And Macrochromosome Arrangement in Metaphase Plates of Butterflies (Lepidoptera)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala. -
The Brain of a Nocturnal Migratory Insect, the Australian Bogong Moth
bioRxiv preprint doi: https://doi.org/10.1101/810895; this version posted January 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The brain of a nocturnal migratory insect, the Australian Bogong moth Authors: Andrea Adden1, Sara Wibrand1, Keram Pfeiffer2, Eric Warrant1, Stanley Heinze1,3 1 Lund Vision Group, Lund University, Sweden 2 University of Würzburg, Germany 3 NanoLund, Lund University, Sweden Correspondence: [email protected] Abstract Every year, millions of Australian Bogong moths (Agrotis infusa) complete an astonishing journey: in spring, they migrate over 1000 km from their breeding grounds to the alpine regions of the Snowy Mountains, where they endure the hot summer in the cool climate of alpine caves. In autumn, the moths return to their breeding grounds, where they mate, lay eggs and die. These moths can use visual cues in combination with the geomagnetic field to guide their flight, but how these cues are processed and integrated in the brain to drive migratory behavior is unknown. To generate an access point for functional studies, we provide a detailed description of the Bogong moth’s brain. Based on immunohistochemical stainings against synapsin and serotonin (5HT), we describe the overall layout as well as the fine structure of all major neuropils, including the regions that have previously been implicated in compass-based navigation. The resulting average brain atlas consists of 3D reconstructions of 25 separate neuropils, comprising the most detailed account of a moth brain to date. -
Re-Emergence and Diversification of a Specialised Antennal Lobe Morphology in Ithomiine Butterflies
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.13.336206; this version posted October 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Re-emergence and diversification of a specialised antennal lobe morphology 2 in ithomiine butterflies 3 4 Authors: 5 Billy J Morris1*, Antoine Couto1,2, Asli Aydin3, Stephen H Montgomery2*. 6 7 Affiliations: 1 8 Dept. of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ 9 2 School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ 10 3 School of Medicine, Koc University, Rumelifeneri Yolu 34450 Sarıyer / Istanbul, Turkey 11 12 * corresponding authors: 13 BJM: [email protected] 14 SHM: [email protected] 15 16 Abstract 17 How an organism’s sensory system functions is central to how it navigates its environment and 18 meets the behavioural challenges associated with survival and reproduction. Comparing sensory 19 systems across species can reveal how facets of behaviour and ecology promote adaptive shifts 20 in the relative importance of certain environmental cues. The insect olfactory system is prominent 21 model for investigating how ecological factors impact sensory reception and processing. Notably 22 work in Lepidoptera led to the discovery of vastly expanded structures, termed a macroglomerular 23 complex (MGC), within the primary olfactory processing centre. These structures typically process 24 pheromonal cues and provide a classic example of how variation in size can influence the 25 functional processing of sensory cues. -
Rev Iss Web Mec 13773 25-22 5765..5784
Molecular Ecology (2016) 25, 5765–5784 doi: 10.1111/mec.13773 Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina NICOLAS CHAZOT,*† KEITH R. WILLMOTT,‡ FABIEN L. CONDAMINE,§¶ DONNA LISA DE-SILVA,* ANDREV.L.FREITAS,**GERARDOLAMAS,†† HELENE MORLON,‡‡ CARLOS E. GIRALDO,§§ CHRIS D. JIGGINS,¶¶ MATHIEU JORON,*** JAMES MALLET,††† SANDRA URIBE‡‡‡ and MARIANNE ELIAS* *Institut de Systematique, Evolution, Biodiversite, ISYEB – UMR 7205 – CNRS MNHN UPMC EPHE, Museum national d’Histoire naturelle, Sorbonne Universites, 57 rue Cuvier CP50, F-75005 Paris, France, †Department of Biology, University of Lund, 223 62 Lund, Sweden, ‡McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA, §CNRS, UMR 5554 Institut des Sciences de l’Evolution (Universite de Montpellier), Place Eugene Bataillon, 34095 Montpellier, France, ¶Department of Biological Sciences, University of Alberta, T6G 2E9 Edmonton, AB, Canada, **Departamento de Zoologia and Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, S~ao Paulo, Brazil, ††Museo de Historia Natural, Universidad Nacional de San Marcos, Lima, Peru, ‡‡IBENS, Ecole Normale Superieure, UMR 8197 CNRS, Paris, France, §§Grupo de Investigacion de Sanidad Vegetal, Universidad Catolica de Oriente, Rionegro, Antioquia, Colombia, ¶¶Department of Zoology, University of Cambridge, Cambridge, UK, ***Centre d’Ecologie Fonctionnelle et Evolutive, CEFE, UMR 5175 CNRS – EPHE – Universite de Montpellier – Universite Paul Valery Montpellier, 34293 Montpellier 5, France, †††Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA, ‡‡‡Universidad Nacional de Colombia, sede Medellın, Medellın, Colombia Abstract Understanding why species richness peaks along the Andes is a fundamental question in the study of Neotropical biodiversity. -
