Metabolite Identification in Blood Plasma Using GC/MS and the Agilent Fiehn GC/MS Metabolomics RTL Library

Total Page:16

File Type:pdf, Size:1020Kb

Metabolite Identification in Blood Plasma Using GC/MS and the Agilent Fiehn GC/MS Metabolomics RTL Library Metabolite Identification in Blood Plasma Using GC/MS and the Agilent Fiehn GC/MS Metabolomics RTL Library Application Note Authors Abstract Mine Palazoglu and Oliver Fiehn Gas chromatography / mass spectrometry (GC/MS) offers high separating power and high UC Davis Genome Center sensitivity for metabolomic research. The utility of metabolomic screens largely depends on Davis, CA 95618 the number of identified metabolites and links to their biological interpretation. Often, the challenging step is in the identification of these metabolites. The new Agilent Fiehn GC/MS Metabolomics RTL (retention time locked) Library has specifically been developed to help facilitate the identification of metabolites. Human blood plasma was used to demonstrate metabolite identification in a complex biologi- cal matrix. The identification routines were complemented by mass spectral deconvolution and matching of sample peak spectra to Agilent Fiehn library spectra via fast, flexible, high- throughput searching. One of the most important criteria for unambiguous identification was the sample retention times, which were locked to the absolute retention time of an internal standard, d27-myristic acid. Retention time locking, a feature of the Agilent Fiehn library, results in increased identification confidence. The average retention time deviations were found to be less than 0.15 min, increasing the reliability and confidence in metabolite annota- tions. Implementing identification procedures such as this will become increasingly important in standardizing the reporting of metabolomics results, such as what has recently been sug- gested by the NIH/NIDDK, and the Metabolomics Society. Introduction biopolymers such as glycogen or fat. The The following GC/MS conditions were relative abundance of these conserved used. An Agilent 6890 GC oven was ramped Comprehensive identification and quantifi- intermediary metabolites can subsequently by 10°C/min from 60°C (1 min initial time) cation of small molecule metabolites (30- be interpreted in relation to the activity of to 325°C (10 min final time), resulting in a 1,500 Da) from complex biological matrices, the underlying catabolic and biosynthetic 37.5 min run time with cooling down to called “Metabolomics”, is a challenging pathways. Therefore, the utility of 60°C. 1 µL was injected into the Agilent task for analytical chemistry, even with metabolomic screens largely depends on split/splitless injector at 250°C by a 10µL modern instrumentation. No single method the number of identified metabolites and syringe with 4 sample pumps, 1 pre-injection can achieve this goal. For example, highly links to their biological interpretation. This wash and 2 post-injection washes using volatile compounds like terpenes cannot be application note demonstrates the identifica- both solvent A and solvent B. No viscosity assessed with liquid chromatography-based tion of metabolites in human blood plasma, delay or dwell time was applied using a fast methods. Gas chromatography (GC) must be using a single solvent mixture for protein plunger speed. Samples were introduced in used. Similarly, liquid chromatography (LC) precipitation and extraction, followed by both splitless and split conditions. For split- is clearly better suited for separation of chemical derivatization, analysis by GC/MS, less conditions, a helium purge flow of polyphenols than capillary electrophoresis data processing with mass spectral decon- 10.5 mL/min was applied for 1 min (8.2 psi). (CE), whereas bis- and trisphosphates (as in volution, validation of lists of identified Gas saver was on with a saver flow rate of glycolysis and Calvin cycle pathways) might metabolites, and a way to use links to 20 mL/min for 3 min. A 29 m long DB5-MS be most suitable for CE-separations. external chemical and biological databases. column with 10 m Duragard precolumn was Nevertheless, each of these three major used with 0.25 mm diameter and 0.25 µm separation methods can detect and quantify Experimental film thickness. A constant flow rate of a range of different compound classes in a 1 mL/min helium was used as carrier gas. multiparallel way, especially when mass Blood was collected from volunteers The Mass Selective Detector (MSD) was set spectrometry is used for unambiguous and between the hours of 12:00 and 3:00 p.m. at a signal data rate of 20 Hz with the MSD sensitive detection. GC/MS offers high Platelet depleted plasma (based on additional transfer line set to 290°C. The quadrupole separating power and high sensitivity for centrifugation) was isolated immediately mass spectrometer was switched on after a metabolomic research. Often, a large overlap within 15 min after plasma withdrawal. 5.90 min solvent delay time, scanning from of identified compounds is observed when Samples were kept on ice during the proce- 50-600 u. The source temperature was set comparing results between the major sepa- dure and plasma was immediately frozen at to 230°C and the quadrupole temperature ration methods, despite the large differences -80°C. Samples were thawed once, aliquoted was 150°C. Prior to acquisition, the MSD in separation mechanisms. The underlying and prepared for GC/MS analysis. 