Phylogenetic Analysis of Organellar DNA Sequences in the Andropogoneae: Saccharinae

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Analysis of Organellar DNA Sequences in the Andropogoneae: Saccharinae Theor Appl Genet (1994) 88:933-944 Springer-Verlag 1994 S. M. A1-Janabi M. McClelland C. Petersen B. W. S. Sobral Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae Received: 30 June 1993 / Accepted: 21 December 1993 Abstract To study the phylogenetics of sugarcane (Sac- wheat, rice, barley, and maize, which were used as out- charum officinarum L.) and its relatives we sequenced four groups in phylogenetic analyses. To determine whether loci on cytoplasmic genomes (two chloroplast and two mit- limited intra-complex variability was caused by under sam- ochondrial) and analyzed mitochondrial RFLPs generated pling of taxa, we used seven restriction enzymes to digest using probes for COXI, COXII, COXIII, Cob, 18S+5S, the PCR-amplified rbcL-atpB spacer of an additional 36 26S, ATPase 6, ATPase 9, and ATPase ~ (D'Hont et al. accessions within the Saccharum complex. This analysis 1993). Approximately 650 bp of DNA in the intergenic revealed ten restriction sites (none informative) and eight spacer region between rbcL and atpB and approximately length variants (four informative). The small amount of 150 bp from the chloroplast 16S rDNA through the inter- variation present in the organellar DNAs of this polyptoid genic spacer region tRNA val gene were sequenced. In the complex suggests that either the complex is very young or mitochondrial genome, part of the 18S rRNA gene and ap- that rates of evolution between the Saccharum complex proximately 150 bp from the 18S gene 3' end, through an and outgroup taxa are different. Other phylogenetic infor- intergenic spacer region, to the 5S rRNA gene were se- mation will be required to resolve systematic relationships quenced. No polymorphisms were observed between within the complex. Finally, no variation was observed in maize, sorghum, and 'Saccharum complex' members for commercial sugarcane varieties, implying a world-wide the mitochondrial 18S internal region or for the intergenic cytoplasmic monoculture for this crop. tRNA va~ chloroplast locus. Two polymorphisms (insertion- deletion events, indels) were observed within the 18S-5S Key words Cycle sequencing - PCR - Chloroplast mitochondrial locus, which separated the accessions into Sugarcane Polyploid rbcL. atpB Mitochondria three groups: one containing all of the Erianthus, Eccoilo- Saccharum pus, Imperata, Sorghum, and 1 Miscanthus species; a sec- ond containing Saccharum species, Narenga porphyroc- oma, Sclerostachya fusca, and 1 presumably hybrid Mis- canthus sp. from New Guinea; and a third containing Introduction maize. Eighteen accessions were sequenced for the inter- genic region between rbcL and atpB, which was the most Saccharum L. is part of the Saccharinae subtribe of the An- polymorphic of the regions studied and contained 52 site dropogoneae (Watson et al. 1985, Clayton and Renvoize mutations and 52 indels, across all taxa. Within the Sac- 1986). The Andropogoneae are frequently polyploid and charum complex, at most 7 site mutations and 16 indels many are also of great socio-economic importance (Steb- were informative. The maternal lineage of Erianthus/Ec- bins 1956; Soltis et al. 1992). Very little is known about coilopus was nearly as divergent from the remaining Sac- the speciation and evolution of potyploids even though charum complex members as it was from sorghum, in about 50-70% of all grass species are polyploid (Stebbins agreement with a previous study. Sequences from the rbcL- 1956; Soltis et al. 1992). Furthermore, it is difficult to de- atpB spacer were aligned with GENBANK sequences for limit some polyploid plant species as interspecific boun- daries are unclear because of the possibility of hybridiza- tion and chromosome doubling. These biological phenom- Communicated by A. R. Hallauer ena have helped keep the taxonomy of Saccharum in a state of flux, especially at lower ranks. Mukherjee (1957) coined S. M. A1-Janabi M. McClelland C. Petersen B. W. S. Sobral ([]) California Institute of Biological Research, the term 'Saccharum complex' to refer to members of Na- 11099 North Torrey Pines Road, renga Bor, Sclerostachya (Anderss. ex Hackel) A. Camus, Suite 300, La Jolla CA 92037, USA Erianthus Michx. section Ripidium, and Saccharum that 934 can interbreed and in which species (1) are endemic to the type of Saccharum, and it was a commercial interspecific Bengal-Assam-Sikkim area in India, (2) have been classi- hybrid (S. officinarum x S. spontaneum hybrids). Glasz- fied as Saccharum at one time or another, and (3) have been mann et al. (1990) determined RFLP variation of nuclear directly implicated in the evolution of Saccharum by var- rDNA in some Saccharum species, commercial