Applicant's Responses to Written Representations

Total Page:16

File Type:pdf, Size:1020Kb

Applicant's Responses to Written Representations Riverside Energy Park Applicant's responses to Written Representations VOLUME NUMBER: PLANNING INSPECTORATE REFERENCE NUMBER: EN010093 DOCUMENT REFERENCE: 08 8.02.14 June 2019 Revision 0 (Deadline 3) APFP Regulation 5(2)(q) Planning Act 2008 | Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Riverside Energy Park Applicant’s Response to Written Representations Contents 1 Introduction.................................................................................................................................... 1 2 Local Authority .............................................................................................................................. 2 2.1 Greater London Authority .............................................................................................. 2 2.2 Kent County Council .................................................................................................... 63 2.3 London Borough of Bexley .......................................................................................... 68 2.4 London Borough of Tower Hamlets ............................................................................ 97 3 Statutory Organisations ............................................................................................................... 99 3.1 East London Waste Authority ...................................................................................... 99 3.2 Environment Agency ................................................................................................. 105 3.3 Eversheds Sutherland LLP on behalf of Thames Water Utilities Limited ................. 108 3.4 Eversheds Sutherland on behalf of National Grid Electricity Transmission Plc ........ 128 3.5 Shakespeare on behalf of Western Riverside Waste Authority ................................ 130 3.6 Winckworth LLP on behalf of Port of London Authority ............................................ 142 3.7 Womble Bond Dickinson (UK) LLP on behalf of Network Rail .................................. 143 4 Non-statutory Organisations ..................................................................................................... 146 4.1 Friends of Crossness Nature Reserve ...................................................................... 146 4.2 Greenwich-Bexley Environment Alliance .................................................................. 161 5 Members of the public/business ............................................................................................... 169 5.1 Barbara Fairbairn ...................................................................................................... 169 5.2 Dave Putson Councillor Belvedere Ward (Labour) ................................................... 176 5.3 Knights on behalf of S Wernick and Sons Ltd and Wernick Event Hire Ltd .............. 205 5.4 Knights on behalf of SAS Depot Limited ................................................................... 206 5.5 Mrs Margaret J White ................................................................................................ 214 5.6 Jon Cruddas MP ........................................................................................................ 222 5.7 Rt Hon Teresa Pearce MP ........................................................................................ 234 Tables Table 2.1: Policy Compliance .................................................................................................................. 6 Table 2.2: Technical Elements of the Proposed Development ............................................................. 18 Table 2.3: Bicarbon figures for all 4 scenarios within the Carbon Assessment .................................... 22 Table 2.4: Benefits of Energy from Waste in accordance with NPS EN-3 ............................................ 25 Table 2.5: Local Authority Collected Waste incineration and recycling rates across four London boroughs, 2017/18 (an update of the table in UKWIN RR at paragraph 80) ...................... 46 Table 2.6: Summary of median gate fees for waste management options, WRAP reporting, 2011 to 2018 (£ per tonne) .................................................................................................. 47 Table 5.1: Responses to bullet points raised by Counsellor Putson ................................................... 179 Table 5.2: Updated Responses to concerns raised by Councillor Dave Putson in May 2018 ............ 183 Riverside Energy Park Applicant’s Response to Written Representations Table 5.3: Responses to findings of the London Assembly Environment Committee 'Waste: Energy from Waste' report (February 2018)...................................................................... 199 Table 5.4: Responses to further comments made by Councillor Dave Putson .................................. 202 Table 5.5: Applicant’s response to Paragraphs 14 to 22 of SASDE’s WR ......................................... 210 Figures Figure 2.1: Extract from Land Plans (Rev 1) ......................................................................................... 95 Figure 2.2: Extract from Access and Rights of Way Plans (Rev 1) ....................................................... 95 Appendices Appendix A Response to Appendix 1 (Analysis of Carbon Intensity Floor Calculations) to Greater London Authority Written Representation .................................................. 257 Appendix B Comparison of EfW capacity need identified in the GLA WR and the Applicant’s LWSA .................................................................................................... 