Natural Enemies of the South American Moth, Tuta Absoluta, in Europe, North Africa and Middle East, and Their Potential Use in Pest Control Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Natural Enemies of the South American Moth, Tuta Absoluta, in Europe, North Africa and Middle East, and Their Potential Use in Pest Control Strategies J Pest Sci DOI 10.1007/s10340-013-0531-9 RAPID COMMUNICATION Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies Lucia Zappala` • Antonio Biondi • Alberto Alma • Ibrahim J. Al-Jboory • Judit Arno` • Ahmet Bayram • Anaı¨s Chailleux • Ashraf El-Arnaouty • Dan Gerling • Yamina Guenaoui • Liora Shaltiel-Harpaz • Gaetano Siscaro • Menelaos Stavrinides • Luciana Tavella • Rosa Vercher Aznar • Alberto Urbaneja • Nicolas Desneux Received: 16 June 2013 / Accepted: 23 September 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract The South American tomato leafminer, Tuta crops, as well as in wild flora and/or using infested sentinel absoluta Meyrick (Lepidoptera: Gelechiidae), is an invasive plants. More than 70 arthropod species, 20 % predators and Neotropical pest. After its first detection in Europe, it rap- 80 % parasitoids, were recorded attacking the new pest so idly invaded more than 30 Western Palaearctic countries far. Among the recovered indigenous natural enemies, only becoming a serious agricultural threat to tomato production few parasitoid species, namely, some eulophid and braconid in both protected and open-field crops. Among the pest wasps, and especially mirid predators, have promising control tactics against exotic pests, biological control using potential to be included in effective and environmentally indigenous natural enemies is one of the most promising. friendly management strategies for the pest in the newly Here, available data on the Afro-Eurasian natural enemies invaded areas. Finally, a brief outlook of the future research of T. absoluta are compiled. Then, their potential for and applications of indigenous T. absoluta biological con- inclusion in sustainable pest control packages is discussed trol agents are provided. providing relevant examples. Collections were conducted in 12 countries, both in open-field and protected susceptible Keywords Biological control Á Generalist predators Á Integrated pest management Á Invasive species Á Parasitoid community Á Western Palaearctic Communicated by M. Traugott. L. Zappala` Á A. Biondi Á G. Siscaro A. Bayram Department of Agri-food and Environmental Systems Plant Protection Department, Agriculture Faculty, Dicle Management, University of Catania, via Santa Sofia 100, University, 21280 Diyarbakir, Turkey 95123 Catania, Italy A. El-Arnaouty A. Biondi Á A. Chailleux Á N. Desneux (&) Department of Economic Entomology and Pesticides, Cairo French National Institute for Agricultural Research (INRA), University, Giza, Egypt 400 Route des Chappes, 06903 Sophia-Antipolis, France e-mail: [email protected] D. Gerling Department of Zoology, Tel Aviv University, 69978 Tel Aviv, A. Alma Á L. Tavella Israel Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, via L. da Vinci 44, Y. Guenaoui 10095 Grugliasco, TO, Italy Department of Agronomy, University Ibn Badis of Mostaganem, 27000 Mostaganem, Algeria I. J. Al-Jboory Department of Plant Protections, University of Baghdad, Abu L. Shaltiel-Harpaz Ghraib, Iraq Northern R&D, Migal–Galilee Research Institute, P.O.B. 831, 11016 Kiryat Shmona, Israel J. Arno` Department of Entomology, IRTA, Ctra. Cabrils km.2, 08348 Cabrils, Barcelona, Spain 123 J Pest Sci Introduction et al. 2010; Tropea Garzia et al. 2012). Afterwards, it rap- idly spread throughout the Mediterranean basin, in Europe, The composition of worldwide biotic communities has North Africa and the Middle East (Desneux et al. 2011). greatly changed in recent years due to the collapse of natural Tuta absoluta is considered a typical invasive species barriers to wild species movements mainly in relation to because of its capacity to develop very quickly on tomato human activities (Liebhold and Tobin 2008). Among the cultivations and to spread rapidly in new areas causing newly introduced insect species, some can become invasive, economically relevant damage (Desneux et al. 2010; Ca- with subsequent significant economic impacts. The success parros Megido et al. 2012). or failure of a biological invasion may depend on the species’ Although chemical control has been the first strategy life history parameters, on its response to climatic condi- adopted in the newly invaded areas, alternative control tions, on the competition with native species and on the measures are being investigated (Cagnotti et al. 2012; impact of natural enemies (Grabenweger et al. 2010). This Cocco et al. 2013) in compliance with the EU Directive on last factor may be crucial in the invasion mechanism and the sustainable use of pesticides (Directive 2009/128/EC). In success of an invader, in terms of distribution and abundance, the case of T. absoluta, the need for alternative control and could be related to the absence or low efficacy of natural methods is strengthened by the development of resistance control in the new territories, as stated by the so-called to insecticides by the pest (Haddi et al. 2012; Gontijo et al. Enemy release hypothesis (Keane and Crawley 2002). 