30 µL of was autotuned using FC43 according to the reason for this high degree of overlap (even blood plasma was extracted using 1 mL of a instrument manual. When using split injec- when comparing to nuclear magnetic reso- single phase mixture of isopropanol:ace- tions, parameters used were identical as nance techniques) is the conserved nature of tonitrile:water (3:3:2, v/v) at 20°C for 5 min. given above but with a split ratio of 1:10 and the most abundant metabolic intermediates. After centrifugation, 0.5 mL of supernatant a split flow rate of 10.3 mL/min. Absolute was aliquoted into a tube, and then com- retention times were locked to the internal standard d27-myristic acid using the RTL Metabolites occur at very different concen- pletely dried in a SpeedVac concentrator. system provided in Agilent’s ChemStation trations in complex biological matrices, The tube was subsequently derivatized in software. Retention time locking reduces from which they must be extracted without two steps. First, carbonyl functional groups run-to-run retention time variation. The compromising the structural integrity and were protected by methoximation using Agilent Fiehn GC/MS Metabolomics RTL relative abundances. Yet, a range of central 10 µL of a 40 mg/mL solution of Library (version June 2008) was employed metabolism pathways are highly similar in methoxyamine hydrochloride in pyridine at for metabolite identifications. This library is design between different species (e.g. 30°C for 90 min. Next, to increase the the most comprehensive library of metabo- mouse, rat and human) and even beyond volatility of the compounds, the samples lite GC/MS spectra that is commercially (e.g. between mammals, birds and simple were derivatized using 90 µL of N-methyl- available. It contains searchable GC/MS EI eukaryotes like yeast). Such conserved N-trimethylsilyltrifluoroacetamide with 1% spectra and retention time indexes from pathways contribute to generic metabolic trimethylchlorosilane (MSTFA + 1% TMCS, approximately 700 common metabolites. needs like oxidizing carbon sources to obtain Pierce) at 37°C for 30 min. This procedure energy or, conversely, using carbohydrates, resulted in the detection of two peaks for amino acids and fatty acids for cellular derivatized aldehydes and ketones: the growth, providing the metabolic building syn- and anti- forms such as glucose1 and blocks for proteins, complex lipids and storage glucose2. 2 Results is glucose, sometimes called ‘blood sugar’, plasma withdrawals are not standardized as it is regulated in humans around a between different clinical laboratories and A 22 year old female was tested for her concentration of 5 mM to provide energy to can result in analytical variability. Some blood plasma metabolome in two samples all organs, notably to the brain. Other clinics prefer the use of EDTA to prevent that were withdrawn four weeks apart in an abundant metabolites expected are free clotting, whereas others use heparin or ongoing pharmacogenomics research pro- cholesterol, saturated free fatty acids and a citrate for this purpose. The anti-clotting gram. Plasma samples were analyzed using range of amino acids, particularly alanine, agent should be controlled for best results. splitless and split injection into the GC/MS which serves as a three-carbon carrier Efforts to produce ‘best practice’ documents system. The major component in plasma between skeletal muscle and liver. Blood to standardize and harmonize protocols are under way by the National Institutes of Health; however, no documents have been released yet. Using Agilent’s ChemStation software, several abundant peaks were detected for the 1:10 split injection. Peak detection with background subtraction and subsequent matching of the resulting mass spectra to the Agilent Fiehn GC/MS Metabolomics RTL Library using either NIST MS searches or ChemStation’s PBM queries confirmed that alanine, citrate, glucose and cholesterol were readily identified at retention times of 7.72, 16.59, 17.65 and 27.55 min, respectively (Fig. 1). Mass spectral match factors for these abundant compounds exceeded 90 in PBM search and 900 in NIST MS search even without further spectral purification. The high abundance of the citrate peak and lack of an EDTA peak confirmed that these samples had been subjected to plasma sta- bilization by addition of citric acid, which renders measurements for endogenous citrate impossible. Nevertheless, for detailed analysis of less abundant compounds, automatic mass spectral deconvolution (AMDIS) is required. AMDIS, an automated GC/MS identification program from the U.S. National Institute of Standards and Technology, is included with the Agilent Fiehn library. Mass spectral deconvolution automatically finds peaks, deconvolutes spectra from co-eluting compounds using model ion traces that best describe the presence of unique peaks, and subsequently match spectra against user-defined mass spectral libraries, making searches quick and simple.