266 Appendix C Riverside Resource Recovery Facility Heat Export Feasibility ............................... 293 Appendix D Applicant response to LBB’s tracked-change draft of the DCO .............................. 294 Riverside Energy Park Applicant’s Response to Written Representations 1 Introduction 1.1.1 This document, submitted for Deadline 3 of the Examination, contains the Applicant's responses to Written Representations (WR) submitted to the Secretary of State by Deadline 2 of 20 May 2019. 1.1.2 For defined terms, please refer to the Project Glossary (1.6, REP2-031). 1.1.3 A total of 18 WRs, one Written Statement and one email were received. This document has been structured to provide a response to the individual Interested Party/Respondent, which are grouped as follows: Individual responses to Local Authorities (Chapter 2); Individual responses to Statutory Organisations (Chapter 3); Individual responses to Non-statutory Organisations (Chapter 4); and Individual member of the public / business (Chapter 5). 1 Riverside Energy Park Applicant’s Response to Written Representations 2 Local Authority 2.1 Greater London Authority Introduction 2.1.1 The Greater London Authority (GLA) has raised seven areas of concern within their Written Representation (WR) (see REP2-071 to REP2-074). These relate to: Heat Offtake (WR1); Renewable Energy (WR2); Carbon (WR3); Excess Waste Capacity (WR4); Waste Transfer Impacts (WR5); Air Quality (WR6); and Construction Traffic (WR7). 2.1.2 Our response covers each of these issues in turn below and refer to specific paragraph numbers in the GLA’s Written Representation as required. 2.1.3 Appendix A of this response provides a response to Appendix 1 (Analysis of Carbon Intensity Floor Target) of the GLA’s WR (REP2-072). Heat Offtake (WR1) Projected Demand 2.1.4 In Paragraph 3 of the GLA’s WR, the GLA claim that the “Applicant’s study of heat demand (document 5.4 Combined Heat and Power Assessment) focuses on heat supply from the proposed ERF and ignores the fact that the existing adjacent RRRF is also equipped with heat offtake as a planning requirement in readiness to supply a future a heat network.” 2.1.5 In accordance with the relevant National Planning Statement (Section 4.6 of NPS EN-1 and Paragraphs 2.5.26 and 2.5.27 of NPS EN-3) and Environment Agency (EA) guidance ‘CHP Ready Guidance for Combustion and Energy from Waste Power Plants’, the primary objective of a CHP assessment is to assess heat export opportunities, in a technical and economic context, with respect to the proposed development. In the case where alternative heat sources exist within sufficient proximity of the proposed development (as is the case for REP), the Applicant is obliged to consider the additional benefits which may be realised if an additional heat supply connection is made. Section 6.9 of the Combined Heat and Power Assessment (5.4; APP-035) submitted in support of the DCO Application, presents the review of additional heat sources in the region and in particular, the benefits 2 Riverside Energy Park Applicant’s Response to Written Representations associated with heat supply from RRRF, which presents an opportunity to increase the capacity of a heat network developed in the region. The availability and thermal export capacity of RRRF is broadly equivalent to that of the proposed REP Energy Recovery Facility (ERF). As discussed in Paragraph 2.1.12 of this response, there is a significant volume of existing and proposed local heat demand which would require heat supply from both REP and RRRF to be satisfied and for the benefits of renewable/low carbon heat provision to be maximised. 2.1.6 As set out in Section 3.2 of the Combined Heat and Power Supplementary Report (5.4.1, REP2-012), based on the results of the National Heat Map (commissioned by DECC and subsequently adopted by BEIS), a total demand of
Recommended publications
  • BAA Airport Wide Hydrogen Feasibility Study Stationary & Portable Fuel
    BAA Airport Wide Hydrogen Feasibility Study Stationary & portable fuel cells Final Report 10/03/11 [email protected] [email protected] Element Energy Limited 1 • Introduction & Executive Summary • Back-up and prime power applications • Hydrogen supply options • Building CHP and trigeneration applications • Biogas-fuelled systems • Portable power and UPS • Conclusions 2 Introduction: drivers for fuel cells This study is an assessment of opportunities for deployment of stationary and portable fuel cells at Heathrow Airport. The document complements a separate analysis of the opportunities for hydrogen transport applications. There are a number of drivers for consideration of fuel cells in stationary power applications at Heathrow. Key drivers include: • Reduction of CO2 emissions – Fuel cells offer the potential to reduce Heathrow’s CO2 emissions through more efficient heat and power generation. • Air Quality improvement – Use of fuel cells produces fewer NOx and particulate emissions, compared to incumbent systems. • Reliability and availability – Fuel cells can outperform batteries and gensets in certain critical back-up applications. • Low noise – Noise pollution is a significant issue at Heathrow. Fuel cells offer very quiet operation compared to incumbent gensets. • Integration with waste processing – Fuel cells could deliver benefits as part of an integrated waste management system at Heathrow • Synergy with transport applications – Adoption of hydrogen in both stationary and transport applications could be mutually beneficial 3 Introduction: Potential applications There are a range of potential applications around Heathrow where fuel cells could play a role: Prime and back-up power – diesel gensets are currently employed in a number of back-up power applications and there is interest in use of on-site generation in a peak-shaving mode (i.e.