hybrids, ious authors. More recently, Daniels and Williams (1975) one Erianthus arundinaceus accession, and one Miscan- included Miscanthus Anderss. section Diandra species in thus species. They reported 15 rDNA length variants, some a revision of the complex and extended the geographic of which appeared to be phylogenetically informative, range to include the Indo-Burma-China border region. A though no phylogenies were inferred, possibly because recent taxonomy of the Andropogoneae considers Erian- most accessions studied had more than one rDNA RFLP thus and Narenga to be synonymous with Saccharum, Ec- phenotype and hybridizing fragments varied in intensity. coilopus synonymous with Spodiopogon, and Miscanthus D'Hont et al. (1993) studied organellar RFLPs in 57 ac- synonymous with Miscanthidium and Sclerostachya cessions of Saccharum and some Saccharum complex (Clayton and Renvoize 1986). It seems that the Saccharum members; they found no variation using 2 chloroplast complex is a group of plants with their own evolutionary probes that covered approximately 20% of the wheat chlo- history. However, it remains unclear as to what has been roplast genome, although a single fragment was missing the role of the processes of hybridization and chromosome for the single Erianthus and Miscanthus species studied. doubling in the evolution of this complex, though there has In addition, nine mitochondrial probes yielded ten differ- been much speculation. In addition, it is unclear what is ent pattern types, although no phylogenetic hypothesis was the main reproductive mode in nature: vegetative or sex- generated from their data. Sobral et al. (1994) studied chlo- ual. The taxonomy of Saccharum has been and still is com- roplast RFLPs using 32 accessions representing eight gen- plex and controversial. Some of the controversy may stem era and 19 species with 15 restriction enzymes and 12 rice from the use of morphological traits as such traits may be chloroplast probes that covered the rice chloroplast ge- difficult to score in polyploid species that can interbreed. nome entirely. Sixty-two mapped restriction site mutations Furthermore, it is clear that human activities over the past (18 informative) placed the accessions into nine clades: 10,000 years or more have played a crucial role in the dis- seven from within the Saccharinae, maize, and sorghum. persal, selection, and vegetative propagation of particular Maternal lineages of Saccharum, Narenga, Sclerostachya, genotypes of sugarcane and its relatives, including inter- and Miscanthus were shown to form a monophyletic group specific and intergeneric hybrids (Brandes 1928; Artsch- displaying little variation, whereas Erianthus and Eccoi- wager and Brandes 1958; Bellwood 1985). Studies using lopus were shown to be different from other Saccharum leaf flavonoids (Williams and Harborne 1974; Daniels et complex members. Because the level of polymorphism de- al. 1980) and leaf waxes (Smith and Martin-Smith 1978) tected by previous studies was very low, we sequenced po- suggest that a large amount of variability is present in some tentially polymorphic regions in the chloroplast genome to species (notably S. spontaneum and Erianthus species). allow a finer level of phylogenetic resolution within the Studies using the tools of molecular systematics in the Saccharum complex and herein report the results. Saccharum complex were pioneered by Waldron et al. (1974). They used/3-amylase isoenzymes as genetic mark- ers in Saccharum and its relatives and found that collec- tion site was correlated with banding pattern, which was Materials and methods proposed to indicate widespread occurrence of hybridiza- tion. The limited existing body of molecular data support Plant materials a recent common ancestry for sorghum and sugarcane. Plant accessions and their origins are listed in Table 1. These acces- Hamby and Zimmer (1988) used nuclear rRNA sequences sions were chosen to represent a wide range of species, and they dif- of taxa within Poales to infer phylogeny. Their phyloge- fer in their origin and chromosome numbers; some have been stud- netic hypothesis showed that Sorghum and Saccharum ied previously (Sobral et al. 1993). were very closely related; in fact these had the smallest Primer design pairwise genetic distance (d=0.00611) of any two genera sampled. This is interesting because Sorghum is thought To study cytoplasmic DNA sequence variation we chose regions in the genome that were highly conserved though interspersed with to have radiated from Africa whereas Saccharum has been polymorphic regions. We constructed primers to the conserved re- suggested to have radiated from Southeastern Asia. Cur- gions that would amplify across regions that were expected to be rent taxonomy suggests that the genetic distance from Sac- polymorphic based on previous work (Zurawski et al.