Recommended publications
  • Design and Development of Molecularly Imprinted Polymers and Imprinted Sensors
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Design and development of molecularly imprinted polymers and imprinted sensors Ferdia Bates Doctoral Thesis Doctoral Studies in Chemistry Director: Manel del Valle Zafra Departament de Química Facultat de Ciències 2016 Declaration Thesis submitted to aspire for the doctoral degree Ferdia Bates Director's approval: Dr. Manel de Valle Zafra Professor of Analytical Chemistry Bellaterra (Ceerdanyola del Vallès), September 2016 III Funding acknowledgement This present dissertation has been carried out in the laboratories of the Grup de Sensors i Biosensors of the Department de Química in the Universitat Autònoma de Barcelona, with the support of the Marie Curie Actions fellowship FP7-PEOPLE-2010-ITN- and the financial support of the Ministry of Economy and Innovation (MINECO) project “Electronic tongue fingerprinting: aplicaciones en el campo alimentario y de seguridad” (MCINN, CTQ2013-41577-P). Grup de Senors i Biosensors Unitat de Química Analítica Department de Química Universitat Autónoma de Barcelona Edifici Cn 08193, Bellatera IV Acknowledgments For my Masters supervisor at Cranfield university, Doctor Yi Ge, my respected colleague and friend, I would like to offer my most heart-felt thanks; without Dr Ge's encouragement, advise and reference, I most probably would not have pursued a doctorate as a career choice.
    [Show full text]
  • Itaconic Acid Production by Microorganisms: a Review
    Current Research Journal of Biological Sciences 7(2): 37-42, 2015 ISSN: 2041-076X, e-ISSN: 2041-0778 © Maxwell Scientific Organization, 2015 Submitted: September‎ ‎29, ‎2014 Accepted: November ‎26, ‎2014 Published: April 20, 2015 Itaconic Acid Production by Microorganisms: A Review Helia Hajian and Wan Mohtar Wan Yusoff School of Bioscience and Biotechnology, Faculty of Science and Technologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Abstract: Itaconic acid (C5H6O4) is an organic acid with unique structure and characteristics. In order to promote the bio-based economy, the US-Department of Energy (DOE) assigned a “top-12” of platform chemicals, which include numerous of organic acids. In particular di-carboxylic acids, like itaconic acid, can be used as monomers for bio-polymers. Thus the need to produce itaconic acid attracts much attention. The favored production process is fermentation of carbohydrates by fungi and Aspergillus terreus is the mostly frequently employed commercial producer of itaconic acid. This review reports the current status of use of microorganisms in enhancing productivity. Keywords: Aspergillus, fermentation, itaconic acid, production INTRODUCTION on production of itaconic acid from renewable resources, a drastic shift from the currently prevalent Itaconic acid (methylene succinic acid) is a sourcing from petrochemical feedstock. Asia-Pacific, promising organic acid. It is a white crystalline backed by tremendous impetus from China is poised to unsaturated dicarbonic acid in which one carboxyl emerge as the fastest growing market for itaconic acid group is conjugated to the methylene group. Different at a Compound Annual Growth rate (CAGR) of over microorganisms have been used in industry for the 9.0% through 2017.
    [Show full text]
  • |||||||III US005457040A United States Patent (19) 11) Patent Number: 5,457,040 Jarry Et Al
    |||||||III US005457040A United States Patent (19) 11) Patent Number: 5,457,040 Jarry et al. (45) Date of Patent: Oct. 10, 1995 (54) PRODUCTION OF ITACONIC ACID BY 4,740,464 4/1988 Holdom et al.......................... 435/135 FERMENTATION 5,231,016 7/1993 Cros et al. .............................. 435/142 (75) Inventors: Alain Jarry, Maisonnay; Yolaine FOREIGN PATENT DOCUMENTS Seraudie, Melle, both of France 0697653 11/1964 Canada .................................. 435/142 0341112 11/1989 European Pat. Off. 73) Assignee: Rhone-Poulenc Chimie, Courbevoie, 1327.937 4/1963 France. France 0052990 7/1973 Japan ..................................... 435/142 0507633 3/1976 U.S.S.R. ................ ... 435/142 0602866 6/1948 United Kingdom....... ... 435/142 (21 Appl. No.: 205,646 0795401 5/1958 United Kingdom....... ... 435/142 22 Filed: Mar. 4, 1994 0878152 9/1961 United Kingdom ................... 435/142 Primary Examiner-Herbert J. Lilling (30) Foreign Application Priority Data Attorney, Agent, or Firm-Burns, Doane, Swecker & Mathis Mar. 12, 1993 (FR) France ................................... 93 02844 57) ABSTRACT (51) Int. Cl. ............................................ C12P 7/44 Itaconic acid and/or salt thereof is produced via aerobic 52 U.S. Cl. ................ 435/142; 435/913 microbial fermentation, for example by means of the species 58) Field of Search .......... - - - - - 435/142,913 Aspergillus terreus or Aspergillus itaconicus, of a nutrient medium containing a source of assimilable carbon, such 56) References Cited carbon source at least in part comprising an effective amount U.S. PATENT DOCUMENTS of glycerol. 3,873,425 3/1975 Kobayashi et al. ..................... 435/145 1 Claim, No Drawings 5,457,040 1. 2 PRODUCTION OF TACONCACD BY the other carbon substrates indicated above, glycerol pre FERMENTATION sents the distinct advantage of being especially advanta geous from an economic standpoint.
    [Show full text]
  • Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story?
    Applied Microbiology and Biotechnology https://doi.org/10.1007/s00253-018-09607-9 MINI-REVIEW Citric acid and itaconic acid accumulation: variations of the same story? Levente Karaffa 1 & Christian P. Kubicek2,3 Received: 5 December 2018 /Revised: 28 December 2018 /Accepted: 28 December 2018 # The Author(s) 2019 Abstract Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production. Keywords Aspergillus niger . Aspergillus terreus . Citric acid . Itaconic acid . Submerged fermentation . Overflow metabolism Introduction terreus—was patented in the next decade (Kane et al. 1945). Before World War II, organic acid manufacturing was exclu- Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) sively performed by the labor-intensive and relatively low- and itaconic acid (2-methylene-succinic acid or 2- yield surface method (Doelger and Prescott 1934;Calam methylidenebutanedioic acid) are the most well-known exam- et al.
    [Show full text]
  • Mass Spectrometry: Simply the Best
    MASS SPECTROMETRY: SIMPLY THE BEST As time advances, mass spectrometry applications become more impressive, more innovative, and more impactful. This supplement celebrates such applications, from the determination of carcinogens in plant material to monoclonal antibody characterization. One thing's for sure: the future of this wonderful technique is very bright! Mass Spectra of Designer Drugs 2021 An Essential & Trusted Forensics Lab Resource Whether you are researching designer drugs, pharmaceuticals, chemical warfare agent, or any related substances, you can trust this carefully curated data. Key Features: ✓ Over 31,000 mass spectra of 23,879 unique compounds like fentanyls, synthetic cannabinoids, opioids, and many more ✓ Data from both legal and underground literature to ensure the most comprehensive and up-to-date mass spec resource ✓ Data carefully compiled in cooperation with regional crime labs and other partners worldwide Wiley Science Solutions - The Leader in Spectral Data Learn more at https://sciencesolutions.wiley.com/DD21 Contents Mass Spectra of 04 Designer Drugs 2021 18 An Essential & Trusted Forensics Lab Resource Whether you are researching designer drugs, pharmaceuticals, chemical warfare agent, or any related substances, you can trust this carefully curated data. Key Features: 06 ✓ Over 31,000 mass spectra of 23,879 unique compounds like fentanyls, synthetic cannabinoids, opioids, and many more ✓ Data from both legal and underground literature to ensure the most comprehensive and up-to-date mass spec resource ✓ Data
    [Show full text]
  • Biomass-Derived Production of Itaconic Acid As a Building Block in Specialty Polymers
    polymers Review Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers Bernadette-Em˝okeTeleky 1 and Dan Cristian Vodnar 2,* 1 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănă¸stur3-5, 400372 Cluj-Napoca, Romania; [email protected] 2 Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăs, tur 3-5, 400372 Cluj-Napoca, Romania * Correspondence: [email protected]; Tel.: +40-747-341-881 Received: 10 May 2019; Accepted: 7 June 2019; Published: 11 June 2019 Abstract: Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers.
