Biomass-Derived Production of Itaconic Acid As a Building Block in Specialty Polymers

Total Page:16

File Type:pdf, Size:1020Kb

Biomass-Derived Production of Itaconic Acid As a Building Block in Specialty Polymers polymers Review Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers Bernadette-Em˝okeTeleky 1 and Dan Cristian Vodnar 2,* 1 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănă¸stur3-5, 400372 Cluj-Napoca, Romania; [email protected] 2 Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăs, tur 3-5, 400372 Cluj-Napoca, Romania * Correspondence: [email protected]; Tel.: +40-747-341-881 Received: 10 May 2019; Accepted: 7 June 2019; Published: 11 June 2019 Abstract: Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers. The present review summarizes the latest research regarding major IA production pathways, metabolic engineering procedures, and the synthesis and applications of novel polymeric materials. Keywords: itaconic acid; biotechnology; biosynthetic pathways; Aspergillus terreus; polymers; hydrogels; drug delivery 1. Introduction The use of non-renewable petrochemicals still leads today‘s petrochemicals industry, while biomass is the only renewable source of organic carbon on Earth. Organic acid production through microbial fermentation of different biomass wastes can play an essential role in the production of biochemical building-blocks or even bioactive compounds [1–4]. Isikgor & Becer [5] have recently presented over 200 significant compounds derived from different biomass sources and structures with pretreatment methods that can also reduce the production costs of chemicals and polymers. Lignocellulosic biomass such as energy crops, agricultural and forest management residues, and municipal wastes are versatile renewable energy sources [6]. They can potentially replace fossil fuels in power and heat generation, and natural gases in the production of bio-based chemicals. A recent review analyzed the present situation of bio-based chemical production through biological and chemical pathways, presenting 435 chemicals and materials obtained from renewable resources [7]. Biomass and biomass-derived wastes have the potential to provide low-cost sources of sugar and could be the best substitute for non-renewable petrochemicals. Polymers 2019, 11, 1035; doi:10.3390/polym11061035 www.mdpi.com/journal/polymers Polymers 2019, 11, 1035 2 of 27 Polymers 2019, 11, x FOR PEER REVIEW 2 of 26 A currentA current major major problem problem is theis the high high amount amount of of plastics plastics present present inin the environment and and their their role role in environmentalin environmental pollution, pollution, since since they they don’tdon’t degra degradede under under natural natural circumstances. circumstances. These These plastics plastics are aremostly composed composed of of synthetic synthetic polymers polymers derived derived mainly mainly from from petrochemicals. petrochemicals. A solution A solution for this for thisnever-ending never-ending problem problem is is the the exploration exploration of of altern alternativeative bio-based bio-based and and biodegradable biodegradable plastics plastics like like biosyntheticbiosynthetic polymers polymers [8], [8], polylactic polylactic acid acid (PLA), (PLA), thermoplastic thermoplastic starch starch (TPS)(TPS) or even natural natural polyesters polyesters likelike polyhydroxyalkanoates polyhydroxyalkanoates (PHA) (PHA) [9 ,[9,10].10]. OneOne of the of mostthe most important important classes classes of compounds of compou obtainednds obtained from lignocellulosefrom lignocellulose biomass biomass are organic are acids.organic Bio-based acids. organic Bio-based acids organic are products acids are that products are derived that are from derived different from biomassdifferent sources, biomass whichsources, are sustainable,which are cost-e sustainable,ffective, cost-effective, and environmentally and environmen friendly.tally Among friendly. these, Among itaconic these, acid (IA),itaconic together acid (IA), with together with its derivatives, is an essential renewable chemical because it has various uses in the its derivatives, is an essential renewable chemical because it has various uses in the pharmaceutical pharmaceutical and food industry, and also presents a feasible substitute for unsaturated acids like and food industry, and also presents a feasible substitute for unsaturated acids like acrylic, methacrylic, acrylic, methacrylic, maleic, fumaric acid and their derivatives [11–13]. Integration of IA in polymers maleic, fumaric acid and their derivatives [11–13]. Integration of IA in polymers is very efficient [14]. is very efficient [14]. IA is an unsaturated dicarboxylic acid (C5H6O4), also known as 2-methylenebutanedioic acid, IA is an unsaturated dicarboxylic acid (C5H6O4), also known as 2-methylenebutanedioic acid, propylenepropylene dicarboxylic dicarboxylic acid, acid, or 2-methylenesuccinic or 2-methylenesuccinic acid acid (Figure (Figure1a,b). 