Recommended publications
  • Sugarcane (Saccharum Officinarum L.)
    /4 ^'^ SUGARCANE (SACCHARUM OFFICINARUM L.) ORIGIN CLASSIFICATION CHARACTERISTICS, AND DESCRIPTIONS OF REPRESENTATIVE CLONES ■ u AGRICULTURE HANDBOOK NO. 122 UNITED STATES DEPARTMENT OF AGRICULTURE SUGARCANE (SACCHARUM OFFICINARUM L.) ORIGIN CLASSIFICATION CHARACTERISTICS AND DESCRIPTIONS OF REPRESENTATIVE CLONES By Ernst Artschwager Formerly Senior Botanist and E. W. Brandes Formerly Head Pathologist Crops Research Division Agricultural Research Service AGRICULTURE HANDBOOK No. 122 The garden sugarcanes of Melanesia constitute the original base from which our present-day varieties of sugarcane derive. Varietal descriptions of the Melanesian garden canes and their derivatives are drawn from a living collection and are here placed on record. As background material and to promote fullest interest in use of this extensive store of germ plasm, what is known or what logically may be in- ferred concerning the history, value, and use of these varieties as a group and their interrelationships with other varietal groups in the genus is given. CONTENTS Page Page Origin, classification, and charac- Vegetative characters used in the teristics 1 description and classification Importance of Saccharum offici- of noble canes—Continued narum 3 Vegetative characters—Con. Colloquial names 3 Blade 56 Relative position of Saccharum Leaf sheath 57 officinarum in the genus 7 Auricles 59 Geographic origin and dispersal. 18 Ligule 61 Origin 18 Dewlaps 61 Dispersal 21 Midrib pubescence 64 Collecting expeditions, 1853- Evaluation of characters used_- 65 1951 28 Descriptions and taxonomic keys Vegetative characters used in the of the clones 81 description and classification Descriptions of the clones 83 of noble canes 45 New Guinea group 83 Materials and methods 45 New Caledonian group 160 Vegetative characters 48 Hawaiian group 180 v Internode 48 Miscellaneous noble group 198 Bud 52 Taxonomic keys 253 Leaf 56 Literature cited 260 Washington, D.
    [Show full text]
  • SHARKARA - a REVIEW with MODERN and AYURVEDIC POINT of VIEW 1Dr Meenakshi Amrutkar 2Drashwini Deshmukh 3Dr Shardulchavan 1&2Reader, 3PG Scholar, Dept
    REVIEW ARTICLE ISSN 2456-0170 SHARKARA - A REVIEW WITH MODERN AND AYURVEDIC POINT OF VIEW 1Dr Meenakshi Amrutkar 2DrAshwini Deshmukh 3Dr ShardulChavan 1&2Reader, 3PG Scholar, Dept. of Rasashastra & Bhaishajya Kalpana Y.M.T. Ayurvedic Medical College, Navi Mumbai ABSTRACT Sugar is a natural sweet substance produced by sugar cane plant and is one of the most valued as well as appreciated natural substance known to mankind since ancient times. Of all the natural foods rich in carbohydrates sugar is the most wholesome and delicious. The medicinal quality, taste, texture, color and aroma of sugar differs according to the geographical area and the species of plants from which it has been made. Sugar is called as sharkara in Ayurveda. Three types of sharkara are described in Ayurveda depending on their physical appearance and properties. Etymology, synonyms, varieties, method of collection, chemical constituents, properties, adulterants, chemical tests, and the usages ofJaggeryare gathered from text books, experienced Ayurvedic physicians and from internet.Sharkara usedto treatjwara, raktavikara, pittavikara, vatavikara. Sharkara is used in many Ayurvedicpreparations like gutivati i.e. tablets and also used as binding material. It is also used as prakshepakadravya in kwatha, used in churna, for preparation of asava and arishta it is a main mediator and also act as a preservative, hence sharkarakalpana (syrup) having more stability period. The present work aims at the review of sugar or sharkara explained in Ayurveda andbiomedical science. Keywords:Sugar, Sharkara, Ayurveda, Syrup, Prakshepakadravya INTRODUCTION For many centuries, sugar has been used Originally, people chewed raw sugarcane to in vital alternative medicine of Ayurveda extract its sweetness.