2013) as well as the side effects of pesticides on beneficial Indeed, it is assumed that natural enemies in the newly arthropods (Arno´ and Gabarra 2011; Biondi et al. 2012, invaded areas need time to get adapted to and control the 2013a; and see Desneux et al. 2007 for a thorough review). exotic species effectively. This may be due to the fact that On the other hand, various predators and parasitoids native antagonists need to adjust their behaviour and/or spontaneously attack T. absoluta in tomato crops in Europe physiology to be able to successfully develop on the exotic and in North Africa. Some of these, mainly native Miridae, prey/host. For these reasons, natural enemy complexes on have been already employed in integrated pest management invaders may perform initially low percentage predation/ (IPM) strategies (Castan˜e´ et al. 2011; Molla´ et al. 2011; parasitism (Cornell and Hawkins 1993). However, several Cabello et al. 2012; Zappala` et al. 2012b; Chailleux et al. examples of successful biological control using natural 2013a). However, several screenings for effective natural enemies that have not coevolved with the pest, the so-called enemy species in the invaded area are still ongoing (Chail- New species association, are also known (Hokkanen and leux et al. 2012; Gabarra et al. 2013). More than 70 species of Pimentel 1984; O’Connell et al. 2012). generalist natural enemies have been reported for T. absoluta In this framework, gaining knowledge on indigenous in the Western Palaearctic region so far. These have been natural enemies that get adapted to the new hosts and sampled both on open-field and protected susceptible crops understanding their role in limiting the alien species are as well as on wild flora and/or using infested sentinel plants. essential for establishing the basis of suitable and sustain- Here, we take into account all the available data, aiming to able control strategies of exotic pests. This also applies to give a comprehensive picture of the composition of the one of the latest invasive species that arrived in the Western species that spontaneously provide biological control ser- Palaearctic region: the South American tomato leafminer, vices and their current role in T. absoluta control Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). This programmes. moth is a Neotropical species and is considered a key pest of the tomato in South America (Guedes and Picanc¸o 2012; Luna et al. 2012), where it remained confined until its first Predators record in Western Palaearctic, in Spain in 2006 (Desneux Fifteen arthropod species were recorded preying on the M. Stavrinides South American tomato leafminer in the last few years in Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Arch. Kyprianos 30, newly invaded Western Palaearctic countries (Table 1). 3036 Limassol, Cyprus They mainly belong to the order Hemiptera (ten species) and in particular to the families Miridae, Anthocoridae and R. Vercher Aznar Nabidae in descending order of species numbers. These Instituto Agroforestal del Mediterra´neo (IAM), Universitat Polite`cnica de Vale`ncia, Camino de Vera s/n, 40622 Valencia, predators include zoophytophagous bugs that usually col- Spain onize and establish in organic and IPM crops where they are also able to build up their populations before pest A. Urbaneja arrival, exploiting alternative preys, such as whiteflies, Departamento de Entomologı´a, Centro de Proteccio´n Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), thrips, aphids, spider mites, leafminers and other Lepi- Moncada, Valencia, Spain doptera, and host plants [e.g. Dittrichia viscosa (L.) and 123 J Pest Sci Table 1 Predators observed feeding on Tuta absoluta in Western Palaearctic countries Order: Family Species Known T. absoluta Country(ies) Sampling Season(s) Reference(s) distributiona instars method(s) Mesostigmata: Amblyseius swirskii Western Eggs and L1 Spain Protected crop Summer Molla´ et al. (2010) Phytoseiidae Athias-Henriot Palaearctic (eggplant) sampling Amblyseius Cosmopolitan Eggs and L1 Spain Protected crop Summer Molla´ et al. (2010) cucumeris (eggplant) (Oudemans) sampling Hemiptera: Dicyphus sp. Eggs and France, Italy Open-field and Summer Biondi et al. (2013b), Miridae young larvae protected crop Zappala` et al. sampling unpublished data Dicyphus errans Western Eggs and L1 Algeria, Italy Open-field and Spring– Boualem et al. (2012),