1.a,b). IA isIA highly is highly soluble soluble in water in water and alcoholsand alcohols [15], stable [15], at stable average at average temperatures, temperatures, and, being and, being a weak a weak acid, itacid, is also it is stablealso stable in middle-basic, in middle- neutralbasic, and neutral acidic and conditions acidic conditions [16]. It has[16]. an It has appearance an appearance of white of white crystalline crystalline powder powder or crystals, or crystals, and it isand odor-free it is odor-free [17,18]. [17,18]. The variation The variation of IA’s of functionalIA’s functional groups groups makes makes it an it an effi efficientcient intermediate intermediate to produceto produce different different complex complex organic organic compounds. compounds. Itcan It can participate participate in in a a wide wide varietyvariety of reactions reactions like like esterificationesterification with with alcohols, alcohols, salt salt formation formation with with metals, metals, production production ofof anhydride, polymerization, polymerization, and and additionaladditional reactions reactions [19 [19].]. FigureFigure 1. The1. The chemical chemical structure structure (a), properties properties (b (b) and) and chemical chemical synthesis synthesis from from citric citric acid ( acidc) Δ: (heatc) D : heatinput. input. BaupBaup S. discoveredS. discovered IA IA in in 1837 1837 as as a producta product of of thermal thermal decomposition decomposition of citric acid acid [20], [20], while while KinoshitaKinoshita was was the the first first to reportto report production production of of IA IA with withAspergillus Aspergillus itaconicusitaconicus in 1931 [21]. [21]. Later, Later, the the focusfocus for IAfor fermentationIA fermentation was was shifted shifted mostly mostly to toA. A. terreus terreusstrains. strains. NelsonNelson et al. [22] [22] studied studied A.A. terreus terreus NRRLNRRL strain strain 1960 1960 and and established established a biotechnicala biotechnical process; process; while whileEimhjellen Eimhjellen et al. [19] [19] studied studied the the effect effect of diofff erentdifferent substrates substrates (various (various sugars sugars and and alcohols) alcohols) on on IA IA production. production. Production with with A.A. terreus terreus NRRLNRRL 1960 1960 in 20in mL20 mL media media and and 5% 5% substrate substrate in in 100 100 mL mL flasks flasksresulted resulted inin the highest IA IA production production withwith sucrose sucrose (57%) (57%) and andd-glucose D-glucose (52%). (52%). OtherOther substrates substrates like like cellobiose cellobiose (41%), (41%), D-mannosed-mannose (32%), (32%), d- d-xylosexylose (31%), (31%),d D-fructose-fructose (26%)(26%) andand glycerolglycerol (23%) (23%) produced produced significant significant amounts amounts of ofIA IA as aswell well [23]. [23 ]. TheThe initial initial industrial industrial production production of IAof IA used used a chemical a chemical approach, approach, i.e., i.e., the the pyrolysis pyrolysis of of citric citric acid acid to itaconicto itaconic anhydride, anhydride, followed followed by the by hydrolysis the hydrolysis of the anhydrideof the anhydride (Figure 1(Figurec) [ 20]. 1.c) Alternative [20]. Alternative methods weremethods decarboxylation were decarboxylation of aconitic acid, of dryaconitic distillation acid, dr ofy anhydride,distillation andof anhydride,
Recommended publications
  • Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes
    Ustilago: Habitat, Symptoms and Reproduction | Teliomycetes For B.Sc. Botany 1st By Dr. Meenu Gupta Assistant Professor Botany J.D.W.C. Patna 1. Habit and Habitat of Ustilago: Ustilago, the largest genus of the family Ustilaginaceae is represented by more than 400 cosmopolitan species. Butler and Bisby (1958) reported 108 species from India. All species are parasitic and infect the floral parts of wheat, barley, oat, maize, sugarcane, Bajra, rye and wild grasses. The name Ustilago has been derived from a Latin word ustus meaning ‘burnt’ because the members of the genus produce black, sooty powdery mass of spores on the host plant parts imparting them a ‘burnt’ appearance. This black dusty mass of spores resembles soot or smut, therefore, commonly it is also known as smut fungus. The fungus is of much economic importance, because it causes heavy loss to various economically important plants. This genus is very common in U.P., Bihar, Punjab and Madhya Pradesh. 2. Symptoms of Ustilago: The symptoms appear only on the floral parts. The floral spikes turn black and remain filled with the smut spores. Ustilago produces two main types of symptoms: 1. The blackish powder of spores is easily blown away by the wind, leaving a bare stalk of inflorescence (Fig. 1 B). Species showing such symptoms are called loose smuts e.g., (a) Loose smut of oat caused by U. avenae (b) Loose smut of barley caused by U. nuda (c) Loose smut of wheat caused by U. nuda var. tritici. (Fig. 13A, B). (d) Loose smut of doob grass caused by U.
