biológicas (Biologia Animal), Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Prédio Bárbara Weinberg, Vitória 29075-910, ES, Brazil; [email protected] (L.A.F.); [email protected] (V.T.P.); [email protected] (A.D.D.) 4 Centro de Ciências Exatas, Naturais e da Saúde, Departamento de Farmácia e Nutrição, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema, Alegre 29500-000, ES, Brazil; [email protected] 5 Centro de Ciências Agrárias e Engenharias, Departamento de Engenharia Rural, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema, Alegre 29500-000, ES, Brazil; [email protected] 6 Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Vitória 29075-910, ES, Brazil 7 Departamento de Ecologia, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro 20550-900, RJ, Brazil; [email protected] Citation: Damásio, L.; Ferreira, L.A.; * Correspondence: [email protected] Pimenta, V.T.; Paneto, G.G.; dos Santos, A.R.; Ditchfield, A.D.; Abstract: Faunal mortality from roadkill has a negative impact on global biodiversity, and bats are Bergallo, H.G.; Banhos, A.
    [Show full text]
  • Volume 41, 2000
    BAT RESEARCH NEWS Volume 41 : No. 1 Spring 2000 I I BAT RESEARCH NEWS Volume 41: Numbers 1–4 2000 Original Issues Compiled by Dr. G. Roy Horst, Publisher and Managing Editor of Bat Research News, 2000. Copyright 2011 Bat Research News. All rights reserved. This material is protected by copyright and may not be reproduced, transmitted, posted on a Web site or a listserve, or disseminated in any form or by any means without prior written permission from the Publisher, Dr. Margaret A. Griffiths. The material is for individual use only. Bat Research News is ISSN # 0005-6227. BAT RESEARCH NEWS Volume41 Spring 2000 Numberl Contents Resolution on Rabies Exposure Merlin Tuttle and Thomas Griffiths o o o o eo o o o • o o o o o o o o o o o o o o o o 0 o o o o o o o o o o o 0 o o o 1 E - Mail Directory - 2000 Compiled by Roy Horst •••• 0 ...................... 0 ••••••••••••••••••••••• 2 ,t:.'. Recent Literature Compiled by :Margaret Griffiths . : ....••... •"r''• ..., .... >.•••••• , ••••• • ••< ...... 19 ,.!,..j,..,' ""o: ,II ,' f 'lf.,·,,- .,'b'l: ,~··.,., lfl!t • 0'( Titles Presented at the 7th Bat Researc:b Confei'ebee~;Moscow :i'\prill4-16~ '1999,., ..,, ~ .• , ' ' • I"',.., .. ' ""!' ,. Compiled by Roy Horst .. : .......... ~ ... ~· ....... : :· ,"'·~ .• ~:• .... ; •. ,·~ •.•, .. , ........ 22 ·.t.'t, J .,•• ~~ Letters to the Editor 26 I ••• 0 ••••• 0 •••••••••••• 0 ••••••• 0. 0. 0 0 ••••••• 0 •• 0. 0 •••••••• 0 ••••••••• 30 News . " Future Meetings, Conferences and Symposium ..................... ~ ..,•'.: .. ,. ·..; .... 31 Front Cover The illustration of Rhinolophus ferrumequinum on the front cover of this issue is by Philippe Penicaud . from his very handsome series of drawings representing the bats of France.