Recommended publications
  • Hym.: Eulophidae) New Larval Ectoparasitoids of Tuta Absoluta (Meyreck) (Lep.: Gelechidae)
    J. Crop Prot. 2016, 5 (3): 413-418______________________________________________________ Research Article Two species of the genus Elachertus Spinola (Hym.: Eulophidae) new larval ectoparasitoids of Tuta absoluta (Meyreck) (Lep.: Gelechidae) Fatemeh Yarahmadi1*, Zohreh Salehi1 and Hossein Lotfalizadeh2 1. Ramin Agriculture and Natural Resources University, Mollasani, Ahvaz, Iran. 2. East-Azarbaijan Research Center for Agriculture and Natural Resources, Tabriz, Iran. Abstract: This is the first report of two ectoparasitoid wasps, Elachertus inunctus (Nees, 1834) in Iran and Elachertus pulcher (Erdös, 1961) (Hym.: Eulophidae) in the world, that parasitize larvae of the tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lep.: Gelechiidae). The specimens were collected from tomato fields and greenhouses in Ahwaz, Khouzestan province (south west of Iran). Both species are new records for fauna of Iran. The knowledge about these parasitoids is still scanty. The potential of these parasitoids for biological control of T. absoluta in tomato fields and greenhouses should be investigated. Keywords: tomato leaf miner, parasitoids, identification, biological control Introduction12 holometabolous insects, the overall range of hosts and biologies in eulophid wasps is remarkably The Eulophidae is one of the largest families of diverse (Gauthier et al., 2000). Chalcidoidea. The chalcid parasitoid wasps attack Species of the genus Elachertus Spinola, 1811 insects from many orders and also mites. Many (Hym.: Eulophidae) are primary parasitoids of a eulophid wasps parasitize several pests on variety of lepidopteran larvae. Some species are different crops. They can regulate their host's polyphagous that parasite hosts belonging to populations in natural conditions (Yefremova and different insect families. The larvae of these Myartseva, 2004). Eulophidae are composed of wasps are often gregarious and their pupae can be four subfamilies, Entedoninae (Förster, 1856), observed on the surface of plant leaves or the Euderinae (Lacordaire, 1866), Eulophinae body of their host.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Sticky Plants in Your Garden by Billy Krimmel1
    SNAPSHOT: Sticky Plants in Your Garden by Billy Krimmel1 Sticky plants are widespread in summertime throughout their abdomens, so that if they do contact sticky exudates by California. e oils and resins secreted at the tips of their accident, they can slough it off and move on without becoming glandular trichomes oen shine in the hot sun, and in many entrapped (Voigt and Gorb 2008). instances are strongly fragrant (see definitions below). Some Another common visitor of sticky plants is a group of assassin scientists have argued that UV reflectance may have been why bugs in the subfamily Harpactorini (Reduviidae: Harpactorini). plants evolved glandular and non-glandular trichomes in the first Females in many species have specialized storage structures on place—to mitigate the effects of the hot sun drawing out water their abdomens for collecting and storing sticky exudates from from the plant’s stomata (tiny openings through which plants plants. As females in these species lay eggs, they coat the eggs breathe). Others have argued that plants secrete glandular with these exudates. Newly hatched nymphs then spread the exudates as a way to detoxify (Schilmiller et al. 2008), while still exudates from their egg onto their body—the functions of which others argue that they evolved as a way to repel or defend against is still a bit of a mystery. Investigators speculate that it might would-be insect herbivores (e.g., Duke 1994, Fernandes 1994). provide camouflage, better grip to the plant for the insect, anti- Glandular trichomes are found among diverse plant taxa — an microbial functions, better attachment to prey, some estimated 30% of all vascular plant species have them — and combination of these functions, or something completely likely evolved in response to a diversity of environmental drivers different (Law and Sedigi 2010).