    [Show full text]
  • Outlook and Benefits of an Efficient U.S. Coal Fleet Final Report January 2019
    woodmac.com Outlook and Benefits of An Efficient U.S. Coal Fleet Final Report January 2019 Trusted Intelligence woodmac.com INTRODUCTION woodmac.com Outlook of US HELE Plants Objectives of this study (1) Benchmark the installed capacity of US HELE plants against other jurisdictions o Benchmarking of the US installed capacity of HELE plants o Lessons learned from other jurisdictions on what it takes to foster the development of HELE plants o Realistic scenarios for the pace of development of HELE plants in the US, in light of the experience of countries ahead of the curve (2) Estimate the positive impact of HELE plants not monetized by private investors o Estimate other benefits not monetized, not properly captured by private investors o Social valuation of HELE plants, encompassing benefits currently not monetized by investors (3) Drive implications for policies and regulations o Findings to foster the development of HELE plants in the US o Potential implications for coal policies and regulations 2 OUTLOOK AND BENEFITS OF AN EFFICIENT U.S. COAL FLEET woodmac.com Coal-fired power plants capacity has grown 62% globally since 2000, exceeding 2,000 GW in 2018 Coal still is and will continue to be a predominant fuel in the global energy matrix Global Coal-Fired Power Plants Installed Capacity GW 2,500 CAGR 2000-2018 2,013 2,000 +1.4% +2.7% -4.6% +62% 1,500 1,243 -0.8% +3.1% 1,000 998 +7.8% 500 440 +4.7% 282 238 -0.9% 0 2011 2004 2005 2006 2000 2001 2002 2003 2007 2008 2009 2010 2012 2013 2014 2015 2016 2017 2018 United States China India JKT1 Germany Western Europe2 Rest of World Note: 1.
    [Show full text]
  • Zero Carbon Haringey Stage 1 Technical Report
    Haringey Borough Council Zero Carbon Haringey Stage 1 Technical Report Issue 2 | 18 March 2018 This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party. Job number 258282-00 Ove Arup & Partners Ltd 13 Fitzroy Street London W1T 4BQ www.arup.com Document Verification Job title Zero Carbon Haringey Job number 258282-00 Document title Stage 1 Technical Report File reference 4-07 Document ref Revision Date Filename ZC_Haringey_Stage -1-Report_Draft-1_2018-01-29.docx Draft 1 29 Jan Description First draft 2018 Prepared by Checked by Approved by Name Stephanie Robson Anne Gilpin Stephen Cook Signature Issue 26 Feb Filename ZC_Haringey_Stage -1-Report_Issue_2018-02-26.docx 2018 Description Issue to client Prepared by Checked by Approved by Name Stephanie Robson Anne Gilpin Stephen Cook Signature Issue 2 18 Mar Filename ZC_Haringey_Stage -1-Report_Issue 2_2018-03-18c.docx 2018 Description Update following client comments Prepared by Checked by Approved by Name Stephanie Robson Anne Gilpin Stephen Cook Signature SR AG Filename Description Prepared by Checked by Approved by Name Signature Issue Document Verification with Document | Issue 2 | 18 March 2018 ZC_HARINGEY_STAGE-1-REPORT_ISSUE 2_2018-03-18.DOCX ZC_HARINGEY_STAGE-1-REPORT_ISSUE 2_2018-03-18.DOCX Haringey Borough Council Zero Carbon Haringey Stage 1 Technical Report Contents Page 1 Introduction 6 2 International, national and regional
    [Show full text]
  • New Model Terminal 2
    BUILDING AND LONDON, CONSTRUCTION UNITED KINGDOM NEW MODEL TERMINAL 2 Heathrow Airport www.heathrow.com THE T2 ENERGY CENTRE HEATHROW’S NEW TERMINAL 2 IS DESIGNED WITH SUCH ENVIRONMENTALLY SYMPATHETIC IS ONE OF THE UK’S INGENUITY THAT IT HAS BEEN USED AS A MODEL FOR THE WORLD’S FIRST BESPOKE ENERGY LARGEST BIOMASS EFFICIENCY ASSESSMENT CRITERIA FOR AIRPORT TERMINALS BY THE UK’S BUILDING INITIATIVES AND AT RESEARCH ESTABLISHMENT. FULL LOAD SAVES , 13 000 TONNES OF T2 has been Heathrow’s largest airside construction project, taking two and a half years to CO2 PER YEAR. complete and seeing its first flight on 4 June 2014. It was built with sustainability as a guiding principle and its detailed planning, innovation and collaboration with contractors saw T2 HEATHROW AWARDED completed on time, under budget with no impact on operations. A 15 YEAR CONTRACT TO BIOMASS ENERGY Terminal 2 is Heathrow’s most sustainable terminal and the first BREEAM (Building Research