    [Show full text]
  • Neoichnology of Bats: Morphological, Ecological, and Phylogenetic Influences on Terrestrial Behavior and Trackmaking Ability Within the Chiroptera
    NEOICHNOLOGY OF BATS: MORPHOLOGICAL, ECOLOGICAL, AND PHYLOGENETIC INFLUENCES ON TERRESTRIAL BEHAVIOR AND TRACKMAKING ABILITY WITHIN THE CHIROPTERA BY MATTHEW FRAZER JONES Submitted to the graduate degree program in Geology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Science. Advisory Committee: ______________________________ Chairperson Stephen T. Hasiotis ______________________________ Co-chair David A. Burnham ______________________________ Robert M. Timm Date Defended: April 8, 2016 The Thesis Committee for MATTHEW FRAZER JONES certifies that this is the approved version of the following thesis: NEOICHNOLOGY OF BATS: MORPHOLOGICAL, ECOLOGICAL, AND PHYLOGENETIC INFLUENCES ON TERRESTRIAL BEHAVIOR AND TRACKMAKING ABILITY WITHIN THE CHIROPTERA ______________________________ Chairperson: Stephen T. Hasiotis ______________________________ Co-chairperson: David A. Burnham Date Approved: April 8, 2016 ii ABSTRACT Among living mammals, bats (Chiroptera) are second only to rodents in total number of species with over 1100 currently known. Extant bat species occupy many trophic niches and feeding habits, including frugivores (fruit eaters), insectivores (insect eaters), nectarivores (nectar and pollen-eaters), carnivores (predators of small terrestrial vertebrates), piscivores (fish eaters), sanguinivores (blood eaters), and omnivores (eat animals and plant material). Modern bats also demonstrate a wide range of terrestrial abilities while feeding, including: (1) those that primarily feed at or near ground level, such as the common vampire bat (Desmodus rotundus) and the New Zealand short-tailed bat (Mystacina tuberculata); (2) those rarely observed to feed from or otherwise spend time on the ground; and (3) many intermediate forms that demonstrate terrestrial competency without an obvious ecological basis. The variation in chiropteran terrestrial ability has been hypothesized to be constrained by the morphology of the pelvis and hindlimbs into what are termed types 1, 2, and 3 bats.
    [Show full text]
  • BAT TALK DO BA T S U S E LA N G U a G E ? Volume 2 2, No
    Bats Along C h e m i s t r y and TH E AM A Z O N MI G R A T I O N MYST E R I E S W W W . B A T C O N . O R G F A L L 2 0 0 4 BAB A T C O N S E R VAT I O NT I N T E R N AST I O N A L BAT TALK DO BA T S U S E LA N G U A G E ? Volume 2 2, No. 3, FALL 2 004 BATS P.O. Box 162603, Austin, Texas 78716 (512) 327-9721 • Fax (512) 327-9724 Publications Staff D i rector of Publications: Robert Locke Photo Editor: Kristin Hay Copyeditors: Angela England, Valerie Locke B AT S welcomes queries from writers. Send your article proposal with a brief outline and a description of any photos to the address above or via e-mail to: [email protected]. FEATURES M e m b e r s : Please send changes of address and all correspondence to the address above or via e-mail to [email protected]. Please include your label, if possible, and allow six weeks for the change 1 Bat Talk of address. Do bats possess language? Founder & Pre s i d e n t : Dr. Merlin D. Tuttle by Ro b e rt Locke Associate Executive Director: Elaine Acker B o a rd of Tru s t e e s : John D. Mitchell, Chair 7 Bats Along the Amazon Mark Adkins, Vice Chair BCI members explore the wonders of Brazil Verne R.
    [Show full text]
  • Chiroderma Improvisum Baker & Genoways, 1976 (Chiroptera: Phyllostomidae) from Saint Kitts, Lesser Antilles
    12 2 1854 the journal of biodiversity data 14 March 2016 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 12(2): 1854, 14 March 2016 doi: http://dx.doi.org/10.15560/12.2.1854 ISSN 1809-127X © 2016 Check List and Authors First record of Chiroderma improvisum Baker & Genoways, 1976 (Chiroptera: Phyllostomidae) from Saint Kitts, Lesser Antilles Jason D. Beck1*, Amanda D. Loftis2, Jennifer L. Daly2, Will K. Reeves3* and Maria V. Orlova4 1 Idaho Department of Fish and Game, 1345 Barton Rd, Pocatello, ID 83204, USA 2 Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Saint Kitts and Nevis 3 406 Shawnee Trail, Centerville OH 45458, USA 4 National Research Tomsk State University, 36, Lenina str., Tomsk, 634050, Russia * Corresponding author. E-mail: [email protected] Abstract: Chiroderma improvisum is a rare bat previously les. Saint Kitts Island consists of a composite volcanic known only on the Caribbean Islands of Guadeloupe and island with some limestone uplift formations located Montserrat. We report the first recorded capture of C. 180 km northwest of Guadeloupe and 80 km northwest improvisum on the island of Saint Kitts, 80 km northwest of Montserrat (Davis 1924). of Montserrat. Cytochrome b (cytB) gene analysis of the single captured specimen confirmed the identity of the The capture of this individual bat was incidental bat as C. improvisum; however, there is enough difference to a project conducted with Ross University School to indicate some population divergence, and possibly of Veterinary Medicine, which was examining bats differentiation at the subspecific level among islands.
