The Gurmukhi Astrolabe of the Maharaja of Patiala
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Practical Sanskrit Introductory
A Practical Sanskrit Intro ductory This print le is available from ftpftpnacaczawiknersktintropsjan Preface This course of fteen lessons is intended to lift the Englishsp eaking studentwho knows nothing of Sanskrit to the level where he can intelligently apply Monier DhatuPat ha Williams dictionary and the to the study of the scriptures The rst ve lessons cover the pronunciation of the basic Sanskrit alphab et Devanagar together with its written form in b oth and transliterated Roman ash cards are included as an aid The notes on pronunciation are largely descriptive based on mouth p osition and eort with similar English Received Pronunciation sounds oered where p ossible The next four lessons describ e vowel emb ellishments to the consonants the principles of conjunct consonants Devanagar and additions to and variations in the alphab et Lessons ten and sandhi eleven present in grid form and explain their principles in sound The next three lessons p enetrate MonierWilliams dictionary through its four levels of alphab etical order and suggest strategies for nding dicult words The artha DhatuPat ha last lesson shows the extraction of the from the and the application of this and the dictionary to the study of the scriptures In addition to the primary course the rst eleven lessons include a B section whichintro duces the student to the principles of sentence structure in this fully inected language Six declension paradigms and class conjugation in the present tense are used with a minimal vo cabulary of nineteen words In the B part of -
Proposal for a Gurmukhi Script Root Zone Label Generation Ruleset (LGR)
Proposal for a Gurmukhi Script Root Zone Label Generation Ruleset (LGR) LGR Version: 3.0 Date: 2019-04-22 Document version: 2.7 Authors: Neo-Brahmi Generation Panel [NBGP] 1. General Information/ Overview/ Abstract This document lays down the Label Generation Ruleset for Gurmukhi script. Three main components of the Gurmukhi Script LGR i.e. Code point repertoire, Variants and Whole Label Evaluation Rules have been described in detail here. All these components have been incorporated in a machine-readable format in the accompanying XML file named "proposal-gurmukhi-lgr-22apr19-en.xml". In addition, a document named “gurmukhi-test-labels-22apr19-en.txt” has been provided. It provides a list of labels which can produce variants as laid down in Section 6 of this document and it also provides valid and invalid labels as per the Whole Label Evaluation laid down in Section 7. 2. Script for which the LGR is proposed ISO 15924 Code: Guru ISO 15924 Key N°: 310 ISO 15924 English Name: Gurmukhi Latin transliteration of native script name: gurmukhī Native name of the script: ਗੁਰਮੁਖੀ Maximal Starting Repertoire [MSR] version: 4 1 3. Background on Script and Principal Languages Using It 3.1. The Evolution of the Script Like most of the North Indian writing systems, the Gurmukhi script is a descendant of the Brahmi script. The Proto-Gurmukhi letters evolved through the Gupta script from 4th to 8th century, followed by the Sharda script from 8th century onwards and finally adapted their archaic form in the Devasesha stage of the later Sharda script, dated between the 10th and 14th centuries. -
Devanagari in Luatex
Devanagari in LuaTeX Using OpenType features Ivo Geradts Kai Eigner 1. About us 2. Foreign scripts in TeX, past and present 3. OpenType features 4. OpenType rendering engines 5. ConTeXt engine 6. Example 1: Latin with mark and mkmk 7. Example 2: Arabic 8. Example 3: Devanagari 1. About us TAT Zetwerk offers academic typesetting services Specialties: - critical editions - foreign scripts PlainTeX, for two reasons: - our exotic needs - well documented 2. Foreign scripts in TeX, past and present Past: 8-bit PostScript fonts; e.g. approach for classical greek: - encoding: α = a, β = b, γ = g - ligature table: σ = s, ς = /s, ἄ = a)' - multitude of font-related files: tfm, vf, pfb, enc Present: new TeX-engines XeTeX and LuaTeX can handle OpenType fonts containing Unicode glyph table: - ἄ is unicode position 1F04 3. OpenType features OpenType fonts contain more information than traditional fonts - tfm: bounding boxes, kerning, ligaturen, etc. - OpenType additions: GPOS, GSUB, marks Introduction of XeTeX and LuaTeX removes old limitations: - vocalized Hebrew, Arabic - CJK - Devanagari 4. OpenType rendering engines OpenType fonts require rendering engine, such as: - Uniscribe (Windows) - AAT (OS X); XeTeX on OS X - Graphite (Windows and Linux); XeTeX on all platforms - ConTeXt engine: collection of Lua-scripts attached to various callbacks related to font calls and processing of node list 5. ConTeXt engine - independent of operating system - readable and modifiable - work in progress 6. Example 1: Latin script with mark and mkmk 7. Example 2: Arabic 8. Example 3: Devanagari - Introduction: what is Devanagari? - Devanagari and OpenType - Examples Devanagari Script - Sanskrit (old Indic) - Hindi - Nepali Abugida (consonant–vowel sequences are written as a unit) क = “ka” ◌ क् = “k” क + ् (halant) ◌ क = “ku” क + ु (matra) Mahabharata Syllable structure - Consonants: e.g. -
Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging
ORIGINAL ARTICLE Neuroscience http://dx.doi.org/10.3346/jkms.2014.29.10.1416 • J Korean Med Sci 2014; 29: 1416-1424 Neural Substrates of Hanja (Logogram) and Hangul (Phonogram) Character Readings by Functional Magnetic Resonance Imaging Zang-Hee Cho,1 Nambeom Kim,1 The two basic scripts of the Korean writing system, Hanja (the logography of the traditional Sungbong Bae,2 Je-Geun Chi,1 Korean character) and Hangul (the more newer Korean alphabet), have been used together Chan-Woong Park,1 Seiji Ogawa,1,3 since the 14th century. While Hanja character has its own morphemic base, Hangul being and Young-Bo Kim1 purely phonemic without morphemic base. These two, therefore, have substantially different outcomes as a language as well as different neural responses. Based on these 1Neuroscience Research Institute, Gachon University, Incheon, Korea; 2Department of linguistic differences between Hanja and Hangul, we have launched two studies; first was Psychology, Yeungnam University, Kyongsan, Korea; to find differences in cortical activation when it is stimulated by Hanja and Hangul reading 3Kansei Fukushi Research Institute, Tohoku Fukushi to support the much discussed dual-route hypothesis of logographic and phonological University, Sendai, Japan routes in the brain by fMRI (Experiment 1). The second objective was to evaluate how Received: 14 February 2014 Hanja and Hangul affect comprehension, therefore, recognition memory, specifically the Accepted: 5 July 2014 effects of semantic transparency and morphemic clarity on memory consolidation and then related cortical activations, using functional magnetic resonance imaging (fMRI) Address for Correspondence: (Experiment 2). The first fMRI experiment indicated relatively large areas of the brain are Young-Bo Kim, MD Department of Neuroscience and Neurosurgery, Gachon activated by Hanja reading compared to Hangul reading. -
Recognition of Online Handwritten Gurmukhi Strokes Using Support Vector Machine a Thesis
Recognition of Online Handwritten Gurmukhi Strokes using Support Vector Machine A Thesis Submitted in partial fulfillment of the requirements for the award of the degree of Master of Technology Submitted by Rahul Agrawal (Roll No. 601003022) Under the supervision of Dr. R. K. Sharma Professor School of Mathematics and Computer Applications Thapar University Patiala School of Mathematics and Computer Applications Thapar University Patiala – 147004 (Punjab), INDIA June 2012 (i) ABSTRACT Pen-based interfaces are becoming more and more popular and play an important role in human-computer interaction. This popularity of such interfaces has created interest of lot of researchers in