    [Show full text]
  • Cannibalism Among Same-Aged Nymphs of the Omnivorous Predator Dicyphus Errans (Hemiptera: Miridae) Is Affected by Food Availability and Nymphal Density
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 116: 302–308, 2019 http://www.eje.cz doi: 10.14411/eje.2019.033 ORIGINAL ARTICLE Cannibalism among same-aged nymphs of the omnivorous predator Dicyphus errans (Hemiptera: Miridae) is affected by food availability and nymphal density KONSTANTINA ARVANITI 1, ARGYRO FANTINOU 2 and Dionyssios PERDIKIS 1 1 Laboratory of Agricultural Zoology & Entomology and 2 Laboratory of Ecology & Environmental Sciences, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Hellenic Republic; e-mails: [email protected], [email protected], [email protected] Key words. Hemiptera, Miridae, Dicyphus errans, adult weight, cannibalism, density, development, food availability, omnivorous predator Abstract. Cannibalism, the act of eating an individual of the same species has been little studied in omnivorous insect predators. Dicyphus errans (Wolff) (Hemiptera: Miridae) is a generalist omnivorous predator that commonly occurs in tomato greenhouses and fi eld crops in the Mediterranean basin. In this work cannibalism among same-aged neonate nymphs of D. errans was studied when 1, 2, 4, 8 or 16 individuals were placed in a Petri dish along with or without heterospecifi c prey. Although nymphs were un- able to complete their development in the absence of prey they survived longer when there were initially 2 individuals per dish than in any other treatment including a single individual. This may indicate that cannibalism in this predator has positive effect on nymphal survival, which however was not the case at higher densities. The presence of heterospecifi c prey increased nymphal survival and individuals were as equally successful in completing their development as when kept singly.
    [Show full text]
  • Functional Response and Predation Rate of Dicyphus Cerastii Wagner (Hemiptera: Miridae)
    insects Article Functional Response and Predation Rate of Dicyphus cerastii Wagner (Hemiptera: Miridae) Gonçalo Abraços-Duarte 1,2,* , Susana Ramos 1, Fernanda Valente 1,3, Elsa Borges da Silva 1,3 and Elisabete Figueiredo 1,2,* 1 Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; [email protected] (S.R.); [email protected] (F.V.); [email protected] (E.B.d.S.) 2 Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal 3 Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal * Correspondence: [email protected] (G.A.-D.); [email protected] (E.F.) Simple Summary: Biological control (BC) is an effective way to regulate pest populations in hor- ticultural crops, allowing the decrease of pesticide usage. On tomato, predatory insects like plant bugs or mirids provide BC services against several insect pests. Native predators are adapted to local conditions of climate and ecology and therefore may be well suited to provide BC services. Dicyphus cerastii is a predatory mirid that is present in the Mediterranean region and occurs in tomato greenhouses in Portugal. However, little is known about its contribution to BC in this crop. In this study, we evaluated how prey consumption is affected by increasing prey abundance on four different prey, in laboratory conditions. We found that the predator can increase its predation rate until a maximum is reached and that prey characteristics like size and mobility can affect predation.