    [Show full text]
  • Diet and the Evolution of Digestion and Renal Function in Phyllostomid Bats
    Zoology 104 (2001): 59–73 © by Urban & Fischer Verlag http://www.urbanfischer.de/journals/zoology Diet and the evolution of digestion and renal function in phyllostomid bats Jorge E. Schondube1,*, L. Gerardo Herrera-M.2 and Carlos Martínez del Rio1 1Department of Ecology and Evolutionary Biology, University of Arizona, Tucson 2Instituto de Biología, Departamento de Zoología, Universidad Nacional Autónoma de México, México Received: April 2, 2001 · Accepted: April 12, 2001 Abstract Bat species in the monophyletic family Phyllostomidae feed on blood, insects, small vertebrates, nectar, fruit and complex omnivorous mixtures. We used nitrogen stable isotope ratios to characterize bat diets and adopted a phylogenetically informed approach to investi- gate the physiological changes that accompany evolutionary diet changes in phyllostomids. We found that nitrogen stable isotopes sep- arated plant-eating from animal-eating species. The blood of the latter was enriched in 15N. A recent phylogenetic hypothesis suggests that with the possible exception of carnivory, which may have evolved twice, all diets evolved only once from insectivory. The shift from insectivory to nectarivory and frugivory was accompanied by increased intestinal sucrase and maltase activity, decreased trehalase activity, and reduced relative medullary thickness of kidneys. The shift from insectivory to sanguinivory and carnivory resulted in re- duced trehalase activity. Vampire bats are the only known vertebrates that do not exhibit intestinal maltase activity. We argue that these physiological changes are adaptive responses to evolutionary diet shifts. Key words: Bats, comparative method, diet, digestive and renal function, stable isotopes. Introduction The family Phyllostomidae is a speciose (49 genera and Characterizing animal diets can be difficult.
    [Show full text]
  • <I>Artibeus Jamaicensis</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum Museum, University of Nebraska State 6-1-2007 Phylogenetics and Phylogeography of the Artibeus jamaicensis Complex Based on Cytochrome-b DNA Sequences Peter A. Larsen Texas Tech University, [email protected] Steven R. Hoofer Matthew C. Bozeman Scott C. Pedersen South Dakota State University, [email protected] Hugh H. Genoways University of Nebraska - Lincoln, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/museummammalogy Part of the Biodiversity Commons, Molecular Genetics Commons, and the Zoology Commons Larsen, Peter A.; Hoofer, Steven R.; Bozeman, Matthew C.; Pedersen, Scott C.; Genoways, Hugh H.; Phillips, Carleton J.; Pumo, Dorothy E.; and Baker, Robert J., "Phylogenetics and Phylogeography of the Artibeus jamaicensis Complex Based on Cytochrome-b DNA Sequences" (2007). Mammalogy Papers: University of Nebraska State Museum. 53. https://digitalcommons.unl.edu/museummammalogy/53 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Peter A. Larsen, Steven R. Hoofer, Matthew C. Bozeman, Scott C. Pedersen, Hugh H. Genoways, Carleton J. Phillips, Dorothy E. Pumo, and Robert J. Baker This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ museummammalogy/53 Journal of Mammalogy, 88(3):712–727, 2007 PHYLOGENETICS AND PHYLOGEOGRAPHY OF THE ARTIBEUS JAMAICENSIS COMPLEX BASED ON CYTOCHROME-b DNA SEQUENCES PETER A.