online handwriting recognition. Online handwriting recognition contains both temporal stroke information and spatial shape information. Online handwriting recognition systems are expected to exhibit better performance than offline handwriting recognition systems. Our research work presented in this thesis is to recognize strokes written in Gurmukhi script using Support Vector Machine (SVM). The system developed here is a writer independent system. First chapter of this thesis report consist of a brief introduction to handwriting recognition system and some basic differences between offline and online handwriting systems. It also includes various issues that one can face during development during online handwriting recognition systems. A brief introduction about Gurmukhi script has also been given in this chapter In the last section detailed literature survey starting from the 1979 has also been given. Second chapter gives detailed information about stroke capturing, preprocessing of stroke and feature extraction. These phases are considered to be backbone of any online handwriting recognition system. Recognition techniques that have been used in this study are discussed in chapter three. -
Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe Romanization: KNAB 2012
Institute of the Estonian Language KNAB: Place Names Database 2012-10-11 Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe romanization: KNAB 2012 I. Consonant characters 1 ᦀ ’a 13 ᦌ sa 25 ᦘ pha 37 ᦤ da A 2 ᦁ a 14 ᦍ ya 26 ᦙ ma 38 ᦥ ba A 3 ᦂ k’a 15 ᦎ t’a 27 ᦚ f’a 39 ᦦ kw’a 4 ᦃ kh’a 16 ᦏ th’a 28 ᦛ v’a 40 ᦧ khw’a 5 ᦄ ng’a 17 ᦐ n’a 29 ᦜ l’a 41 ᦨ kwa 6 ᦅ ka 18 ᦑ ta 30 ᦝ fa 42 ᦩ khwa A 7 ᦆ kha 19 ᦒ tha 31 ᦞ va 43 ᦪ sw’a A A 8 ᦇ nga 20 ᦓ na 32 ᦟ la 44 ᦫ swa 9 ᦈ ts’a 21 ᦔ p’a 33 ᦠ h’a 45 ᧞ lae A 10 ᦉ s’a 22 ᦕ ph’a 34 ᦡ d’a 46 ᧟ laew A 11 ᦊ y’a 23 ᦖ m’a 35 ᦢ b’a 12 ᦋ tsa 24 ᦗ pa 36 ᦣ ha A Syllable-final forms of these characters: ᧅ -k, ᧂ -ng, ᧃ -n, ᧄ -m, ᧁ -u, ᧆ -d, ᧇ -b. See also Note D to Table II. II. Vowel characters (ᦀ stands for any consonant character) C 1 ᦀ a 6 ᦀᦴ u 11 ᦀᦹ ue 16 ᦀᦽ oi A 2 ᦰ ( ) 7 ᦵᦀ e 12 ᦵᦀᦲ oe 17 ᦀᦾ awy 3 ᦀᦱ aa 8 ᦶᦀ ae 13 ᦺᦀ ai 18 ᦀᦿ uei 4 ᦀᦲ i 9 ᦷᦀ o 14 ᦀᦻ aai 19 ᦀᧀ oei B D 5 ᦀᦳ ŭ,u 10 ᦀᦸ aw 15 ᦀᦼ ui A Indicates vowel shortness in the following cases: ᦀᦲᦰ ĭ [i], ᦵᦀᦰ ĕ [e], ᦶᦀᦰ ăe [ ∎ ], ᦷᦀᦰ ŏ [o], ᦀᦸᦰ ăw [ ], ᦀᦹᦰ ŭe [ ɯ ], ᦵᦀᦲᦰ ŏe [ ]. -
The Kharoṣṭhī Documents from Niya and Their Contribution to Gāndhārī Studies
The Kharoṣṭhī Documents from Niya and Their Contribution to Gāndhārī Studies Stefan Baums University of Munich [email protected] Niya Document 511 recto 1. viśu͚dha‐cakṣ̄u bhavati tathāgatānaṃ bhavatu prabhasvara hiterṣina viśu͚dha‐gātra sukhumāla jināna pūjā suchavi paramārtha‐darśana 4 ciraṃ ca āyu labhati anālpakaṃ 5. pratyeka‐budha ca karoṃti yo s̄ātravivegam āśṛta ganuktamasya 1 ekābhirāma giri‐kaṃtarālaya 2. na tasya gaṃḍa piṭakā svakartha‐yukta śamathe bhavaṃti gune rata śilipataṃ tatra vicārcikaṃ teṣaṃ pi pūjā bhavatu [v]ā svayaṃbhu[na] 4 1 suci sugaṃdha labhati sa āśraya 6. koḍinya‐gotra prathamana karoṃti yo s̄ātraśrāvaka {?} ganuktamasya 2 teṣaṃ ca yo āsi subha͚dra pac̄ima 3. viśāla‐netra bhavati etasmi abhyaṃdare ye prabhasvara atīta suvarna‐gātra abhirūpa jinorasa te pi bhavaṃtu darśani pujita 4 2 samaṃ ca pādo utarā7. imasmi dāna gana‐rāya prasaṃṭ́hita u͚tama karoṃti yo s̄ātra sthaira c̄a madhya navaka ganuktamasya 3 c̄a bhikṣ̄u m It might be going to far to say that Torwali is the direct lineal descendant of the Niya Prakrit, but there is no doubt that out of all the modern languages it shows the closest resemblance to it. [...] that area around Peshawar, where [...] there is most reason to believe was the original home of Niya Prakrit. That conclusion, which was reached for other reasons, is thus confirmed by the distribution of the modern dialects. (Burrow 1936) Under this name I propose to include those inscriptions of Aśoka which are recorded at Shahbazgaṛhi and Mansehra in the Kharoṣṭhī script, the vehicle for the remains of much of this dialect. To be included also are the following sources: the Buddhist literary text, the Dharmapada found in Khotan, written likewise in Kharoṣṭhī [...]; the Kharoṣṭhī documents on wood, leather, and silk from Caḍ́ota (the Niya site) on the border of the ancient kingdom of Khotan, which represented the official language of the capital Krorayina [...]. -