    [Show full text]
  • The Ustilaginales (Smut Fungi) of Ohio*
    THE USTILAGINALES (SMUT FUNGI) OF OHIO* C. W. ELLETT Department of Botany and Plant Pathology, The Ohio State University, Columbus 10 The smut fungi are in the order Ustilaginales with one family, the Ustilaginaceae, recognized. They are all plant parasites. In recent monographs 276 species in 22 genera are reported in North America and more than 1000 species have been reported from the world (Fischer, 1953; Zundel, 1953; Fischer and Holton, 1957). More than one half of the known smut fungi are pathogens of species in the Gramineae. Most of the smut fungi are recognized by the black or brown spore masses or sori forming in the inflorescences, the leaves, or the stems of their hosts. The sori may involve the entire inflorescence as Ustilago nuda on Hordeum vulgare (fig. 2) and U. residua on Danthonia spicata (fig. 7). Tilletia foetida, the cause of bunt of wheat in Ohio, sporulates in the ovularies only and Ustilago violacea which has been found in Ohio on Silene sp. forms spores only in the anthers of its host. The sori of Schizonella melanogramma on Carex (fig. 5) and of Urocystis anemones on Hepatica (fig. 4) are found in leaves. Ustilago striiformis (fig. 6) which causes stripe smut of many grasses has sori which are mostly in the leaves. Ustilago parlatorei, found in Ohio on Rumex (fig. 3), forms sori in stems, and in petioles and midveins of the leaves. In a few smut fungi the spore masses are not conspicuous but remain buried in the host tissues. Most of the species in the genera Entyloma and Doassansia are of this type.
    [Show full text]
  • Design and Development of Molecularly Imprinted Polymers and Imprinted Sensors
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Design and development of molecularly imprinted polymers and imprinted sensors Ferdia Bates Doctoral Thesis Doctoral Studies in Chemistry Director: Manel del Valle Zafra Departament de Química Facultat de Ciències 2016 Declaration Thesis submitted to aspire for the doctoral degree Ferdia Bates Director's approval: Dr. Manel de Valle Zafra Professor of Analytical Chemistry Bellaterra (Ceerdanyola del Vallès), September 2016 III Funding acknowledgement This present dissertation has been carried out in the laboratories of the Grup de Sensors i Biosensors of the Department de Química in the Universitat Autònoma de Barcelona, with the support of the Marie Curie Actions fellowship FP7-PEOPLE-2010-ITN- and the financial support of the Ministry of Economy and Innovation (MINECO) project “Electronic tongue fingerprinting: aplicaciones en el campo alimentario y de seguridad” (MCINN, CTQ2013-41577-P). Grup de Senors i Biosensors Unitat de Química Analítica Department de Química Universitat Autónoma de Barcelona Edifici Cn 08193, Bellatera IV Acknowledgments For my Masters supervisor at Cranfield university, Doctor Yi Ge, my respected colleague and friend, I would like to offer my most heart-felt thanks; without Dr Ge's encouragement, advise and reference, I most probably would not have pursued a doctorate as a career choice.
    [Show full text]
  • Itaconic Acid Production by Microorganisms: a Review
    Current Research Journal of Biological Sciences 7(2): 37-42, 2015 ISSN: 2041-076X, e-ISSN: 2041-0778 © Maxwell Scientific Organization, 2015 Submitted: September‎ ‎29, ‎2014 Accepted: November ‎26, ‎2014 Published: April 20, 2015 Itaconic Acid Production by Microorganisms: A Review Helia Hajian and Wan Mohtar Wan Yusoff School of Bioscience and Biotechnology, Faculty of Science and Technologi, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Abstract: Itaconic acid (C5H6O4) is an organic acid with unique structure and characteristics. In order to promote the bio-based economy, the US-Department of Energy (DOE) assigned a “top-12” of platform chemicals, which include numerous of organic acids. In particular di-carboxylic acids, like itaconic acid, can be used as monomers for bio-polymers. Thus the need to produce itaconic acid attracts much attention. The favored production process is fermentation of carbohydrates by fungi and Aspergillus terreus is the mostly frequently employed commercial producer of itaconic acid. This review reports the current status of use of microorganisms in enhancing productivity. Keywords: Aspergillus, fermentation, itaconic acid, production INTRODUCTION on production of itaconic acid from renewable resources, a drastic shift from the currently prevalent Itaconic acid (methylene succinic acid) is a sourcing from petrochemical feedstock. Asia-Pacific, promising organic acid. It is a white crystalline backed by tremendous impetus from China is poised to unsaturated dicarbonic acid in which one carboxyl emerge as the fastest growing market for itaconic acid group is conjugated to the methylene group. Different at a Compound Annual Growth rate (CAGR) of over microorganisms have been used in industry for the 9.0% through 2017.