Nymphalidae: Ithomiinae)
STUDIES ON THE ECOLOGY AND EVOLUTION OF NEOTROPICAL ITHOMIINE BUTTERFLIES (NYMPHALIDAE: ITHOMIINAE) by GEORGE WILLIAM BECCALONI A thesis submitted for the degree of Doctor ofPhilosophy ofthe University ofLondon October 1995 Biogeography and Conservation Laboratory Centre for Population Biology Department of Entomology Imperial College The Natural History Museum Silwood Park Cromwell Road Ascot London SW7 5BD Berkshire SL5 7PY 2 To my mother, Benjie & Judy in love and gratitude 3 ABSTRACT Two aspects ofthe ecology ofNeotropical ithomiine butterflies (Nymphalidae: Ithomiinae) are discussed: mimicry (Chapters 2, 3) and species richness (Chapters 4, 5). Chapter 2 defines eight mimicry complexes involving ithomiines and other insects found in eastern Ecuador. These complexes are dominated by ithomiine individuals. Hypotheses to explain polymorphism in Batesian and Mullerian mimics are assessed. In Chapter 3, evidence that sympatric ithomiine-dominated mimicry complexes are segregated by microhabitat is reviewed. Data confirm that sympatric complexes are segregated vertically by flight height. Flight height is shown to be positively correlated with larval host-plant height. Host-plant partitioning between species in a butterfly community results in the formation of microhabitat guilds of species, and evidence suggests that mimicry may evolve between species which share a guild, but not between guilds. Models for the evolution of mimicry complexes in sympatry, and for polymorphism and dual sex-limited mimicry in Mullerian mimics, are discussed in the light of these findings. Chapter 4 investigates relationships between species richness offamilies and subfamilies ofNeotropical butterflies and overall butterfly species richness at local and regional scales. A strong positive correlation is demonstrated between ithomiine richness and the species richness of all other butterflies. -
A Review of Effects of Environment on Brain Size in Insects
insects Review A Review of Effects of Environment on Brain Size in Insects Thomas Carle Faculty of Biology, Kyushu University, Fukuoka 819-0395, Japan; [email protected] Simple Summary: What makes a big brain is fascinating since it is considered as a measure of intelligence. Above all, brain size is associated with body size. If species that have evolved with complex social behaviours possess relatively bigger brains than those deprived of such behaviours, this does not constitute the only factor affecting brain size. Other factors such as individual experience or surrounding environment also play roles in the size of the brain. In this review, I summarize the recent findings about the effects of environment on brain size in insects. I also discuss evidence about how the environment has an impact on sensory systems and influences brain size. Abstract: Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision. -
Comparative Ecology and Mimetic Relationships of Ithomiine Butterflies in Eastern Ecuador
COMPARATIVE ECOLOGY AND MIMETIC RELATIONSHIPS OF ITHOMIINE BUTTERFLIES IN EASTERN ECUADOR By BOYCE ALEXANDER DRUMMOND III A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1976 UNIVERSITY OF FLORIDA 3 1262 08666 406 6 For Nancy, as she lays aside her net awhile to take up the caduceus ACKNOWLEDGMENTS It is my pleasure to thank the members of my committee, Drs. Thomas C. Emmel, Archie Carr, Clifford Johnson, and Thomas Walker, for the guidance and encouragement they have provided throughout my graduate career. I have profited greatly from their respective graduate courses and from the exposure to their divergent, but complementary, approaches to biology. I also thank Drs. John Ewel, Dana Griffin, and Jon Reiskind for helpful discussions and much useful information during the writing of this dissertation. For the countless ways in which they have assisted in all phases of the research reported here, I profess my deepest appreciation to Dr. Thomas Emmel, chairman of my committee, and Nancy Drummond, my wife and field assistant. Without the benefit of their help, many of the goals of this project could not have been accomplished. To Dr. Emmel, who first introduced me to tropical ecology and kindled my interest in the biology of the Lepidoptera, I am indebted for the constant personal, academic, and financial support he so graciously proffered. My wife, Nancy, whose great enthusiasm for our year of field work in Ecuador was matched only by her unflagging patience during the tedious year and a half that followed in Gainesville, assisted in the collection of specimens and population samples, handled most of the life-history rearings, and aided in the preparation and analysis of the data. -