COMPANY LC Establishment’s environmental assessment methodology) certified airport terminal. It has set ENERGY, CREATING A the standard for environmental efficiency both in new developments at Heathrow and in airport SUSTAINABLE END-TO- terminals worldwide. This dynamic approach to sustainability, led to collaboration with BRE to END SUPPLY CHAIN. create its first bespoke assessment criteria for airport terminals, using T2 as a model. THE SPECIALLY- Examples of construction innovation include: 99% of construction waste being diverted from COMMISSIONED landfill; LED lighting for site boundaries reducing energy consumption by 50%; design layout CONSTRUCTION ACADEMY reduces aircraft taxi times and CO2 emissions; windows designed to maximise natural light HAS PROVIDED PRE- and reduce the need for artificial lighting; water efficiency measures projected to reduce water EMPLOYMENT TRAINING consumption by 30%.
    [Show full text]
  • Increasing the Efficiency of Existing Coal-Fired Power Plants
    Increasing the Efficiency of Existing Coal- Fired Power Plants Richard J. Campbell Specialist in Energy Policy December 20, 2013 Congressional Research Service 7-5700 www.crs.gov R43343 Increasing the Efficiency of Existing Coal-Fired Power Plants Summary Coal has long been the major fossil fuel used to produce electricity. However, coal-fired electric power plants are one of the largest sources of air pollution in the United States, with greenhouse gas (GHG) emissions from burning of fossil fuels believed to be the major contributor to global climate change. Regulations under development at the Environmental Protection Agency (EPA) would impose new requirements on fossil-fueled (mostly coal-fired) power plants (CFPPs) to control GHG emissions. The first of these requirements was issued in September 2013 with proposed standards for the control of carbon dioxide (CO2) emissions from new electric generating units burning fossil fuels. EPA’s proposals for control of GHG emissions from existing power plants are expected by June 2014, with many options under consideration. EPA may target emissions on a state or plant-by-plant basis, with companies likely given choices for compliance. Within such a system, efficiency improvements can be an important contributor. The overall efficiency of a power plant encompasses the efficiency of the various components of a generating unit. Minimizing heat losses is the greatest factor affecting the loss of CFPP efficiency, and there are many areas of potential heat losses in a power plant. Efficiency of older CFPPs becomes degraded over time, and lower power plant efficiency results in more CO2 being emitted per unit of electricity generated.
    [Show full text]
  • ASX Statement
    AGL Energy Limited Level 22, 101 Miller St Locked Bag 1837 T: 02 9921 2999 ABN: 74 115 061 375 North Sydney NSW 2060 St Leonards NSW 2065 F: 02 9921 2552 www.agl.com.au ASX statement 17 September 2012 Annual Report 2012 AGL Energy Limited is about to commence dispatch of its Annual Report 2012. A copy is attached. Paul McWilliams Company Secretary 1 AGL Energy Limited ABN: 74 115 061 375 All Registry communications to: Link Market Services Limited T 1800 824 513 E [email protected] Locked Bag A14 From outside Australia: www.agl.com.au Sydney South NSW 1235 T +61 2 8280 7115 ASX Code: AGK Australia F +61 2 9287 0303 Dear Shareholder, I am pleased to invite you to attend the 2012 Annual General Meeting of Shareholders (AGM), which has been scheduled as follows: Date: Tuesday 23 October 2012 Time: 10.30am (Sydney time) Venue: City Recital Hall, Angel Place, Sydney The business to be dealt with at the AGM is provided in the enclosed Notice of Meeting. If you are able to attend the AGM, please bring the enclosed Shareholder Voting Form with you to facilitate registration at the AGM. If you do not plan on attending the AGM, you are encouraged to appoint a proxy to attend and vote on your behalf by lodging your proxy appointment online at www.linkmarketservices.com.au or by completing the enclosed Shareholder Voting Form and returning it in the envelope provided. Instructions on how to appoint a proxy are detailed on the back of the Shareholder Voting Form.
