87Th MEETING of THE

Total Page:16

File Type:pdf, Size:1020Kb

87Th MEETING of THE 87th MEETING OF THE MSA “DIVERSITY IN ALL DIMENSIONS” August 10-14, 2019, Minneapolis, MN | #MSAFungi2019 87th MEETING OF THE MSA “DIVERSITY IN ALL DIMENSIONS” August 10-14, 2019, Minneapolis, MN | #MSAFungi2019 WIFI INFORMATION SENSITIVE INFORMATION HASHTAG Guests at the conference who Please respect researchers’ wish #MSAFungi2019 require internet access may not to share certain sensitive request a guest username and data. If you see this icon on password from registration staff. slides or a poster, please do not photograph or share on social media. BULLETIN BOARD FOR POSTING MESSAGES: GRADUATE HOTEL, SECOND FLOOR LOBBY TO VIEW ABSTRACTS TO VIEW ONLINE PROGRAM < ON THE COVER: CONFERENCE LOGO CREATED BY SAVANNAH GENTRY, UNIVERSITY OF WISCONSIN - MADISON TABLE OF CONTENTS IMPORTANT INFORMATION INSIDE FRONT COVER WE THANK OUR SPONSORS 2-3 MSA OFFICERS, COUNCILORS & COMMITTEE MEMBERS 4 CODE OF CONDUCT FOR MSA EVENTS 5 REGISTRATION, GENERAL & VENUE INFORMATION 6 CONFERENCE ACTIVITES 7 DISTINCTIONS AND AWARDS 8-13 MSA 2019 KARLING LECTURE 14 ANNUAL MEETING PRESENTATION GUIDELINES 15 2019 PROGRAM 16-42 PRESENTING AUTHOR INDEX 43-45 VISITOR INFORMATION & MAPS 46-47 MSA 2020 SAVE THE DATE 48-49 SCHEDULE AT A GLANCE 50 NOTES 51-53 AUGUST 10–14, 2019, Minneapolis, MN | 1 WE THANK OUR SPONSORS OF THE 2019 MSA MEETING! Driven to discover science-based solutions to the challenges of nourishing people while enriching the environment College of Biological Sciences, University of Minnesota www.cfans.umn.edu 2 | 87TH MEETING OF THE MSA WE THANK OUR SPONSORS OF THE 2019 MSA MEETING! Delivering cutting-edge, internationally recognized research and teaching at all levls of biological organization — from molecules to ecosystems. cbs.umn.edu PHOTO BY SAM WILLARD SAM BY PHOTO AUGUST 10–14, 2019, Minneapolis, MN | 3 MSA OFFICERS Sharon A. Cantrell, President (2018-2019) Anne Pringle, President-Elect (2018-2019) Marc Cubeta, Vice President (2018-2019) Marin Brewer, Executive Vice President (2018-2021) Chris Schardl, Treasurer (2016-2019) Tom Volk, Past-President (2018-2019) Georgiana May, Past-Past President (2018-2019) MSA COUNCILORS Robby Roberson, Councilor, Cell Biology/Physiology (2017-2019) Jason Stajich, Councilor, Cell Biology/Physiology (2018-2020) Sara Branco, Councilor, Ecology/Pathology (2017-2019) Nhu Nguyen, Councilor, Ecology/Pathology (2018-2020) Don Natvig, Councilor, Genetics/Molecular Biology (2017-2019) Alisha Quandt, Councilor, Genetics/Molecular Biology (2018-2020) Conrad Schoch, Councilor, Systematics/Evolution (2017-2019) Brandon Matheny, Councilor, Systematics/Evolution (2018-2020) MSA PROGRAM COMMITTEE 2019 Tony Glenn, Chair (2015-2019) Lisa Grubisha (2016-2020) Heather Hallen-Adams (2017-2021) Frances Trail (2018-2022) Kristi Gdanetz MacCready, Student Rep (2018-2019) MSA VOLUNTEERS MSA is a volunteer-run society and depends on a large number of individuals for the day-to-day operations of the society, for organizing and hosting the annual meetings, and for publishing Mycologia. The Offcers and Councilors wish to extend their gratitude to all of the volunteers. MSA has such a dedicated membership and is immeasurably grateful of your time, energy, and service to the society. MSA LOCAL ARRANGEMENTS COMMITTEE Georgiana May (Dept. EEB, UMN, lead) Bob Blanchette (Dept. Plant Pathology, UMN, UMN Alumni gathering) Jim Bradeen (Dept. Plant Pathology, UMN, Bell Museum event) Kathryn Bushley (Dept. PMB, UMN, UMN Alumni gathering) Peter Kennedy (Dept. PMB, UMN, Foray) Corby Kistler (USDA Cereal Disease Lab, Bell Museum event) Jonathon Shilling (Dept. PMB, UMN, workshop liaison) UMycoClub student group (Bell Museum event, meeting liaisons) Monica Watson (EEB grad program, Auction