    [Show full text]
  • Journal of Hymenoptera Research
    c 3 Journal of Hymenoptera Research . .IV 6«** Volume 15, Number 2 October 2006 ISSN #1070-9428 CONTENTS BELOKOBYLSKIJ, S. A. and K. MAETO. A new species of the genus Parachremylus Granger (Hymenoptera: Braconidae), a parasitoid of Conopomorpha lychee pests (Lepidoptera: Gracillariidae) in Thailand 181 GIBSON, G. A. P., M. W. GATES, and G. D. BUNTIN. Parasitoids (Hymenoptera: Chalcidoidea) of the cabbage seedpod weevil (Coleoptera: Curculionidae) in Georgia, USA 187 V. Forest GILES, and J. S. ASCHER. A survey of the bees of the Black Rock Preserve, New York (Hymenoptera: Apoidea) 208 GUMOVSKY, A. V. The biology and morphology of Entedon sylvestris (Hymenoptera: Eulophidae), a larval endoparasitoid of Ceutorhynchus sisymbrii (Coleoptera: Curculionidae) 232 of KULA, R. R., G. ZOLNEROWICH, and C. J. FERGUSON. Phylogenetic analysis Chaenusa sensu lato (Hymenoptera: Braconidae) using mitochondrial NADH 1 dehydrogenase gene sequences 251 QUINTERO A., D. and R. A. CAMBRA T The genus Allotilla Schuster (Hymenoptera: Mutilli- dae): phylogenetic analysis of its relationships, first description of the female and new distribution records 270 RIZZO, M. C. and B. MASSA. Parasitism and sex ratio of the bedeguar gall wasp Diplolqjis 277 rosae (L.) (Hymenoptera: Cynipidae) in Sicily (Italy) VILHELMSEN, L. and L. KROGMANN. Skeletal anatomy of the mesosoma of Palaeomymar anomalum (Blood & Kryger, 1922) (Hymenoptera: Mymarommatidae) 290 WHARTON, R. A. The species of Stenmulopius Fischer (Hymenoptera: Braconidae, Opiinae) and the braconid sternaulus 316 (Continued on back cover) INTERNATIONAL SOCIETY OF HYMENOPTERISTS Organized 1982; Incorporated 1991 OFFICERS FOR 2006 Michael E. Schauff, President James Woolley, President-Elect Michael W. Gates, Secretary Justin O. Schmidt, Treasurer Gavin R.
    [Show full text]
  • Biological-Control-Programmes-In
    Biological Control Programmes in Canada 2001–2012 This page intentionally left blank Biological Control Programmes in Canada 2001–2012 Edited by P.G. Mason1 and D.R. Gillespie2 1Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada; 2Agriculture and Agri-Food Canada, Agassiz, British Columbia, Canada iii CABI is a trading name of CAB International CABI Head Offi ce CABI Nosworthy Way 38 Chauncey Street Wallingford Suite 1002 Oxfordshire OX10 8DE Boston, MA 02111 UK USA Tel: +44 (0)1491 832111 T: +1 800 552 3083 (toll free) Fax: +44 (0)1491 833508 T: +1 (0)617 395 4051 E-mail: [email protected] E-mail: [email protected] Website: www.cabi.org Chapters 1–4, 6–11, 15–17, 19, 21, 23, 25–28, 30–32, 34–36, 39–42, 44, 46–48, 52–56, 60–61, 64–71 © Crown Copyright 2013. Reproduced with the permission of the Controller of Her Majesty’s Stationery. Remaining chapters © CAB International 2013. All rights reserved. No part of this publication may be reproduced in any form or by any means, electroni- cally, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Biological control programmes in Canada, 2001-2012 / [edited by] P.G. Mason and D.R. Gillespie. p. cm. Includes bibliographical references and index. ISBN 978-1-78064-257-4 (alk. paper) 1. Insect pests--Biological control--Canada. 2. Weeds--Biological con- trol--Canada. 3. Phytopathogenic microorganisms--Biological control- -Canada.
    [Show full text]
  • Impact of a Shared Sugar Food Source on Biological Control of Tuta Absoluta by the Parasitoid Necremnus Tutae
    Journal of Pest Science (2020) 93:207–218 https://doi.org/10.1007/s10340-019-01167-9 ORIGINAL PAPER Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae Mateus Ribeiro de Campos1 · Lucie S. Monticelli1 · Philippe Béarez1 · Edwige Amiens‑Desneux1 · Yusha Wang1 · Anne‑Violette Lavoir1 · Lucia Zappalà2 · Antonio Biondi2 · Nicolas Desneux1 Received: 2 November 2018 / Revised: 28 August 2019 / Accepted: 19 October 2019 / Published online: 7 November 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Honeydew is a sugar-rich food source produced by sap-feeding insects, notably by major pests such as aphids and whitefies. It is an important alternative food source for the adult stage of various key natural enemies (e.g., parasitoids), but it may be used also as food by agricultural pests. Necremnus tutae is an idiobiont parasitoid, and it is the most abundant larval parasitoid associated with the South American tomato pinworm, Tuta absoluta, in recently invaded European areas. The impact of N. tutae on T. absoluta populations was evaluated under greenhouse conditions with and without the presence of a honeydew producer, the aphid Macrosiphum euphorbiae. In addition, laboratory experiments were performed to evaluate the longev- ity of N. tutae and T. absoluta adults when fed with water, honey or honeydew produced by the aphid. In the greenhouse, N. tutae efectively reduced T. absoluta population by the end of the experiment, and this independently of the presence of the aphid; still the presence of M. euphorbiae led to delayed and reduced T. absoluta population peak when controlled by the parasitoid (there was a fourfold increase in parasitoid density in presence of aphid).