    [Show full text]
  • Itaconic Acid Production in Aspergillus Niger
    Itacon Itaconic acid production ic acid production in in Aspergillus niger A s pergillus niger Laura van der Straat Itaconic acid production in Aspergillus niger Laura van der Straat Thesis committee Promotors Prof. Dr V.A.P. Martins Dos Santos Professor of Systems & Synthetic Biology Wageningen University & Research Prof. Dr W.J.H. van Berkel Personal Chair at the Laboratory of Biochemistry Wageningen University & Research Co-promotor Dr L.H. de Graaff † Associate Professor, Systems & Synthetic Biology Wageningen University & Research Other members Prof. Dr J. van der Oost, Wageningen University & Research Prof. Dr P.J. Punt, Leiden University Dr R.P. de Vries, CBS-KNAW Fungal Biodiversity Centre, Utrecht Dr N. van Peij, DSM Delft This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Itaconic acid production in Aspergillus niger Laura van der Straat Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 7 December 2018 at 1.30 p.m. in the Aula. Laura van der Straat Itaconic acid production inAspergillus niger, 156 pages. PhD thesis, Wageningen University, Wageningen, NL (2018) With references, with summaries in English and Dutch ISBN 978-94-6343-352-5 DOI 10.18174/460173 Voor Leo Table of contents Chapter 1 9 Introduction
    [Show full text]
  • Renewable Polymers from Itaconic Acid
    RENEWABLE POLYMERS FROM ITACONIC ACID A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Jacob Thomas Trotta August 2019 © 2019 Jacob Thomas Trotta ii RENEWABLE POLYMERS FROM ITACONIC ACID Jacob Thomas Trotta, Ph. D. Cornell University 2019 Itaconic acid (IA) is a biorenewable compound that is generated inexpensively and in large amounts by the fermentation of biomass. While a variety of structurally diverse polymers have been accessed from IA, continued exploration of efficient syntheses and polymerizations of novel monomers could lead to the development of sustainable materials that can help reduce society’s dependence of petroleum (Chapter 1). We show that from β-monomethyl itaconate, an IA derivative, we can utilize a selective addition strategy that allows access to both α-methylene-γ-butyrolactone (MBL, tulipalin A) and α-methylene-γ,γ-dimethyl-γ-butyrolactone (Me2MBL), which serve as high value biorenewable analogues to petroleum-derived methyl methacrylate. Subsequent polymerization of both Me2MBL and MBL through reversible addition- fragmentation chain-transfer (RAFT) polymerization generates well defined poly(Me2MBL) (PMe2MBL) and poly(MBL) (PMBL) polymers. Through physiochemical characterization, we show that PMe2MBL has desirable properties comparable with known PMBL materials (Chapter 2). We then extend our strategy to produce triblock polymers using PMBL end blocks with an IA-derived polyester mid- block. Using catalytic, solvent-free, and high yielding transformations from an itaconate source, we efficiently synthesize a saturated diol, a saturated diester, and an unsaturated diester. Subsequent step-growth polycondensation polymerizations of these monomers leads to polyesters with relatively high molar masses (> 10 kg/mol).