5892 Cisco Category: Standards Track August 2010 ISSN: 2070-1721
Internet Engineering Task Force (IETF) P. Faltstrom, Ed. Request for Comments: 5892 Cisco Category: Standards Track August 2010 ISSN: 2070-1721 The Unicode Code Points and Internationalized Domain Names for Applications (IDNA) Abstract This document specifies rules for deciding whether a code point, considered in isolation or in context, is a candidate for inclusion in an Internationalized Domain Name (IDN). It is part of the specification of Internationalizing Domain Names in Applications 2008 (IDNA2008). Status of This Memo This is an Internet Standards Track document. This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc5892. Copyright Notice Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. -
Devan¯Agar¯I for TEX Version 2.17.1
Devanagar¯ ¯ı for TEX Version 2.17.1 Anshuman Pandey 6 March 2019 Contents 1 Introduction 2 2 Project Information 3 3 Producing Devan¯agar¯ıText with TEX 3 3.1 Macros and Font Definition Files . 3 3.2 Text Delimiters . 4 3.3 Example Input Files . 4 4 Input Encoding 4 4.1 Supplemental Notes . 4 5 The Preprocessor 5 5.1 Preprocessor Directives . 7 5.2 Protecting Text from Conversion . 9 5.3 Embedding Roman Text within Devan¯agar¯ıText . 9 5.4 Breaking Pre-Defined Conjuncts . 9 5.5 Supported LATEX Commands . 9 5.6 Using Custom LATEX Commands . 10 6 Devan¯agar¯ıFonts 10 6.1 Bombay-Style Fonts . 11 6.2 Calcutta-Style Fonts . 11 6.3 Nepali-Style Fonts . 11 6.4 Devan¯agar¯ıPen Fonts . 11 6.5 Default Devan¯agar¯ıFont (LATEX Only) . 12 6.6 PostScript Type 1 . 12 7 Special Topics 12 7.1 Delimiter Scope . 12 7.2 Line Spacing . 13 7.3 Hyphenation . 13 7.4 Captions and Date Formats (LATEX only) . 13 7.5 Customizing the date and captions (LATEX only) . 14 7.6 Using dvnAgrF in Sections and References (LATEX only) . 15 7.7 Devan¯agar¯ıand Arabic Numerals . 15 7.8 Devan¯agar¯ıPage Numbers and Other Counters (LATEX only) . 15 1 7.9 Category Codes . 16 8 Using Devan¯agar¯ıin X E LATEXand luaLATEX 16 8.1 Using Hindi with Polyglossia . 17 9 Using Hindi with babel 18 9.1 Installation . 18 9.2 Usage . 18 9.3 Language attributes . 19 9.3.1 Attribute modernhindi . -
Breathy Nasals and /Nh/ Clusters in Bengali, Hindi, and Marathi Christina M
Breathy Nasals and /Nh/ Clusters in Bengali, Hindi, and Marathi Christina M. Esposito, Sameer ud Dowla Khan, Alex Hurst [email protected] [email protected] [email protected] Abstract Previous work on breathiness in Indic languages has focused primarily on the acoustic properties of breathy (also known as aspirated) oral stops in languages like Hindi ([ baːːːl] ‘hair’ vs. [ bʱʱʱaːːːl] ‘forehead’) or Bengali ([ bati] ‘bowl’ vs. [ bʱʱʱati] ‘kiln’). However, breathiness in some Indic languages also extends to nasals, as in Marathi ([ maːːːr] ‘beat’ vs. [ m̤̤̤a̤ ːːːr] ‘a caste’). It is not clear if languages such as Hindi and Bengali have breathy nasals in addition to breathy oral stops. This study addresses the following question: in Bengali and Hindi, are /N/ + /h/ sequences single breathy nasals ([N ̤̤̤]),̤ or are they clusters ([Nh])? To answer this question, simultaneous audio, aerodynamic, and electroglottographic recordings were made of Hindi, Bengali, and Marathi speakers. Within- and cross-language comparisons were made, and phonological evidence was examined. While some within-language comparisons gave inconclusive results for Hindi and Bengali, other comparisons with Marathi and within-language phonological evidence pointed to the lack of breathy nasals in Hindi and an uncertain status for breathy nasals in Bengali. 1 Introduction 1 The Indic languages are typologically unusual, possessing a four-way oral stop contrast that includes both voiceless and voiced aspirates. 2 This is exemplified in Table 1, with data from two Indic languages, Bengali and Hindi. Bengali Hindi Voiceless unaspirated pati ‘mat’ paːːːl ‘take care of’ Voiceless aspirated phati ‘I burst’ phaːːːl ‘knife blade’ Voiced unaspirated bati ‘bowl’ baːːːl ‘hair’ Voiced aspirated bʱʱʱati ‘kiln’ bʱʱʱaːːːl ‘forehead’ Table 1: Examples of the four-way oral stop contrast in Bengali and Hindi. -