organization) MSA FORAY COORDINATOR Nhu Nguyen (U. Hawaii, Manoa; Foray leader) MSA EVENT PLANNERS (CCAPS, UMN) Kady Hagberg Rhonda Layer Abigayle O’Keefe 4 | 87TH MEETING OF THE MSA CODE OF CONDUCT FOR MSA EVENTS MSA values the diversity of views, expertise, opinions, backgrounds, and experiences reflected among MSA members and the broader mycology community, and is committed to providing a safe, productive and welcoming environment for all participants of MSA meetings and events. MSA meetings and events can serve as an effective forum to consider and debate science- relevant viewpoints • Inappropriate physical contact in an orderly, respectful, and fair manner. This Code of • Unwanted sexual attention Conduct is important to promoting diversity and creating an • Use of sexual or discriminatory images in public spaces inclusive, supportive, and collaborative environment for all or in presentations peoples. • Deliberate intimidation, stalking, or following • Harassing photography or recording, including taking All MSA meetings and events participants – including, but photographs or recording of another individual’s oral not limited to, attendees, speakers, volunteers, exhibitors, presentation or poster without the explicit permission of MSA staff, members of the media, vendors, and service that individual and of MSA providers (hereinafter “participants”) – are expected to • Sustained disruption of talks or other events abide by this MSA Code of Conduct and by the MSA policy • Bullying behavior for harassment and discrimination (Appendix B of the MSA • Retaliation for reporting unacceptable behavior manual of operations). This Code of Conduct applies in all venues, including ancillary events and social gatherings, and on-line forums and discussions associated with the Immediate Serious Threat to Public Safety Anyone experiencing or witnessing behavior that MSA. constitutes an immediate or serious threat to public safety at any time should contact local law enforcement (by Expected Behavior calling 911) and immediately notifying facility security. • Treat all participants with kindness, respect and consideration, valuing a diversity of views and opinions Reporting Unacceptable Behavior (including those you may not share). • If you are not in immediate danger but feel that you are • Communicate openly, with respect for other participants, the subject of unacceptable behavior, have witnessed critiquing ideas rather than individuals. any such behavior, or have other concerns, please • Refrain from demeaning, discriminatory, or harassing notify an MSA staff member (as soon as possible) who behavior and speech directed toward other participants. can work with appropriate MSA leadership to resolve • Be mindful of your surroundings and of your fellow the situation. All reports will be treated seriously and participants. Alert MSA staff if you notice a dangerous responded to promptly. I you are in immediate danger situation or someone in distress. please call 911. • Respect the rules and policies of the meeting venue, • To report incidents of any sort during or following hotels, MSA-contracted facility, or any other venue. an MSA event, please contact MSA at msafungi@ reesgroupinc.com. Unacceptable Behavior • Once MSA is notifed staff will discuss the details Harassment, intimidation, or discrimination in any form. frst with the individual fling the complaint, then any Harassment includes speech or behavior that is not witnesses who have been identifed, and then the welcome or is personally offensive. Behavior that is alleged offender before determining an appropriate acceptable to one person may not be acceptable to another, course of action. Confdentiality will be maintained to so use discretion to be certain respect is communicated. the extent that it does