    [Show full text]
  • Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas
    U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Top Value Added Chemicals from Biomass Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by the Staff at Pacific Northwest National Laboratory (PNNL) National Renewable Energy Laboratory (NREL) Office of Biomass Program (EERE) For the Office of the Biomass Program T. Werpy and G. Petersen, Editors National Renewable Energy Laboratory Top Value Added Chemicals From Biomass Volume I: Results of Screening for Potential Candidates from Sugars and Synthesis Gas Produced by Staff at the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) T. Werpy and G. Petersen, Principal Investigators Contributing authors: A. Aden and J. Bozell (NREL); J. Holladay and J. White (PNNL); and Amy Manheim (DOE-HQ) Other Contributions (research, models, databases, editing): D. Elliot, L. Lasure, S. Jones and M. Gerber (PNNL); K. Ibsen, L. Lumberg and S. Kelley (NREL) August 2004 Acknowledgement: The authors gratefully acknowledge the support and assistance from NREL staff members S. Bower, E. Jarvis, M. Ruth, and A. Singh and review by Paul Stone and Mehmet Gencer, independent consultants from the chemical industry as well as specific input and reviews on portions of the report by T. Eggeman of Neoterics International and Brian Davison of Oak Ridge National Laboratory. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • Immune-Responsive Gene 1 Protein Links Metabolism to Immunity by Catalyzing Itaconic Acid Production
    Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production Alessandro Micheluccia,1, Thekla Cordesa,1, Jenny Ghelfia, Arnaud Pailota, Norbert Reilingb, Oliver Goldmannc, Tina Binza, André Wegnera, Aravind Tallama, Antonio Rausella, Manuel Buttinia, Carole L. Linstera, Eva Medinac, Rudi Ballinga, and Karsten Hillera,2 aLuxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-Belval, Luxembourg; bDivision of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23845 Borstel, Germany; and cInfection Immunology Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany Edited by Philippa Marrack, Howard Hughes Medical Institute, National Jewish Health, Denver, CO, and approved March 27, 2013 (received for review October 24, 2012) Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian sequence, IRG1 protein has been reported to associate with macrophages during inflammation, but its biological function has mitochondria (6). not yet been elucidated. Here, we identify Irg1 as the gene coding Taken together, these data indicate an important role of Irg1 for an enzyme producing itaconic acid (also known as methylene- during immune response. Although expression levels of Irg1 succinic acid) through the decarboxylation of cis-aconitate, a tricar- have been extensively studied, its cellular function has not been boxylic acid cycle intermediate. Using a gain-and-loss-of-function addressed and is unknown. Based on sequence homology, IRG1 approach in both mouse and human immune cells, we found Irg1 has been classified into the MmgE/PrpD family (17), which expression levels correlating with the amounts of itaconic acid, contains some proteins for which enzymatic activities have been a metabolite previously proposed to have an antimicrobial effect.
    [Show full text]
  • Suspension Bioreactor Strategies for Itaconic Acid Production Using Engineered Microorganisms
    Suspension bioreactor strategies for itaconic acid production using engineered microorganisms Nuno Miguel Sousa Marques Thesis to obtain the Master of Science Degree in Biotechnology Supervisors: Prof. Dr. Frederico Castelo Alves Ferreira Dr. Nuno Ricardo Torres Faria Examination committee Chairperson: Professor Helena Maria Rodrigues Vasconcelos Pinheiro Supervisor: Professor Frederico Castelo Alves Ferreira Member of the commitee: Professor Nuno Gonçalo Pereira Mira November 2017 Acknowledgments It is acknowledged funding from Portuguese Foundation for Science and Technology (FCT) through iBB-Institute for Bioengineering and Biosciences (FCT reference: UID/BIO/04565/2013 and POL2020 reference 007317, including iBB grant ITACYEAST), project CRUISEPTDC/AAG- TEC/0696/2014 and scholarship SFRH/BPD/108560/2015. During this journey, I would like to thank to my supervisors for all the collaboration and guidance during this process. Also Prof. Dr. Nuno Mira for all the collaboration and availability to help me. To all my work colleagues that during these months helped me, with special references for André Costa, António Maduro, Carlos Rodrigues, Flávio Ferreira, João Santos, Margarida Silva, Marisa Santos, Ricardo Pereira and Dona Rosa. To my colleagues from Biotechnology and for my brothers of another mother, Carlos Fernandes, Miguel Chapado, Miguel Nascimento (Los Abadia), Diogo Mendonça, João Lopes, João Nunes, Miguel Antunes, Pedro Reis, Silvestre Leite, Tiago Nuno Jorge, and all the others I am not mentioning, thank you for all the moments together. For all my Sport Lisboa e Benfica colleagues that during this time help me doing one of the things I like more. To Bara, Pavla and Martina. To Katka for all our time together and all the things we already did.
    [Show full text]
  • Synthesis and Properties of Poly(Itaconic Acid)
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2008 Synthesis and properties of poly(itaconic acid) Ming Cao University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Cao, Ming, "Synthesis and properties of poly(itaconic acid)" (2008). Master's Theses and Capstones. 377. https://scholars.unh.edu/thesis/377 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. ® UMI SYNTHESIS AND PROPERITES OF POLY(ITACONIC ACID) BY Ming Cao Bachelor of Engineering, East China University of Science and Technology (China), 2005 THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirement for the Degree of Master of Science In Materials Science September, 2008 UMI Number: 1459488 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]