An Introduction to Indic Scripts
An Introduction to Indic Scripts Richard Ishida W3C [email protected] HTML version: http://www.w3.org/2002/Talks/09-ri-indic/indic-paper.html PDF version: http://www.w3.org/2002/Talks/09-ri-indic/indic-paper.pdf Introduction This paper provides an introduction to the major Indic scripts used on the Indian mainland. Those addressed in this paper include specifically Bengali, Devanagari, Gujarati, Gurmukhi, Kannada, Malayalam, Oriya, Tamil, and Telugu. I have used XHTML encoded in UTF-8 for the base version of this paper. Most of the XHTML file can be viewed if you are running Windows XP with all associated Indic font and rendering support, and the Arial Unicode MS font. For examples that require complex rendering in scripts not yet supported by this configuration, such as Bengali, Oriya, and Malayalam, I have used non- Unicode fonts supplied with Gamma's Unitype. To view all fonts as intended without the above you can view the PDF file whose URL is given above. Although the Indic scripts are often described as similar, there is a large amount of variation at the detailed implementation level. To provide a detailed account of how each Indic script implements particular features on a letter by letter basis would require too much time and space for the task at hand. Nevertheless, despite the detail variations, the basic mechanisms are to a large extent the same, and at the general level there is a great deal of similarity between these scripts. It is certainly possible to structure a discussion of the relevant features along the same lines for each of the scripts in the set. -
Tibetan Romanization Table
Tibetan Comment [LRH1]: Transliteration revisions are highlighted below in light-gray or otherwise noted in a comment. ALA-LC romanization of Tibetan letters follows the principles of the Wylie transliteration system, as described by Turrell Wylie (1959). Diacritical marks are used for those letters representing Indic or other non-Tibetan languages, and parallel the use of these marks when transcribing their counterpart letters in Sanskrit. These are applied for the sake of consistency, and to reflect international publishing standards. Accordingly, romanize words of non-Tibetan origin systematically (following this table) in all cases, even though the word may derive from Sanskrit or another language. When Tibetan is written in another script (e.g., ʼPhags-pa) the corresponding letters in that script are also romanized according to this table. Consonants (see Notes 1-3) Vernacular Romanization Vernacular Romanization Vernacular Romanization ka da zha ཀ་ ད་ ཞ་ kha na za ཁ་ ན་ ཟ་ Comment [LH2]: While the current ALA-LC ga pa ’a table stipulates that an apostrophe should be used, ག་ པ་ འ་ this revision proposal recommends that the long- nga pha ya standing defacto LC practice of using an alif (U+02BC) be continued and explicitly stipulated in ང་ ཕ་ ཡ་ the Table. See accompanying Narrative for details. ca ba ra ཅ་ བ་ ར་ cha ma la ཆ་ མ་ ལ་ ja tsa sha ཇ་ ཙ་ ཤ་ nya tsha sa ཉ་ ཚ་ ས་ ta dza ha ཏ་ ཛ་ ཧ་ tha wa a ཐ་ ཝ་ ཨ་ Vowels and Diphthongs (see Notes 4 and 5) ཨི་ i ཨཱི་ ī རྀ་ r̥ ཨུ་ u ཨཱུ་ ū རཱྀ་ r̥̄ ཨེ་ e ཨཻ་ ai ལྀ་ ḷ ཨོ་ o ཨཽ་ au ལཱྀ ḹ ā ཨཱ་ Other Letters or Diacritical Marks Used in Words of Non-Tibetan Origin (see Notes 6 and 7) ṭa gha ḍha ཊ་ གྷ་ ཌྷ་ ṭha jha anusvāra ṃ Comment [LH3]: This letter combination does ཋ་ ཇྷ་ ◌ ཾ not occur in Tibetan texts, and has been deprecated from the Unicode Standard.