not compromise the rights of Harassment intended in a joking manner still constitutes others. unacceptable behavior. Consequences Examples of unacceptable behavior include, but are not • Anyone requested to stop unacceptable behavior is limited to: expected to comply immediately. • Physical or verbal abuse of any participant • MSA staff (or their designee) or security may take any • Unwelcome or offensive verbal comments or immediate action deemed necessary and appropriate, exclusionary behavior related to age, appearance or including removal from the meeting or event without body size, employment or military status, ethnicity, warning or refund. gender identity and expression, individual lifestyle, • Further consequences may include prohibition from marital status, national origin, physical or cognitive attending future meetings and events. ability, political affliation, sexual orientation, race, or religion AUGUST 10–14, 2019, Minneapolis, MN | 5 REGISTRATION, GENERAL & VENUE INFORMATION Safety/Medical Information Registration Desk Campus Safety Information The registration desk is located in the West Wing University Police (non-emergency) Lobby on the second floor of The Graduate Hotel, 615 612-624-2677 Washington Ave SE, Minneapolis, on the East Bank of Free campus escort service the University of Minnesota. Staff will help participants 612-624-9255 check-in to the conference, answer questions, and handle on-site registration during the following hours: Call 612-624-9255 (WALK) 15-30 minutes prior to your desired departure time. A trained dispatcher from the Sunday, August 11 15:00 - 18:00 911 Public Safety Emergency Communication Center Monday, August 12 07:00 - 18:00 (PSECC) will ask for your frst name, pick up location, Tuesday, August 13 07:00 - 17:00 destination, and a call back number in case we need to Wednesday, August 14 07:00 - 18:00 contact you for more information. Nametags Motorist Assistance Program (MAP) 612-626-7275 Each registered participant will receive a nametag upon check-in with the
Recommended publications
  • Museum, University of Bergen, Norway for Accepting The
    PERSOONIA Published by the Rijksherbarium, Leiden Volume Part 6, 4, pp. 439-443 (1972) The Suboperculate ascus—a review Finn-Egil Eckblad Botanical Museum, University of Bergen, Norway The suboperculate nature of the asci of the Sarcoscyphaceae is discussed, that it does in its and further and it is concluded not exist original sense, that the Sarcoscyphaceae is not closely related to the Sclerotiniaceae. The question of the precise nature ofthe ascus in the Sarcoscyphaceae is important in connection with the of the the The treatment taxonomy of Discomycetes. family has been established the Sarcoscyphaceae as a highranking taxon, Suboperculati, by Le Gal (1946b, 1999), on the basis of its asci being suboperculate. Furthermore, the Suboperculati has beenregarded as intermediatebetween the rest of the Operculati, The Pezizales, and the Inoperculati, especially the order Helotiales, and its family Sclerotiniaceae (Le Gal, 1993). Recent views on the taxonomie position of the Sarcoscyphaceae are given by Rifai ( 1968 ), Eckblad ( ig68 ), Arpin (ig68 ), Kim- brough (1970) and Korf (igyi). The Suboperculati were regarded by Le Gal (1946a, b) as intermediates because had both the beneath they operculum of the Operculati, and in addition, it, some- ofthe of the In the the thing pore structure Inoperculati. Suboperculati pore struc- to ture is said take the form of an apical chamberwith an internal, often incomplete within Note this ring-like structure it. that in case the spores on discharge have to travers a double hindrance, the internal ring and the circular opening, and that the diameters of these obstacles are both smaller than the smallest diameterof the spores.