Mimicry Some Heliconius (Heliconiinae) from Peru and Colombia, So He Assumed the Resemblance Was the Result of Some Inorganic Mathieu Joron Or Environmental Factors
Preprint for: Joron, M. 2003. In Encyclopedia of insects (R. T. Cardé & V. H. Resh, eds), pp. 714-726. Academic Press, New York. Melinaea, Mechanitis (Ithomiinae), Lycorea (Danainae), and Mimicry some Heliconius (Heliconiinae) from Peru and Colombia, so he assumed the resemblance was the result of some inorganic Mathieu Joron or environmental factors. In 1879, German naturalist Fritz Leiden University, The Netherlands Müller was the first to develop a mathematical demonstration that two unpalatable prey could benefit from mutual resem- imicry is the adaptive resemblance in signal be- blance. He understood that, if the community of predators tween several species in a locality. The most had to kill a certain (fixed) number of prey to learn to avoid M spectacular and intriguing cases are of course them, two indistinguishable distasteful species would to- those of accurate resemblance between distantly related spe- gether suffer this mortality and both reduce their death rate cies, such as spiders mimicking ants. Closely related animals per unit time. Müller actually showed that this benefit was can also benefit from mutual resemblance, in which case biased in favor of the rarer species, to a factor equal to the mimicry results from selection against signal divergence. square of the ratio of the species’ abundance. Therefore, un- equal population sizes translate into even more unequal, The vast majority of the hundreds of thousands of insect spe- although still mutual, benefits: Müllerian mimicry, thus de- cies are described and identifiable on the basis of fined, could be beneficial for both species, and perhaps also morphological characters. This bewildering diversity is, how- for the predators, in contrast to parasitic Batesian mimicry. -
258 the Life Cycle of Dircenna Relata
258 JOURNAL OF THE LEPIDOPTERISTS' SOCIETY THE LIFE CYCLE OF DIRCENNA RELATA (ITHOMIIDAE) IN COSTA RICA ALLEN M. YOUNG Department of Biology, Lawrence University, Appleton, Wisconsin 54911 This paper summarizes a variety of observations on the life cycle and natural history of the neotropical butterfly, Dircenna relata Butler & Druce, as studied in Costa Rica. While such studies of Brazilian members of the tribe Dircennini have been conducted (Brown & D'Almeida, 1970), the Central American ithomiid fauna generally remains to be studied in this respect. The excellent systematic studies of Central Ameri can Ithomiidae (Fox, 1968) provide a good basis for comparative studies on the biology of these butterflies and forms the foundation for examina tion of phylogenetic trends with respect to foodplant exploitation, be havior patterns, and a wealth of other factors underlying population biology. This paper represents an effort to study the biology of Costa Rican Ithomiidae, and supplements other similar reports (Young, 1972, in press). METHODS Field observations were carried out intermittently during June September 1971 at Bajo la Hondura (San Jose Province), a montaine tropical forest locality (800-1000 m. elev.) in central Costa Rica. Ob servations were confined to a small breeding population of D. relata located at the bottom of the steep ravine at Bajo la Hondura; this popula tion was discovered in exposed second-growth brush bordering the Rio Claro in the ravine. Field studies or observations consisted of: ( 1) description of the life cycle, including estimation of developmental time and studies of larval hostplant specificity, (2) analysis of oviposition behavior, and (3) notes on larval behavior. -
Book Review, of Systematics of Western North American Butterflies
(NEW Dec. 3, PAPILIO SERIES) ~19 2008 CORRECTIONS/REVIEWS OF 58 NORTH AMERICAN BUTTERFLY BOOKS Dr. James A. Scott, 60 Estes Street, Lakewood, Colorado 80226-1254 Abstract. Corrections are given for 58 North American butterfly books. Most of these books are recent. Misidentified figures mostly of adults, erroneous hostplants, and other mistakes are corrected in each book. Suggestions are made to improve future butterfly books. Identifications of figured specimens in Holland's 1931 & 1898 Butterfly Book & 1915 Butterfly Guide are corrected, and their type status clarified, and corrections are made to F. M. Brown's series of papers on Edwards; types (many figured by Holland), because some of Holland's 75 lectotype designations override lectotype specimens that were designated later, and several dozen Holland lectotype designations are added to the J. Pelham Catalogue. Type locality designations are corrected/defined here (some made by Brown, most