    [Show full text]
  • |||||||III US005457040A United States Patent (19) 11) Patent Number: 5,457,040 Jarry Et Al
    |||||||III US005457040A United States Patent (19) 11) Patent Number: 5,457,040 Jarry et al. (45) Date of Patent: Oct. 10, 1995 (54) PRODUCTION OF ITACONIC ACID BY 4,740,464 4/1988 Holdom et al.......................... 435/135 FERMENTATION 5,231,016 7/1993 Cros et al. .............................. 435/142 (75) Inventors: Alain Jarry, Maisonnay; Yolaine FOREIGN PATENT DOCUMENTS Seraudie, Melle, both of France 0697653 11/1964 Canada .................................. 435/142 0341112 11/1989 European Pat. Off. 73) Assignee: Rhone-Poulenc Chimie, Courbevoie, 1327.937 4/1963 France. France 0052990 7/1973 Japan ..................................... 435/142 0507633 3/1976 U.S.S.R. ................ ... 435/142 0602866 6/1948 United Kingdom....... ... 435/142 (21 Appl. No.: 205,646 0795401 5/1958 United Kingdom....... ... 435/142 22 Filed: Mar. 4, 1994 0878152 9/1961 United Kingdom ................... 435/142 Primary Examiner-Herbert J. Lilling (30) Foreign Application Priority Data Attorney, Agent, or Firm-Burns, Doane, Swecker & Mathis Mar. 12, 1993 (FR) France ................................... 93 02844 57) ABSTRACT (51) Int. Cl. ............................................ C12P 7/44 Itaconic acid and/or salt thereof is produced via aerobic 52 U.S. Cl. ................ 435/142; 435/913 microbial fermentation, for example by means of the species 58) Field of Search .......... - - - - - 435/142,913 Aspergillus terreus or Aspergillus itaconicus, of a nutrient medium containing a source of assimilable carbon, such 56) References Cited carbon source at least in part comprising an effective amount U.S. PATENT DOCUMENTS of glycerol. 3,873,425 3/1975 Kobayashi et al. ..................... 435/145 1 Claim, No Drawings 5,457,040 1. 2 PRODUCTION OF TACONCACD BY the other carbon substrates indicated above, glycerol pre FERMENTATION sents the distinct advantage of being especially advanta geous from an economic standpoint.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • <I>Ustilago-Sporisorium-Macalpinomyces</I>
    Persoonia 29, 2012: 55–62 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158512X660283 A review of the Ustilago-Sporisorium-Macalpinomyces complex A.R. McTaggart1,2,3,5, R.G. Shivas1,2, A.D.W. Geering1,2,5, K. Vánky4, T. Scharaschkin1,3 Key words Abstract The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species smut fungi placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. systematics Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its Ustilaginaceae resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological ap- proach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi. Article info Received: 18 May 2012; Accepted: 3 October 2012; Published: 27 November 2012. INTRODUCTION TAXONOMIC HISTORY Three genera of smut fungi (Ustilaginomycotina), Ustilago, Ustilago Spo ri sorium and Macalpinomyces, contain about 540 described Ustilago, derived from the Latin ustilare (to burn), was named species (Vánky 2011b). These three genera belong to the by Persoon (1801) for the blackened appearance of the inflores- family Ustilaginaceae, which mostly infect grasses (Begerow cence in infected plants, as seen in the type species U.
    [Show full text]
  • Citric Acid and Itaconic Acid Accumulation: Variations of the Same Story?