    [Show full text]
  • On Energy Demand by Wolf Hafele
    SCIENTIFIC AFTERNOON LECTURE AT THE 21st GENERAL CONFERENCE OF THE INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, SEPTEMBER 1977 On Energy Demand by Wolf Hafele Introduction Since the energy crisis, a number of energy plans have been proposed, and almost all of these envisage some kind of energy demand adaptations or conservation measures, hoping thus to escape the anticipated problems of energy supply. However, there seems to be no clear explanation of the basis on which our foreseeable future energy problems could be eased. And in fact, a first attempt at a more exact definition of energy demand and its interaction with other objectives, such as economic ones, shows that it is a highly complex concept which we still hardly understand. So it may be appropriate to explain in some detail why it is so difficult to understand energy demand. Energy Flow Schemes Figure I shows the flow of energy through the economy of the Federal Republic of Germany in 1975 in millions of tons of coal equivalent, or gigawatt years. By far the largest share of the primary energy undergoes a conversion into forms of energy that are more convenient and more easily handled, which are called secondary energy. Electricity and gasoline, the most prominent examples, are transported to the consumer. The largest consumer sector is households and commercial activities, consuming 45% of all secondary energy; industry follows with 36%, and transportation with 14%. The use of secondary energy also leads to conversion losses, which are as high as 56%. Besides these principal lines of energy flow in Figure 1, there are numerous other thinner lines and sidelines that cannot simply be overlooked in a discussion of energy demand and its future evolution.
    [Show full text]
  • Flood Risk Assessment
    NORTH LONDON WASTE AUTHORITY NORTH LONDON HEAT AND POWER PROJECT FLOOD RISK ASSESSMENT The Planning Act 2008 The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 Regulation 5 (2) (e) AD05.14 Amec Foster Wheeler Revision 0 October 2015 Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by Amec Foster Wheeler at the instruction of, and for use by our client, and takes into account the instructions and requirements of our client. It does not in any way constitute advice to any third party who is able to access it by any means. Amec Foster Wheeler excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report by any third party. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability. North London Waste Authority North London Heat and Power Project Flood Risk Assessment Contents Page Executive summary 1 1 Introduction 4 1.1 Introduction 4 1.2 Purpose of this document 4 1.3 Document structure 5 1.4 The Applicant 5 1.5 The Application Site 6 1.6 Surrounding area 7 1.7 The Project 8 1.8 Stages of development 12 2 The existing Application Site 19 2.1 Application Site description 19 2.2 Topography 19 2.3 Hydrology 22 2.4 Existing drainage 24 2.5 Geology, hydrogeology and soils 24 3 Proposed ground cover 28 4 Planning context
    [Show full text]
  • Coal-Power Plants Rejuvenated with Biomass: an Economic, Social, and Environmentally Sustainable Transition to Clean Power
    United States Department of Agriculture Office of the Chief Economist Office of Energy Policy and New Uses Coal-Power Plants Rejuvenated With Biomass: An Economic, Social, and Environmentally Sustainable Transition to Clean Power August 2017 i Coal-Power Plants Rejuvenated With Biomass: An Economic, Social, and Environmentally Sustainable Transition to Clean Power Authors Sarah Stutzman* Brandon Weiland Juan Sesmero Paul Preckel Michael Wetzstein James Duffield Sarah Stutzman is an economist in the U.S. Bureau of Economic Analysis. Brandon Weiland is a graduate research assistant in the Department of Agricultural Economics, Purdue University. Juan Sesmero is an assistant professor, and Paul Preckel and Michael Wetzstein are professors in the Department of Agricultural Economics, Purdue University. James Duffield is an agricultural economist, Office of Energy Policy and New Uses, USDA. *This paper was prepared while Sarah Stutzman was a graduate student at Purdue University. The opinions expressed in this paper are the authors’ own and do not reflect the views of the Bureau of Economic Analysis, the U.S. Department of Commerce, the U.S. Department of Agriculture or the United States Government. ii In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs).