    [Show full text]
  • Saccharum Edule Hasskarl)
    Acta Scientific Agriculture (ISSN: 2581-365X) Volume 1 Issue 4 September 2017 Research Article Developing Strategy of Terubuk Farming (Saccharum edule Hasskarl) Reny Sukmawani1*, Ema Hilma Meilani1 and Asep M Ramdan2 1Faculty of Agriculture, Muhammadiyah University of Sukabumi, Indonesia 2Faculty of Administration Sciences and Humanities, Muhammadiyah University of Sukabumi, Indonesia *Corresponding Author: Reny Sukmawani, Faculty of Agriculture, Muhammadiyah University of Sukabumi, Indonesia. Received: September 13, 2017; Published: September 26, 2017 Abstract Terubuk is endog tiwu to grow up and blossom. Terubuk is used for food material due to containing nutrition facts and vitamins. Based on its nutrition facts, in Sundanese (sugarcane’s roe-like), which is a perennial flower-plant resembling to sugarcane that is yet terubuk contributes positively toward health. In Sukabumi Regency, terubuk is found in 22 districts out of the existing 47 districts. However, not all farmers have worked a particular effort on it, as most of terubuk are considered as catch-crop on the land owned by them. The demand on terubuk have been intentional to farm terubuk itself. The research was aimed to obtain developing strategy of terubuk farming. The research for consumption activity is adequately high, yet it is not yet able to be fulfilled for not many farmers was conducted descriptively by applying survey method. The result of the research shows that in order to develop terubuk farming, it is required to take note on human resource (farmer), product, land, technology, market and organizational aspects. Keywords: Terubuk; Strategy; Farming Introduction because most of the farmers have not conducted any particular ef- teru- Terubuk is one of farming commodities that are considerably buk as catch-crop between paddy and crops planted in dry season found in Sukabumi Regency, potential to be developed according to fort on the commodity.
    [Show full text]
  • Evaluation of Sugarcane Hybrid Clones for Cane and Sugar Yield in Nigeria
    Vol. 14(1), pp. 34-39, 3 January, 2019 DOI: 10.5897/AJAR2018.13463 Article Number: 2D403A359717 ISSN: 1991-637X Copyright ©2019 African Journal of Agricultural Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Research Full Length Research Paper Evaluation of sugarcane hybrid clones for cane and sugar yield in Nigeria Mohammed A. K.*, Ishaq M. N., Gana A. K. and Agboire S. National Cereals Research Institute Badeggi, P. M. B 8, Niger State -Nigeria. Received 14 August, 2018; Accepted 18 October, 2018 Field experiment was conducted in year 2015/2016 at the National Cereals Research Institute Badeggi, Niger State (sugarcane research field) to evaluate the performance of sixteen sugarcane genotypes. The clones were planted in a Randomized Complete Block Design (RCBD) and replicated three times. Analysis of variance showed significant differentiation among studied genotypes. The results revealed that among the evaluated genotypes ILS 708-05 was characterized by highest potential cane yield (105.54 t/ha). BD 1576-14 significantly had highest brix (24.90%) among the tested clones. Genotypes that performed better than the Check ([Standard] B 47419) in terms of cane yield, less flowers and tolerance to smut should be advance to multi-location trials. Key words: Saccharum officinarum, hybrid clones, brix and morpho-agronomic traits. INTRODUCTION Sugarcane (Saccharum spp.) is one of the most Nigeria spends N200 billion on sugar importation and important species cultivated in the tropics and subtropics. consumes 1.43 trillion metric tonnes of sugar yearly. It belongs to the genus Saccharum of the family The goal of sugarcane breeding programme is to Poaceae.