    [Show full text]
  • Murciélagos De San José De Guaviare
    Murciélagos de San José de Guaviare - Guaviare,Colombia 1 Autores: Rafael Agudelo Liz, Valentina Giraldo Gutiérrez, Víctor Julio Setina Liz Msc En colaboración con: Fundación para la Conservación y el Desarrollo Sostenible Hugo Mantilla Meluk PhD Departamento de Biología. Universidad del Quindío Héctor F Restrepo C. Biólogo Msc FCDS Fotografía: Rafael Agudelo Liz, Laura Arias Franco, Roberto L.M Lugares: Serranía de La Lindosa, Humedal San José, Altos de Agua Bonita [fieldguides.fieldmuseum.org] [1006] versión 2 4/2019 1 Cormura brevirostris 2 Peropteryx macrotis 3 Saccopteryx bilineata 4 Saccopteryx leptura (Insectívoro) (Insectívoro) (Insectívoro) (Insectívoro) Familia: Emballonuridae Familia: Emballonuridae Familia: Emballonuridae Familia: Emballonuridae 5 Eumops sp. 6 Molossus molossus 7 Anoura caudifer 8 Anoura geoffroyi (Insectívoro) (Insectívoro) (Insectívoro) (Insectívoro) Familia: Molossidae Familia: Molossidae Familia: Phyllostomidae Familia: Phyllostomidae 9 Artibeus lituratus 10 Artibeus obscurus 11 Artibeus planirostris 12 Carollia brevicauda (Frugívoro) (Frugívoro) (Frugívoro) (Frugívoro) Familia: Phyllostomidae Familia: Phyllostomidae Familia: Phyllostomidae Familia: Phyllostomidae Murciélagos de San José de Guaviare - Guaviare,Colombia 2 Autores: Rafael Agudelo Liz, Valentina Giraldo Gutiérrez, Víctor Julio Setina Liz Msc En colaboración con: Fundación para la Conservación y el Desarrollo Sostenible Hugo Mantilla Meluk PhD Departamento de Biología. Universidad del Quindío Héctor F
    [Show full text]
  • BATS of the Golfo Dulce Region, Costa Rica
    MURCIÉLAGOS de la región del Golfo Dulce, Puntarenas, Costa Rica BATS of the Golfo Dulce Region, Costa Rica 1 Elène Haave-Audet1,2, Gloriana Chaverri3,4, Doris Audet2, Manuel Sánchez1, Andrew Whitworth1 1Osa Conservation, 2University of Alberta, 3Universidad de Costa Rica, 4Smithsonian Tropical Research Institute Photos: Doris Audet (DA), Joxerra Aihartza (JA), Gloriana Chaverri (GC), Sébastien Puechmaille (SP), Manuel Sánchez (MS). Map: Hellen Solís, Universidad de Costa Rica © Elène Haave-Audet [[email protected]] and other authors. Thanks to: Osa Conservation and the Bobolink Foundation. [fieldguides.fieldmuseum.org] [1209] version 1 11/2019 The Golfo Dulce region is comprised of old and secondary growth seasonally wet tropical forest. This guide includes representative species from all families encountered in the lowlands (< 400 masl), where ca. 75 species possibly occur. Species checklist for the region was compiled based on bat captures by the authors and from: Lista y distribución de murciélagos de Costa Rica. Rodríguez & Wilson (1999); The mammals of Central America and Southeast Mexico. Reid (2012). Taxonomy according to Simmons (2005). La región del Golfo Dulce está compuesta de bosque estacionalmente húmedo primario y secundario. Esta guía incluye especies representativas de las familias presentes en las tierras bajas de la región (< de 400 m.s.n.m), donde se puede encontrar c. 75 especies. La lista de especies fue preparada con base en capturas de los autores y desde: Lista y distribución de murciélagos de Costa Rica. Rodríguez
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • From Suriname Stephen L