    [Show full text]
  • Chorioactidaceae: a New Family in the Pezizales (Ascomycota) with Four Genera
    mycological research 112 (2008) 513–527 journal homepage: www.elsevier.com/locate/mycres Chorioactidaceae: a new family in the Pezizales (Ascomycota) with four genera Donald H. PFISTER*, Caroline SLATER, Karen HANSENy Harvard University Herbaria – Farlow Herbarium of Cryptogamic Botany, Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA article info abstract Article history: Molecular phylogenetic and comparative morphological studies provide evidence for the Received 15 June 2007 recognition of a new family, Chorioactidaceae, in the Pezizales. Four genera are placed in Received in revised form the family: Chorioactis, Desmazierella, Neournula, and Wolfina. Based on parsimony, like- 1 November 2007 lihood, and Bayesian analyses of LSU, SSU, and RPB2 sequence data, Chorioactidaceae repre- Accepted 29 November 2007 sents a sister clade to the Sarcosomataceae, to which some of these taxa were previously Corresponding Editor: referred. Morphologically these genera are similar in pigmentation, excipular construction, H. Thorsten Lumbsch and asci, which mostly have terminal opercula and rounded, sometimes forked, bases without croziers. Ascospores have cyanophilic walls or cyanophilic surface ornamentation Keywords: in the form of ridges or warts. So far as is known the ascospores and the cells of the LSU paraphyses of all species are multinucleate. The six species recognized in these four genera RPB2 all have limited geographical distributions in the northern hemisphere. Sarcoscyphaceae ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Sarcosomataceae SSU Introduction indicated a relationship of these taxa to the Sarcosomataceae and discussed the group as the Chorioactis clade. Only six spe- The Pezizales, operculate cup-fungi, have been put on rela- cies are assigned to these genera, most of which are infre- tively stable phylogenetic footing as summarized by Hansen quently collected.
    [Show full text]
  • Peziza and Pezizaceae Inferred from Multiple Nuclear Genes: RPB2, -Tubulin, and LSU Rdna
    Molecular Phylogenetics and Evolution 36 (2005) 1–23 www.elsevier.com/locate/ympev Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, -tubulin, and LSU rDNA Karen Hansen ¤, Katherine F. LoBuglio, Donald H. PWster Harvard University Herbaria, Cambridge, MA 02138, USA Received 5 May 2004; revised 17 December 2004 Available online 22 April 2005 Abstract To provide a robust phylogeny of Pezizaceae, partial sequences from two nuclear protein-coding genes, RPB2 (encoding the sec- ond largest subunit of RNA polymerase II) and -tubulin, were obtained from 69 and 72 specimens, respectively, to analyze with nuclear ribosomal large subunit RNA gene sequences (LSU). The three-gene data set includes 32 species of Peziza, and 27 species from nine additional epigeous and six hypogeous (truZe) pezizaceous genera. Analyses of the combined LSU, RPB2, and -tubulin data set using parsimony, maximum likelihood, and Bayesian approaches identify 14 Wne-scale lineages within Pezizaceae. Species of Peziza occur in eight of the lineages, spread among other genera of the family, conWrming the non-monophyly of the genus. Although parsimony analyses of the three-gene data set produced a nearly completely resolved strict consensus tree, with increased conWdence, relationships between the lineages are still resolved with mostly weak bootstrap support. Bayesian analyses of the three- gene data, however, show support for several more inclusive clades, mostly congruent with Bayesian analyses of RPB2. No strongly supported incongruence was found among phylogenies derived from the separate LSU, RPB2, and -tubulin data sets. The RPB2 region appeared to be the most informative single gene region based on resolution and clade support, and accounts for the greatest number of potentially parsimony informative characters within the combined data set, followed by the LSU and the -tubulin region.
    [Show full text]
  • Kumanasamuha Geaster Sp. Nov., an Anamorph of Chorioactis Geaster from Japan
    Mycologia, 101(6), 2009, pp. 871–877. DOI: 10.3852/08-121 # 2009 by The Mycological Society of America, Lawrence, KS 66044-8897 Kumanasamuha geaster sp. nov., an anamorph of Chorioactis geaster from Japan H. Nagao1,2 sequences and morphology. The combination of the Genebank, National Institute of Agrobiological Sciences, three datasets produced similar or stronger support Tsukuba 305-8602, Japan for this lineage. A new family, Chorioactidaceae, was S. Kurogi erected in the Pezizales (Pfister et al 2008) to Miyazaki Prefectural Museum of Nature and History, accommodate Chorioactis and three other genera, Miyazaki 880-0053, Japan Desmazierella, Neournula and Wolfina. Chorioactis geaster has been found in evergreen E. Kiyota broadleaf forests in Kyusyu, Japan (Imazeki 1938, Kyusyu University of Health and Welfare, Nobeoka Imazeki and Otani 1975, Kurogi et al 2002). However 882-8508, Japan these forests are now disappearing due to deforesta- K. Sasatomi tion and replanting with Cryptomeria japonica D. Don Kyusyu Environmental Evaluation Association, and construction of a dam. Chorioactis geaster has Fukuoka 813-0004, Japan been listed as a threatened fungus in the Red Data Book of Japan (2000) because of its global rarity. The occurrence of C. geaster was infrequent (Imazeki Abstract: A new species of Kumanasamuha is de- 1938, Imazeki and Otani 1975) and asexual sporula- scribed and illustrated from axenic single-spore tion of C. geaster was not observed (Imazeki and Otani isolates of Chorioactis geaster. The characteristics of 1975). We have made some observations on the life conidia and hyphae are the same as the dematiaceous cycle of C. geaster and are trying to find ways to hyphomycete observed on decayed trunks of Quercus conserve this endangered fungus (Kurogi et al 2002).