    [Show full text]
  • Sown Wildflowers Enhance Habitats of Pollinators and Beneficial
    plants Article Sown Wildflowers Enhance Habitats of Pollinators and Beneficial Arthropods in a Tomato Field Margin Vaya Kati 1,* , Filitsa Karamaouna 1,* , Leonidas Economou 1, Photini V. Mylona 2 , Maria Samara 1 , Mircea-Dan Mitroiu 3 , Myrto Barda 1 , Mike Edwards 4 and Sofia Liberopoulou 1 1 Scientific Directorate of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 Stefanou Delta Str., 14561 Kifissia, Greece; [email protected] (L.E.); [email protected] (M.S.); [email protected] (M.B.); [email protected] (S.L.) 2 HAO-DEMETER, Institute of Plant Breeding & Genetic Resources, 570 01 Thessaloniki, Greece; [email protected] 3 Faculty of Biology, Alexandru Ioan Cuza University, Bd. Carol I 20A, 700505 Ias, i, Romania; [email protected] 4 Mike Edwards Ecological and Data Services Ltd., Midhurst GU29 9NQ, UK; [email protected] * Correspondence: [email protected] (V.K.); [email protected] (F.K.); Tel.: +30-210-8180-246 (V.K.); +30-210-8180-332 (F.K.) Abstract: We evaluated the capacity of selected plants, sown along a processing tomato field margin in central Greece and natural vegetation, to attract beneficial and Hymenoptera pollinating insects and questioned whether they can distract pollinators from crop flowers. Measurements of flower cover and attracted pollinators and beneficial arthropods were recorded from early-May to mid-July, Citation: Kati, V.; Karamaouna, F.; during the cultivation period of the crop. Flower cover was higher in the sown mixtures compared Economou, L.; Mylona, P.V.; Samara, to natural vegetation and was positively correlated with the number of attracted pollinators.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Autumn 2011 Newsletter of the UK Heteroptera Recording Schemes 2Nd Series
    Issue 17/18 v.1.1 Het News Autumn 2011 Newsletter of the UK Heteroptera Recording Schemes 2nd Series Circulation: An informal email newsletter circulated periodically to those interested in Heteroptera. Copyright: Text & drawings © 2011 Authors Photographs © 2011 Photographers Citation: Het News, 2nd Series, no.17/18, Spring/Autumn 2011 Editors: Our apologies for the belated publication of this year's issues, we hope that the record 30 pages in this combined issue are some compensation! Sheila Brooke: 18 Park Hill Toddington Dunstable Beds LU5 6AW — [email protected] Bernard Nau: 15 Park Hill Toddington Dunstable Beds LU5 6AW — [email protected] CONTENTS NOTICES: SOME LITERATURE ABSTRACTS ........................................... 16 Lookout for the Pondweed leafhopper ............................................................. 6 SPECIES NOTES. ................................................................18-20 Watch out for Oxycarenus lavaterae IN BRITAIN ...........................................15 Ranatra linearis, Corixa affinis, Notonecta glauca, Macrolophus spp., Contributions for next issue .................................................................................15 Conostethus venustus, Aphanus rolandri, Reduvius personatus, First incursion into Britain of Aloea australis ..................................................17 Elasmucha ferrugata Events for heteropterists .......................................................................................20 AROUND THE BRITISH ISLES............................................21-22
    [Show full text]