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Mammalogy Papers: University of Nebraska State Museum, University of Nebraska State Museum 7-7-1980 Results of the Alcoa Foundation-Suriname Expeditions. II. Additional Records of Bats (Mammalia: Chiroptera) from Suriname Stephen L. Williams Carnegie Museum of Natural History Hugh H. Genoways University of Nebraska - Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/museummammalogy Part of the Biodiversity Commons, Other Ecology and Evolutionary Biology Commons, and the Zoology Commons Williams, Stephen L. and Genoways, Hugh H., "Results of the Alcoa Foundation-Suriname Expeditions. II. Additional Records of Bats (Mammalia: Chiroptera) from Suriname" (1980). Mammalogy Papers: University of Nebraska State Museum. 221. http://digitalcommons.unl.edu/museummammalogy/221 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Mammalogy Papers: University of Nebraska State Museum by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Williams & Genoways, Annals of the Carnegie Museum (July 7, 1980) 49 (article 15). Copyright 1980, Carnegie Museum of Natural History. Used by permission. (I SSN 0097-4463) ANNALS of CARNEGIE MUSEUM CARNEGIE MUSEUM OF NATURAL HISTORY 4400 FORBES AVENUE • PITTSBURGH, PENNSYL VANIA 15213 VOLUME 49 7 JULY 1980 ARTICLE 15 RESULTS OF THE ALCOA FOUNDATION-SURINAME EXPEDITIONS. II. ADDITIONAL RECORDS OF BATS (MAMMALIA: CHIROPTERA) FROM SURINAME STEPHEN L. WILLIAMS Collection Manager. Section of Mammals HUGH H . G ENOWAYS Curator. Section of Mammals ABSTRACT Th e occurrence of 14 species of bat s previou sly unknown in Suriname are docu­ mented, making a total of 85 species of bats known to occur in the country.
    [Show full text]
  • BRAZIL Rio Aripuaña Mammal Expedition Oct 3Rd – Oct 16Th 2019
    BRAZIL Rio Aripuaña Mammal Expedition rd th Oct 3 – Oct 16 2019 Stefan Lithner White-and-gold Marmoset Photo Stefan © Lithner This trip Was arranged by Fieldguides Birding Tours www.fieldguides.com as a mammal tour with special focus on Dwarf Manatee, bats and primates, but birds encountered were also noticed. A Fieldgjuides trip-report is available on https://fieldguides.com/triplistsSUBMIT/grm19p.html. Trip conductors were Micah Riegner with special support by Jon Hall USA, Fiona Reid, Canada, and Marcello Brazil for Bats Participants: Cherryl Antonucci USA, Jon Hall USA, Patrick Hall USA, Morten Joergensen Denmark, Stefan Lithner, Sweden, Keith Millar U.K., Fiona Reid, Canada, Mike Richardson U.K,. Micah Riegner USA, Martin Royle U.K., Lynda Sharpe Australia, Mozomi Takeyabu Denmark and Sarah Winch U. K. Itinerary in short In Manaus; MUSA-tower and Tropical Hotel. Fast boat from Manaus to Novo Aripuaña; Rio Aripuaña (Oct 4th– Oct 9 th). From Novo Aripuaña up stream Rio Aripuaña and then downstream, passing and/or making shorter expeditions; Novo Olinda, Prainha, Boca do Juma, area around Novo Olinda 1 Rio Madeira (Oct 10 th – Oct 13th), passing and/or making shorter expeditions Matamata, Igarape Lucy. Then onto Rio Amazonas (Oct 14 th – Oct 16 th) where we stopped at Miracaueira, Ilha Grande, on Rio Negro; Ariau and back to Manaus. Brief indication of areas we visited. The trip officially started by dinner in Manaus in the evening of Oct 3rd, but for people present in Manaus prior to that were offered to visit the MUSA-tower about 20 minutes ride by taxi from the hotel and Tropic Hotel, Manaus even closer.
    [Show full text]