    [Show full text]
  • Power Generation from Coal Using Supercritical CO2 Cycle
    Power generation from coal using supercritical CO2 cycle Qian Zhu CCC/280 December 2017 © IEA Clean Coal Centre Power generation from coal using supercritical CO2 cycle Author: Qian Zhu IEACCC Ref: CCC/280 ISBN: 978–92–9029–603-4 Copyright: © IEA Clean Coal Centre Published Date: December 2017 IEA Clean Coal Centre Apsley House Third Floor 176 Upper Richmond Road London SW15 2SH United Kingdom Telephone: +44(0)20 3095 3870 www.iea-coal.org 2 IEA Clean Coal Centre – Power generation from coal using supercritical CO2 Preface This report has been produced by IEA Clean Coal Centre and is based on a survey and analysis of published literature, and on information gathered in discussions with interested organisations and individuals. Their assistance is gratefully acknowledged. It should be understood that the views expressed in this report are our own, and are not necessarily shared by those who supplied the information, nor by our member countries. IEA Clean Coal Centre is an organisation set up under the auspices of the International Energy Agency (IEA) which was itself founded in 1974 by member countries of the Organisation for Economic Co-operation and Development (OECD). The purpose of the IEA is to explore means by which countries interested in minimising their dependence on imported oil can co-operate. In the field of Research, Development and Demonstration over fifty individual projects have been established in partnership between member countries of the IEA. IEA Clean Coal Centre began in 1975 and has contracting parties and sponsors from: Australia, China, the European Commission, Germany, India, Italy, Japan, Poland, Russia, South Africa, Thailand, the UAE, the UK and the USA.
    [Show full text]
  • 2019 Load & Capacity Data
    2019 Load & Capacity Data A report by The New York Independent System Operator, Inc. Gold Book 2019 Load & Capacity Data Report Caution and Disclaimer The contents of these materials are for information purposes and are provided “as is” without representation or warranty of any kind, including without limitation, accuracy, completeness or fitness for any particular purpose. The New York Independent System Operator, Inc. assumes no responsibility to the reader or any other party for the consequences of any errors or omissions. Released April 2019 2019 Load & Capacity Data Report NEW YORK INDEPENDENT SYSTEM OPERATOR 2019 LOAD & CAPACITY DATA TABLE OF CONTENTS OVERVIEW ............................................................................................................................. 1 SECTION I: ANNUAL ENERGY & PEAK DEMAND – HISTORICAL & FORECAST ................ 7 SECTION I ................................................................................................................................................................ 9 TABLE I-1A: NYCA BASELINE ENERGY AND DEMAND FORECASTS ............................................................................. 11 TABLE I-1B: SUMMARY OF NYCA ANNUAL ENERGY FORECASTS – GWH .................................................................... 12 TABLE I-1C: SUMMARY OF NYCA SUMMER COINCIDENT PEAK DEMAND FORECASTS - MW ........................................ 13 TABLE I-1D: SUMMARY OF NYCA WINTER COINCIDENT PEAK DEMAND FORECASTS - MW .......................................... 14 TABLE
    [Show full text]
  • Inforvial 27
    INFORVIAL 27 CARRERA 80 · EconoMÍA CircULAR · RUTA DE LA PLATA ProYECTOS EN LONDRES · HEAThroW SOSTENIBLE · WEARABLES CARRERA 80 ROUTE · CircULAR EconoMY · RUTA DE LA PLATA ProJECTS IN LONDON ·SUSTAINABLE HEAThroW · WEARABLES R15 SUMME RANO/ E V www.ferrovial.com 26 INFORVIAL < Enfoque > El valor de las infraestructuras The value of infrastructures El valor de un proyecto de infraestructuras va más allá The value of an infrastructure project goes beyond the de la inversión que ha movilizado o de los desafíos técni- investment raised or the technical challenges overcome. tu desarrollo las distancias cos que ha superado. Hay que tener en cuenta también su One should also take into account its contribution to the contribución al desarrollo económico y social de la comu- economic and social development of the community in nidad en que se ubica. which it is located. En la ciudad colombiana de Medellín, Ferrovial Agroman In the Colombian city of Medellin, Ferrovial Agroman ha ejecutado el proyecto de ampliación de la Carrera 80, has carried out the Carrera 80 highway extension que ha propiciado la regeneración de la quebrada de La project, which has encouraged the regeneration of La Iguaná, una de las áreas más deprimidas del municipio. La Iguaná, one of the must deprived neighbourhoods in the comunicación con las juntas de acción comunal fue cons- town. Communication with community action boards tante y permitió reducir el impacto de las obras en el día a was constant, and made it possible to reduce the impact día de los vecinos. Además el proyecto creó más de 1.250 that building work had on the daily life of local residents.
    [Show full text]