    Applied Microbiology and Biotechnology https://doi.org/10.1007/s00253-018-09607-9 MINI-REVIEW Citric acid and itaconic acid accumulation: variations of the same story? Levente Karaffa 1 & Christian P. Kubicek2,3 Received: 5 December 2018 /Revised: 28 December 2018 /Accepted: 28 December 2018 # The Author(s) 2019 Abstract Citric acid production by Aspergillus niger and itaconic acid production by Aspergillus terreus are two major examples of technical scale fungal fermentations based on metabolic overflow of primary metabolism. Both organic acids are formed by the same metabolic pathway, but whereas citric acid is the end product in A. niger, A. terreus performs two additional enzymatic steps leading to itaconic acid. Despite of this high similarity, the optimization of the production process and the mechanism and regulation of overflow of these two acids has mostly been investigated independently, thereby ignoring respective knowledge from the other. In this review, we will highlight where the similarities and the real differences of these two processes occur, which involves various aspects of medium composition, metabolic regulation and compartmentation, transcriptional regulation, and gene evolution. These comparative data may facilitate further investigations of citric acid and itaconic acid accumulation and may contribute to improvements in their industrial production. Keywords Aspergillus niger . Aspergillus terreus . Citric acid . Itaconic acid . Submerged fermentation . Overflow metabolism Introduction terreus—was patented in the next decade (Kane et al. 1945). Before World War II, organic acid manufacturing was exclu- Citric acid (2-hydroxy-propane-1,2,3-tricarboxylic acid) sively performed by the labor-intensive and relatively low- and itaconic acid (2-methylene-succinic acid or 2- yield surface method (Doelger and Prescott 1934;Calam methylidenebutanedioic acid) are the most well-known exam- et al.
    [Show full text]
  • Metabolite Identification in Blood Plasma Using GC/MS and the Agilent Fiehn GC/MS Metabolomics RTL Library
    Metabolite Identification in Blood Plasma Using GC/MS and the Agilent Fiehn GC/MS Metabolomics RTL Library Application Note Authors Abstract Mine Palazoglu and Oliver Fiehn Gas chromatography / mass spectrometry (GC/MS) offers high separating power and high UC Davis Genome Center sensitivity for metabolomic research. The utility of metabolomic screens largely depends on Davis, CA 95618 the number of identified metabolites and links to their biological interpretation. Often, the challenging step is in the identification of these metabolites. The new Agilent Fiehn GC/MS Metabolomics RTL (retention time locked) Library has specifically been developed to help facilitate the identification of metabolites. Human blood plasma was used to demonstrate metabolite identification in a complex biologi- cal matrix. The identification routines were complemented by mass spectral deconvolution and matching of sample peak spectra to Agilent Fiehn library spectra via fast, flexible, high- throughput searching. One of the most important criteria for unambiguous identification was the sample retention times, which were locked to the absolute retention time of an internal standard, d27-myristic acid. Retention time locking, a feature of the Agilent Fiehn library, results in increased identification confidence. The average retention time deviations were found to be less than 0.15 min, increasing the reliability and confidence in metabolite annota- tions. Implementing identification procedures such as this will become increasingly important in standardizing the reporting of metabolomics results, such as what has recently been sug- gested by the NIH/NIDDK, and the Metabolomics Society. Introduction biopolymers such as glycogen or fat. The The following GC/MS conditions were relative abundance of these conserved used.
    [Show full text]
  • Low Temperature During Infection Limits Ustilago Bullata (Ustilaginaceae, Ustilaginales) Disease Incidence on Bromus Tectorum (Poaceae, Cyperales)
    Biocontrol Science and Technology, 2007; 17(1): 33Á52 Low temperature during infection limits Ustilago bullata (Ustilaginaceae, Ustilaginales) disease incidence on Bromus tectorum (Poaceae, Cyperales) TOUPTA BOGUENA1, SUSAN E. MEYER2, & DAVID L. NELSON2 1Department of Integrative Biology, Brigham Young University, Provo, UT, USA, and 2USDA Forest Service, Rocky Mountain Research Station, Shrub Sciences Laboratory, Provo, UT, USA (Received 18 January 2006; returned 7 March 2006; accepted 4 April 2006) Abstract Ustilago bullata is frequently encountered on the exotic winter annual grass Bromus tectorum in western North America. To evaluate the biocontrol potential of this seedling-infecting pathogen, we examined the effect of temperature on the infection process. Teliospore germination rate increased linearly with temperature from 2.5 to 258C, with significant among-population differences. It generally matched or exceeded host seed germination rate over the range 10Á258C, but lagged behind at lower temperatures. Inoculation trials demonstrated that the pathogen can achieve high disease incidence when temperatures during infection range 20Á308C. Disease incidence was drastically reduced at 2.58C. Pathogen populations differed in their ability to infect at different temperatures, but none could infect in the cold. This may limit the use of this organism for biocontrol of B. tectorum to habitats with reliable autumn seedling emergence, because cold temperatures are likely to limit infection of later-emerging seedling cohorts. Keywords: Bromus tectorum, cheatgrass, downy brome, head smut, infection window, Ustilago bullata, weed biocontrol Introduction Bromus tectorum L. (downy brome, cheatgrass; Poaceae, Cyperales) is a serious and difficult-to-control weed of winter cereal grains in western North America (Peeper 1984) and is even more important as a weed of wildlands in this region (D’Antonio & Vitousek 1992).