    [Show full text]
  • Sugarcane Germplasm Conservation and Exchange
    Sugarcane Germplasm Conservation and Exchange Report of an international workshop held in Brisbane, Queensland, Australia 28-30 June 1995 Editors B.J. Croft, C.M. Piggin, E.S. Wallis and D.M. Hogarth The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. [ts mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country resean;hers in field, where Australia has special research competence. Where trade names are used thi, does not constitute endorsement of nor discrimination against any product by the Centre. This series of publications includes the full proceedings of research workshops or symposia or supported by ACIAR. Numbers in this ,,,ries are distributed internationally to individuals and scientific institutions. © Australian Centre for International Agricultural Research GPO Box 1571. Canberra, ACT 260 J Australia Croft, B.1., Piggin, CM., Wallis E.S. and Hogarth, D.M. 1996. Sugarcane germplasm conservation and exchange. ACIAR Proceedings No. 67, 134p. ISBN 1 86320 177 7 Editorial management: P.W. Lynch Typesetting and page layout: Judy Fenelon, Bawley Point. New Soulh Wales Printed by: Paragon Printers. Fyshwick, ACT Foreword ANALYSIS by the Technical Advisory Committee of the Consultative Group of Internation­ al Agricultural Research Centres (estimated that in 1987-88 sugar was the fourteenth most important crop in developing countries, with a gross value of production of over US$7.3 billion. In Australia it is the third most important crop, with a value in 1994-95 of around A$1.7 billion.
    [Show full text]
  • Louisiana Sugar: a Geohistorical Perspective Elizabeth Vaughan Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2003 Louisiana sugar: a geohistorical perspective Elizabeth Vaughan Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Social and Behavioral Sciences Commons Recommended Citation Vaughan, Elizabeth, "Louisiana sugar: a geohistorical perspective" (2003). LSU Doctoral Dissertations. 3693. https://digitalcommons.lsu.edu/gradschool_dissertations/3693 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. LOUISIANA SUGAR: A GEOHISTORICAL PERSPECTIVE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Geography and Anthropology by Elizabeth Vaughan B.A., University of California, Berkeley 1973 M.A., San Francisco State University, 1994 May, 2003 @Copyright 2003 Elizabeth Vaughan All Rights Reserved ii ACKNOWLEDGEMENTS Numerous individuals have contributed to my life-experiences that eventually led to the study of geography and, finally, to the completion of this project. My first acknowledgment is extended to the intellectual legacy of Carl Sauer, whose writing first attracted me to the geographic view. His introduction was made by the faculty of San Francisco State University where Nancy Wilkinson, Hans Mierhoefer, Barbara Holzman, and fellow students Andy Bradon and Steve Wollmer remain an important part of an early geography family.
    [Show full text]
  • Characterization of Chromosome Composition of Sugarcane in Nobilization by Using Genomic in Situ Hybridization
    Yu et al. Molecular Cytogenetics (2018) 11:35 https://doi.org/10.1186/s13039-018-0387-z RESEARCH Open Access Characterization of chromosome composition of sugarcane in nobilization by using genomic in situ hybridization Fan Yu1, Ping Wang1, Xueting Li1, Yongji Huang1, Qinnan Wang2, Ling Luo1, Yanfen Jing3, Xinlong Liu3, Zuhu Deng1,4*, Jiayun Wu2, Yongqing Yang1, Rukai Chen1, Muqing Zhang4 and Liangnian Xu1* Abstract Background: Interspecific hybridization is an effective strategy for germplasm innovation in sugarcane. Nobilization refers to the breeding theory of development and utilization of wild germplasm. Saccharum spontaneum is the main donor of resistance and adaptive genes in the nobilization breeding process. Chromosome transfer in sugarcane is complicated; thus, research of different inheritance patterns can provide guidance for optimal sugarcane breeding. Results: Through chromosome counting and genomic in situ hybridization, we found that six clones with 80 chromosomes were typical S. officinarum and four other clones with more than 80 chromosomes were interspecific hybrids between S. officinarum and S. spontaneum. These data support the classical view that S. officinarum is characterized by 2n = 80. In addition, genomic in situ hybridization showed that five F1 clones were products of a 2n + n transmission and one F1 clone was the product of an n + n transmission in clear pedigree noble hybrids between S. officinarum and S. spontaneum. Interestingly, Yacheng 75–408 and Yacheng 75–409 were the sibling lines of the F1 progeny from the same parents but with different genetic transmissions. Conclusions: This is the first clear evidence of Loethers, Crystallina, Luohanzhe, Vietnam Niuzhe, and Nanjian Guozhe were typical S.