    [Show full text]
  • Contribution to the Study of Neotropical Discomycetes: a New Species of the Genus Geodina (Geodina Salmonicolor Sp
    Mycosphere 9(2): 169–177 (2018) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/9/2/1 Copyright © Guizhou Academy of Agricultural Sciences Contribution to the study of neotropical discomycetes: a new species of the genus Geodina (Geodina salmonicolor sp. nov.) from the Dominican Republic Angelini C1,2, Medardi G3, Alvarado P4 1 Jardín Botánico Nacional Dr. Rafael Ma. Moscoso, Santo Domingo, República Dominicana 2 Via Cappuccini 78/8, 33170 (Pordenone) 3 Via Giuseppe Mazzini 21, I-25086 Rezzato (Brescia) 4 ALVALAB, La Rochela 47, E-39012 Santander, Spain Angelini C, Medardi G, Alvarado P 2018 - Contribution to the study of neotropical discomycetes: a new species of the genus Geodina (Geodina salmonicolor sp. nov.) from the Dominican Republic. Mycosphere 9(2), 169–177, Doi 10.5943/mycosphere/9/2/1 Abstract Geodina salmonicolor sp. nov., a new neotropical / equatorial discomycetes of the genus Geodina, is here described and illustrated. The discovery of this new entity allowed us to propose another species of Geodina, until now a monospecific genus, and produce the first 28S rDNA genetic data, which supports this species is related to genus Wynnea in the Sarcoscyphaceae. Key-words – 1 new species – Ascomycota – Sarcoscyphaceae – Sub-tropical zone Caribbeans – Taxonomy Introduction A study started more than 10 years ago in the area of Santo Domingo (Dominican Republic) by one of the authors allowed us to identify several interesting fungal species, both Basidiomycota and Ascomycota. Angelini & Medardi (2012) published a first report of ascomycetes in which 12 lignicolous species including discomycetes and pyrenomycetes were described and illustrated in detail, also delineating the physical and botanical characteristics of the research area.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • (With (Otidiaceae). Annellospores, The
    PERSOONIA Published by the Rijksherbarium, Leiden Volume Part 6, 4, pp. 405-414 (1972) Imperfect states and the taxonomy of the Pezizales J.W. Paden Department of Biology, University of Victoria Victoria, B. C., Canada (With Plates 20-22) Certainly only a relatively few species of the Pezizales have been studied in culture. I that this will efforts in this direction. hope paper stimulatemore A few patterns are emerging from those species that have been cultured and have produced conidia but more information is needed. Botryoblasto- and found in cultures of spores ( Oedocephalum Ostracoderma) are frequently Peziza and Iodophanus (Pezizaceae). Aleurospores are known in Peziza but also in other like known in genera. Botrytis- imperfect states are Trichophaea (Otidiaceae). Sympodulosporous imperfect states are known in several families (Sarcoscyphaceae, Sarcosomataceae, Aleuriaceae, Morchellaceae) embracing both suborders. Conoplea is definitely tied in with Urnula and Plectania, Nodulosporium with Geopyxis, and Costantinella with Morchella. Certain types of conidia are not presently known in the Pezizales. Phialo- and few other have spores, porospores, annellospores, blastospores a types not been reported. The absence of phialospores is of special interest since these are common in the Helotiales. The absence of conidia in certain e. Helvellaceae and Theleboleaceae also be of groups, g. may significance, and would aid in delimiting these taxa. At the species level critical com- of taxonomic and parison imperfect states may help clarify problems supplement other data in distinguishing between closely related species. Plectania and of where such Peziza, perhaps Sarcoscypha are examples genera studies valuable. might prove One of the Pezizales in need of in culture large group desparate study are the few of these have been cultured.