    [Show full text]
  • Comparative Analysis of the Maize Smut Fungi Ustilago Maydis and Sporisorium Reilianum
    Comparative Analysis of the Maize Smut Fungi Ustilago maydis and Sporisorium reilianum Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) dem Fachbereich Biologie der Philipps-Universität Marburg vorgelegt von Bernadette Heinze aus Johannesburg Marburg / Lahn 2009 Vom Fachbereich Biologie der Philipps-Universität Marburg als Dissertation angenommen am: Erstgutachterin: Prof. Dr. Regine Kahmann Zweitgutachter: Prof. Dr. Michael Bölker Tag der mündlichen Prüfung: Die Untersuchungen zur vorliegenden Arbeit wurden von März 2003 bis April 2007 am Max-Planck-Institut für Terrestrische Mikrobiologie in der Abteilung Organismische Interaktionen unter Betreuung von Dr. Jan Schirawski durchgeführt. Teile dieser Arbeit sind veröffentlicht in : Schirawski J, Heinze B, Wagenknecht M, Kahmann R . 2005. Mating type loci of Sporisorium reilianum : Novel pattern with three a and multiple b specificities. Eukaryotic Cell 4:1317-27 Reinecke G, Heinze B, Schirawski J, Büttner H, Kahmann R and Basse C . 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology 9(3): 339-355. Erklärung Erklärung Ich versichere, dass ich meine Dissertation mit dem Titel ”Comparative analysis of the maize smut fungi Ustilago maydis and Sporisorium reilianum “ selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. Diese Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht und hat noch keinen sonstigen Prüfungszwecken gedient. Ort, Datum Bernadette Heinze In memory of my fathers Jerry Goodman and Christian Heinze. “Every day I remind myself that my inner and outer life are based on the labors of other men, living and dead, and that I must exert myself in order to give in the same measure as I have received and am still receiving.
    [Show full text]
  • The Smut Fungi, Morphological Diff Erent to the Type of the Genus Tolyposporium, I Again Studied the Two Moesziomyces Species and Came to the T
    MYCOLOGIA BALCANICA 2: 105–111 (2005) 105 Th e smut fungi (Ustilaginomycetes) of Eriocaulaceae. I. Eriomoeszia gen. nov. Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received 7 May 2005 / Accepted 14 May 2005 Abstract. A new genus, Eriomoeszia, is described for Tolyposporium eriocauli (Moesziomyces eriocauli) on Eriocaulon. It is compared with Moesziomyces bullatus, the type species of the genus Moesziomyces, found on Echinochloa and other grass genera. Key words: Eriocaulon, Eriomoeszia, Moesziomyces bullatus, new genus, smut fungi, Ustilaginomycetes Introduction also supported by molecular analyses (comp. Begerow et al. 1998, Figs 2-3). Initially, three other similar smut fungi, According to Heywood (1978: 281), the Eriocaulaceae, within parasitising various grass genera, were recombined into the the subclass Commelinidae, order Commelinales, is a largish genus Moesziomyces. Th ese are: M. evernius (Syd.) Vánky, type family of herbaceous plants, usually with grass-like leaves. It on Paspalum distichum L., M. globuligerus (Berk. & Broome) comprises 13 genera and about 1200 species. It is centred Vánky, type on Leersia hexandra Swartz, and M. penicillariae in the New World, but found throughout the tropics and (Bref.) Vánky, type on Penicillaria spicata Willd. subtropics, usually on swampy or seasonally water inundated In a later study of the genus (Vánky 1986), it was not ground. Its systemic position varies considerably according possible to construct a good key to diff erentiate the four to author. Takhtajan (1996: 18) places the Eriocaulaceae species of Moesziomyces; the morphological diff erences being in the order Eriocaulales, superorder Commelinanae of small, or possibly non-existent.
    [Show full text]