by others), for numerous names: aenus, artonis, balder, bremnerii, brettoides, brucei (Oeneis), caespitatis, cahmus, callina, carus, colon, colorado, coolinensis, comus, conquista, dacotah, damei, dumeti, edwardsii (Oarisma), elada, epixanthe, eunus, fulvia, furcae, garita, hermodur, kootenai, lagus, mejicanus, mormo, mormonia, nilus, nympha, oreas, oslari, philetas, phylace, pratincola, rhena, saga, scudderi, simius, taxiles, uhleri. Five first reviser actions are made (albihalos=austinorum, davenporti=pratti, latalinea=subaridum, maritima=texana [Cercyonis], ricei=calneva). The name c-argenteum is designated nomen oblitum, faunus a nomen protectum. Three taxa are demonstrated to be invalid nomina nuda (blackmorei, sulfuris, svilhae), and another nomen nudum ( damei) is added to catalogues as a "schizophrenic taxon" in order to preserve stability. Problems caused by old scientific names and the time wasted on them are discussed. -
Light Habitats and the Role of Polarized Iridescence in the Sensory Ecology of Neotropical Nymphalid Butterflies (Lepidoptera: Nymphalidae) Jonathan M
788 The Journal of Experimental Biology 210, 788-799 Published by The Company of Biologists 2007 doi:10.1242/jeb.02713 Light habitats and the role of polarized iridescence in the sensory ecology of neotropical nymphalid butterflies (Lepidoptera: Nymphalidae) Jonathan M. Douglas1,*, Thomas W. Cronin2, Tsyr-Huei Chiou2 and Nathaniel J. Dominy3 1School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601 USA, 2Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA and 3Department of Anthropology, University of California, Santa Cruz, CA 95064, USA *Author for correspondence (e-mail: [email protected]) Accepted 10 January 2007 Summary The exploitation of polarized light may increase reflectance patterns. These species were significantly more perceived visual contrast independent of spectrum and likely to occupy forest habitats than open habitats. A intensity and thus have adaptive value in forest habitats, concentrated changes test performed on a phylogeny of the where illumination varies greatly in brightness and Nymphalidae, with the Papilionidae as an outgroup, spectral properties. Here we investigate the extent to provides further support for the correlated evolution of which Costa Rican butterflies of the family Nymphalidae polarized iridescence and life in a forest light environment. exhibit polarized wing reflectance and evaluate the types These results are consistent with the hypothesis that the of habitats in which the trait is commonly found. We also production and detection of polarized light may have examine the degree of polarized reflectance of wing adaptive communicative value in those species inhabiting patterns in representative species belonging to the forest habitats with complex light conditions. -
Aportes Sobre Dircenna Dero Celtinaburmeister, 1878
SERIE A: CIENCIAS NATURALES Volumen I 2010 Número 22 Versión impresa ISSN – 2075- 4191 Versión electrónica ISSN – 2075-7271 Aportes sobre Dircenna dero celtina BURMEISTER, 1878 (Lepidoptera: Nymphalidae) en el Ñeembucú, sudoeste del Paraguay Oriental Andrés Oscar CONTRERAS CHIALCHIA Área de Entomología, IBIS. Email: [email protected] Julio Rafael CONTRERAS ROQUÉ Director del IBIS, Profesor Investigador. Email: [email protected] Rectorado de la Universidad Nacional de Pilar, Pilar, Ñeembucú, Paraguay Resumen Dircenna dero celtina BURMEISTER, es una mariposa mimética que lleva los nombres vulgares de “Panambi Ñahaty” (mariposa-libélula) o “Celtina” (libresco). La relación trófica larval se especializa en especies vegetales de la familia Solanaceae, como "jhu'i moneha" (Solanum granulosoleprosum) y "azucena del campo” (Brunfelsia australis). Dircenna dero celtina es una subespecie sensible al estrés ecológico provocado por la prolongada sequía que afecta la región y cuya supervivencia es dependiente de las condiciones de conservación de la vegetación leñosa y del sotobosque del bosque hidrófilo (selva en galería), del bosque no hidrófilo (isletas de monte entre la sabana y humedales) y de los remantes boscosos urbanos. Se acompaña el texto con ilustraciones de la oruga, pupa e imago de la subespecie. También se efectúa el tratamiento analítico de su distribución geográfica, de su hábito general, su sustrato larval, su mapeo distribucional en el Ñeembucú y en el Paraguay Oriental (atlado), acompañado por el respectivo fenograma. Palabras clave: Lepidoptera, Nymphalidae, Dircenna dero celtina, Solanum granuloso-leprosum, Brunfelsia australis, sequía, biodiversidad, conservación, Ñeembucú, Paraguay. Notes on Dircenna dero celtina BURMEISTER, 1878 (Lepidoptera: Nymphalidae) in Ñeembucú, southwestern Paraguay Summary Dircenna dero celtina BURMEISTER, is a mimic butterfly with common names “Panambi Ñahaty” (dragonfly-butterfly) or “Celtina”.