    [Show full text]
  • Henry Dissing, 31. March 1931 – 10. December 2009
    Henry Dissing, 31. March 1931 – 10. December 2009 Thomas LÆSSØE Department of Biology, University of Copenhagen Universitetsparken 15 DK-2100 Copenhagen Ø [email protected] Ascomycete.org, 2 (4) : 3-6. Summary: Biography of Henry Dissing, Danish mycologist, specialist of Pezizales, died Février 2011 in December 2009. Keywords: Tribute, Danish mycologist, University of Copenhagen, Ascomycota. Résumé : biographie d’Henry Dissing, mycologue danois, spécialiste des Pezizales, dé- cédé en décembre 2009. Mots-clés : hommage, mycologue danois, université de Copenhague, Ascomycota. Henry was born in Jutland, in a small village, where he was association was with Sigmund Sivertsen in Norway. Throu- expected to follow in his father’s footsteps as a potter. He ghout, he trained Master students in all sorts of mycological chose a completely different career but did support his early topics, and one of them, Karen Hansen, continues his work education by working at the royal porcelain factory in Co- on the Pezizales (from Stockholm). Others are employed in penhagen. After that, he studied at Copenhagen University the biotechnological industry or teach at high school. A long where he started his biology studies in 1960. He very soon lasting teaching effort was the mycological field courses held became interested in fungi and quickly became part of the from 1965-2009 at the Kristiansminde Field Centre, where group around Morten Lange at the newly established “Insti- Henry participated in most courses until retirement, and tut for Sporeplanter”, where Lise Hansen was another core more than one thousand students got their mycological field member. Henry became the ascomycote person and Morten training during this period, including a lot of Norwegian stu- dealt with agarics and also collaborated with Henry on “Gas- dents.
    [Show full text]
  • Species of Peziza S. Str. on Water-Soaked Wood with Special Reference to a New Species, P
    DOI 10.12905/0380.sydowia68-2016-0173 Species of Peziza s. str. on water-soaked wood with special reference to a new species, P. nordica, from central Norway Donald H. Pfister1, *, Katherine F. LoBuglio1 & Roy Kristiansen2 1 Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138, USA 2 PO Box 32, N-1650 Sellebakk, Norway * e-mail: [email protected] Pfister D.H., LoBuglio K.F. & Kristiansen R. (2016) Species ofPeziza s. str. on water-soaked wood with special reference to a new species, P. nordica, from central Norway. – Sydowia 68: 173–185. Peziza oliviae, P. lohjaoensis, P. montirivicola and a new species from Norway form a well-supported clade within the Peziza s. str. group based on study of the internal transcribed spacer + 5.8S rRNA gene, large subunit rRNA gene and the 6–7 region of the DNA-dependent RNA polymerase II gene. Like P. oliviae and P. montirivicola, the new species, P. nordica, is distinctly stipi- tate and occurs on wood that has been inundated by fresh water. These species also have paraphyses with yellow vacuolar inclu- sions. They fruit early in the season or at high elevations and are presumed to be saprobic. A discussion of application of the name Peziza is given. Keywords: Ascomycota, molecular phylogeny, Pezizales, taxonomy. The present work was begun to determine the Schwein.) Fr., Cudoniella clavus (Alb. & Schwein.) identity of a collection made by one of us (RK) in Dennis and frequently Scutellinia scutellata (L.) August 2014. This large, orange brown to brown, Lambotte.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • Phylogenetics of the Pezizaceae, with an Emphasis on Peziza