    [Show full text]
  • Saccharum Clones
    Proc. Indian Acad. Sci., Vol. 88 B, Part II, Number 3, May 1979, pp. 203-212, 0 printed in India. Anatomical features of stem in relation to quality and yield factors in Saccharum clones K V BHAGYALAKSHMI and S S NARAYANAN Sugarcane Breeding Institute, Coimbatore 641 007 MS received 29 April 1978; revised 26 December 1978 Abstract. The results from a study of the relationships between external productive features of millable canes and quality characters as well as anatomical differences of stem in relation to both yield components and quality factors in 16 clones of Saccharum involving rinded and rindless samples are discussed in this paper. The wide variations recorded for the various characters studied brought out the diversity in the genotypes besides indicating the relative importance of certain attributes in production and quality breeding, where cane weight and sucrose content play a lead- ing role. The study revealed the major contribution of rind to fibre content and the value of appropriate levels of fibre as also the need for examining the different physi- cal characteristics of the fibre which are conducive to both high levels of sucrose storage potential and better milling quality. From anatomical studies, varietal differences were recorded, but neither the smallest nor the largest cell volume was associated with extreme levels of fibre, brix or sucrose content. Keywords. Saccharum; anatomical features; quality and yield factors; fibre; rind in sugarcane. 1. Introduction Sugarcane is an important commercial crop in which the millable cane forms the crucial raw material for sugar production. The mature stem constituting the millable cane acts as the primary sink for sucrose in the plant and hence it needs to be studied critically in all its aspects to understand the inherent factors influenc- ing sugar accumulation and storage.
    [Show full text]
  • Sugarcane Botanical Name: Saccharum Officinarum Origin
    Sugarcane Botanical Name: Saccharum officinarum Origin: New Guinea Importance: Sucrose content in cane-13-24%, sugar from juice-6-10%, Jaggery from juice-9-10% Climatic Requirement: ➢ Tropical plant ➢ Temperature above 500c arrest its growth; below 200c slow it down ➢ Optimum temperature for growth is 26-320c. Soil: ➢ Well drained loamy soil Classification: ➢ Saccharum officinarum: These are thick and juicy canes good for chewing purpose ➢ Saccharum sinensis: These are long and thin stalks ➢ Saccharum barberi: These are short and thin stalks Field preparation: ➢ It requires a very thorough and clean preparation of land. It needs deep tillage. Shallow ploughing with local plough limits the development of root system resulting in lodging of cane plants ➢ First ploughing by soil inverting plough ➢ Second 3 to 4 intercrossing disk harrowing ➢ Planking after each disk harrowing Varities: CoC 671, BO 90, C0J 64, BO 110, Co 419 Seed selection ➢ Top one-third portion of a cane ➢ Seed cane should be taken from well mannered, erect and healthy crop of not more than 10-12 months age Seed rate : ➢ Seed rate: two eye set: 80,000 sets Three eye set: 35,000 sets Time of planting: ➢ Autumn: October ➢ Spring: February- march ➢ Adsali: July Method of planting: ➢ Flat planting: In this method 8-10 cm deep furrows are opened with a local plough or cultivator at a distance of 75 to 90 cm. The setts are planted in them end to end taking care that one three buded sett fall in each running 30 cm length of furrow. After this furrows are covered with 5-7 cm of soil and field is levelled by heavy planking.
    [Show full text]
  • Sugarcane 1 Sugarcane
    Sugarcane 1 Sugarcane Sugarcane Cut sugar cane Scientific classification Kingdom: Plantae (unranked): Monocots (unranked): Commelinids Order: Poales Family: Poaceae Subfamily: Panicoideae Tribe: Andropogoneae Genus: Saccharum L. Selected species Sugarcane 2 Saccharum arundinaceum Saccharum barberi Saccharum bengalense Saccharum edule Saccharum munja Saccharum officinarum Saccharum procerum Saccharum ravennae Saccharum robustum Saccharum sinense Saccharum spontaneum Sugarcane, or Sugar cane, is any of six to 37 species (depending on which taxonomic system is used) of tall perennial true grasses of the genus Saccharum, tribe Andropogoneae. Native to the warm temperate to tropical regions of South Asia, they have stout jointed fibrous stalks that are rich in sugar, and measure two to six metres (6 to 19 feet) tall. All sugar cane species interbreed, and the major commercial cultivars are complex hybrids. Sugarcane belongs to the grass family (Poaceae), an economically important seed plant family that includes maize, wheat, rice, and sorghum and many forage crops. The main product of sugarcane is sucrose, which accumulates in the stalk internodes. Sucrose, extracted and purified in specialized mill factories, is used as raw material in human food industries or is fermented to produce ethanol. Ethanol is produced on a large scale by the Brazilian sugarcane industry. Sugarcane is the world's largest crop.[1] In 2010, FAO estimates it was cultivated on about 23.8 million hectares, in more than 90 countries, with a worldwide harvest of 1.69 billion tonnes. Brazil was the largest producer of sugar cane in the world. The next five major producers, in decreasing amounts of production, were India, China, Thailand, Pakistan and Mexico.