    Mycologia, 93(5), 2001, pp. 958-990. © 2001 by The Mycological Society of America, Lawrence, KS 66044-8897 Phylogenetics of the Pezizaceae, with an emphasis on Peziza Karen Hansen' tions were found to support different rDNA lineages, Thomas Laess0e e.g., a distinct amyloid ring zone at the apex is a syn- Department of Mycology, University of Copenhagen, apomorphy for group IV, an intense and unrestricted 0ster Farimagsgade 2 D, DK-1353 Copenhagen K, amyloid reaction of the apex is mostly found in Denmark group VI, and asci that are weakly or diffusely amy- Donald H. Pfister loid in the entire length are present in group II. Oth- Harvard University Herbaria, Cambridge, er morphological features, such as spore surface re- Massachusetts, 02138 USA lief, guttulation, excipulum structure and pigments, while not free from homoplasy, do support the groupings. Anamorphs likewise provide clues to high- Abstract: Phylogenetic relationships among mem- er-order relationships within the Pezizaceae. Several bers of the Pezizaceae were studied using 90 partial macro- and micromorphological features, however, LSU rDNA sequences from 51 species of Peziza and appear to have evolved several times independently, 20 species from 8 additional epigeous genera of the including ascomatal form and habit (epigeous, se- Pezizaceae, viz. Boudiera, Iodophanus, Iodowynnea, mihypogeous or hypogeous), spore discharge mech- Kimbropezia, Pachyella, Plicaria, Sarcosphaera and Sca- anisms, and spore shape. Parsimony-based optimiza- bropezia, and 5 hypogeous genera, viz. Amylascus, Ca- tion of character states on our phylogenetic trees sug- zia, Hydnotryopsis, Ruhlandiella and Tirmania. To gested that transitions to truffle and truffle-like forms test the monophyly of the Pezizaceae and the rela- evolved at least three times within the Pezizaceae (in tionships to the genera Marcelleina and Pfistera (Py- group III, V and VI).
    [Show full text]
  • A New Morphological Arrangement of the Polyporales. I
    A new morphological arrangement of the Polyporales. I. Phanerochaetineae © Ivan V. Zmitrovich, Vera F. Malysheva,* Wjacheslav A. Spirin** V.L. Komarov Botanical Institute RAS, Prof. Popov str. 2, 197376, St-Petersburg, Russia e-mail: [email protected], *[email protected], **[email protected] Zmitrovich I.V., Malysheva V.F., Spirin W.A. A new morphological arrangement of the Polypo- rales. I. Phanerochaetineae. Mycena. 2006. Vol. 6. P. 4–56. UDC 582.287.23:001.4. SUMMARY: A new taxonomic division of the suborder Phanerochaetineae of the order Polyporales is presented. The suborder covers five families, i.e. Faerberiaceae Pouzar, Fistuli- naceae Lotsy (including Jülich’s Bjerkanderaceae, Grifolaceae, Hapalopilaceae, and Meripi- laceae), Laetiporaceae Jülich (=Phaeolaceae Jülich), and Phanerochaetaceae Jülich. As a basis of the suggested subdivision, features of basidioma micromorphology are regarded, with special attention to hypha/epibasidium ratio. Some generic concepts are changed. New genera Raduliporus Spirin & Zmitr. (type Polyporus aneirinus Sommerf. : Fr.), Emmia Zmitr., Spirin & V. Malysheva (type Polyporus latemarginatus Dur. & Mont.), and Leptochaete Zmitr. & Spirin (type Thelephora sanguinea Fr. : Fr.) are described. The genus Byssomerulius Parmasto is proposed to be conserved versus Dictyonema C. Ag. The genera Abortiporus Murrill and Bjer- kandera P. Karst. are reduced to Grifola Gray. In total, 69 new combinations are proposed. The species Emmia metamorphosa (Fuckel) Spirin, Zmitr. & Malysheva (commonly known as Ceri- poria metamorphosa (Fuckel) Ryvarden & Gilb.) is reported as new to Russia. Key words: aphyllophoroid fungi, corticioid fungi, Dictyonema, Fistulinaceae, homo- basidiomycetes, Laetiporaceae, merulioid fungi, Phanerochaetaceae, phylogeny, systematics I. INTRODUCTORY NOTES There is no general agreement how to outline the limits of the forms which should be called phanerochaetoid fungi.
    [Show full text]