    [Show full text]
  • Energy Cane As Main Biomass for Second Generation Biofuels José Bressiani – Agricultural Director Corporate Structure
    Energy cane as main biomass for second generation biofuels José Bressiani – Agricultural Director Corporate Structure 85% of total shares 15% of total shares BioEdge BioCelere GranAPI USA BioVertis BioPlant Production of R&D company Proprietary technologies Development and related to genetic production of high biofuels and for the production of fiber content Development of biochemicals on a improvement of yeasts cellulosic sugars biomass, licensing greenfield projects to commercial scale. for the production of (conversion into biofuels and agricultural produce steam and biochemicals and biochemicals) and residues services electricity from energy cane bagasse and 2G biofuels. nanocellulose provider BioFlex 1 1st 2G ethanol plant in Brazil Biofuels and Biochemicals Technology and R&D Biomass and Energy What is the Energy Cane? Energy cane is a sugarcane hybrid with more yield, more fiber and less sugars in juice ✓Has a potential to produce 2 to 3 times more biomass than sugarcane; ✓Potential to achieve more than 10 harvests in one cycle (2.0x sugarcane); ✓More resistant to pests and diseases; ✓High cellulosic composition (>70%); ✓More competitive production costs versus other biomass sources like eucalyptus, sorghum, sugarcane and other grasses; ✓Environmental Friendly: adapted to marginal lands, less demanding in soil, water and nutrients. The Energy Cane is an agro-tech breakthrough with huge potential to reshape the World’s Energy Industry Energy cane vs Sugarcane Vertix® is the name of energy cane that can revolutionize cellulosic sugar
    [Show full text]
  • Saccharum Officinarum Production in India
    eLifePress, 2020 Vol. 1, Issue 2, Page 1-7 Published Online October, 2020 in eLifePress (https://www.elifepress.com) Review Article Properties and enhancement of Saccharum officinarum production in India Anchal Mishra Department of Biotechnology and Life Sciences Graphic Era Deemed to be University, Dehradun, Uttarakhand [email protected] Abstract- Sugar is probably the most established ware on I. INTRODUCTION the planet. It very well may be delivered from Saccharum officinarum, sugar beet, or different yields having sugar The development of Saccharum officinarum in our country content. Saccharum officinarum is an inexhaustible eco- goes back to ancient times. Sugar stick is named an accommodating source as it replicates in patterns of short agronomic harvest like grain crops, which incorporate corn, of what one year. In the examination, trees for paper wheat, and rice. creation, by and large, take 7 to 10 years to arrive at development, the double sugar (disaccharide) synthetic Saccharum officinarum or sugar stick allude to a few animal such normally contains glucose and fructose. Saccharum types and mixtures of towering enduring turf high variety officinarum liquid is plentiful in natural endowment, for Saccharum, clan Andropogoneae, they are second-hand for example, P, K, Ca, Fe, and Mg and nutrients, for example, sugar creation. Majorly five species found across-the world nutrient retinoic acid or beta-carotene (plant version), are- Saccharum officinarum, Saccharum spontaneum, thiamine, riboflavin, nicotinamide, pantothenic acid, Saccharum edule, Saccharum ravennae, Saccharum barberi. pyridoxine, ascorbic acid, and alpha-tocopherol. Around 90-95 mL of Saccharum officinarum liquid holds 36-37 The juicy stick is 2-6 meters (6 to 20 feet) tower with solid, caloric power and 7-8 g of starches.
    [Show full text]