Delta Conveyance Siting Drivers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
0 5 10 15 20 Miles Μ and Statewide Resources Office
Woodland RD Name RD Number Atlas Tract 2126 5 !"#$ Bacon Island 2028 !"#$80 Bethel Island BIMID Bishop Tract 2042 16 ·|}þ Bixler Tract 2121 Lovdal Boggs Tract 0404 ·|}þ113 District Sacramento River at I Street Bridge Bouldin Island 0756 80 Gaging Station )*+,- Brack Tract 2033 Bradford Island 2059 ·|}þ160 Brannan-Andrus BALMD Lovdal 50 Byron Tract 0800 Sacramento Weir District ¤£ r Cache Haas Area 2098 Y o l o ive Canal Ranch 2086 R Mather Can-Can/Greenhead 2139 Sacramento ican mer Air Force Chadbourne 2034 A Base Coney Island 2117 Port of Dead Horse Island 2111 Sacramento ¤£50 Davis !"#$80 Denverton Slough 2134 West Sacramento Drexler Tract Drexler Dutch Slough 2137 West Egbert Tract 0536 Winters Sacramento Ehrheardt Club 0813 Putah Creek ·|}þ160 ·|}þ16 Empire Tract 2029 ·|}þ84 Fabian Tract 0773 Sacramento Fay Island 2113 ·|}þ128 South Fork Putah Creek Executive Airport Frost Lake 2129 haven s Lake Green d n Glanville 1002 a l r Florin e h Glide District 0765 t S a c r a m e n t o e N Glide EBMUD Grand Island 0003 District Pocket Freeport Grizzly West 2136 Lake Intake Hastings Tract 2060 l Holland Tract 2025 Berryessa e n Holt Station 2116 n Freeport 505 h Honker Bay 2130 %&'( a g strict Elk Grove u Lisbon Di Hotchkiss Tract 0799 h lo S C Jersey Island 0830 Babe l Dixon p s i Kasson District 2085 s h a King Island 2044 S p Libby Mcneil 0369 y r !"#$5 ·|}þ99 B e !"#$80 t Liberty Island 2093 o l a Lisbon District 0307 o Clarksburg Y W l a Little Egbert Tract 2084 S o l a n o n p a r C Little Holland Tract 2120 e in e a e M Little Mandeville -
Transitions for the Delta Economy
Transitions for the Delta Economy January 2012 Josué Medellín-Azuara, Ellen Hanak, Richard Howitt, and Jay Lund with research support from Molly Ferrell, Katherine Kramer, Michelle Lent, Davin Reed, and Elizabeth Stryjewski Supported with funding from the Watershed Sciences Center, University of California, Davis Summary The Sacramento-San Joaquin Delta consists of some 737,000 acres of low-lying lands and channels at the confluence of the Sacramento and San Joaquin Rivers (Figure S1). This region lies at the very heart of California’s water policy debates, transporting vast flows of water from northern and eastern California to farming and population centers in the western and southern parts of the state. This critical water supply system is threatened by the likelihood that a large earthquake or other natural disaster could inflict catastrophic damage on its fragile levees, sending salt water toward the pumps at its southern edge. In another area of concern, water exports are currently under restriction while regulators and the courts seek to improve conditions for imperiled native fish. Leading policy proposals to address these issues include improvements in land and water management to benefit native species, and the development of a “dual conveyance” system for water exports, in which a new seismically resistant canal or tunnel would convey a portion of water supplies under or around the Delta instead of through the Delta’s channels. This focus on the Delta has caused considerable concern within the Delta itself, where residents and local governments have worried that changes in water supply and environmental management could harm the region’s economy and residents. -
RD799 Five Year Plan
Reclamation District 799 Five Year Capital Improvement Plan May 2012 Prepared by 2365 Iron Point Road, Suite 300 Folsom, CA 95630 This page intentionally left blank. RD 799 Five Year Plan Contents 1.0 Executive Summary .............................................................................................................. 1 2.0 Brief History of Hotchkiss Tract .......................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Geomorphic Evolution ........................................................................................................................ 4 2.3 Historical Flood Events ....................................................................................................................... 6 2.3.1 Existing level of protection ........................................................................................................... 6 3.0 Identification of Need for Improvements to Alleviate or Minimize Existing Hazards ........................................................................................................................................ 7 3.1 Local Assets ....................................................................................................................................... 7 3.2 Non-local Assets and Public Benefit .................................................................................................. -
Transitions for the Delta Economy
Transitions for the Delta Economy January 2012 Josué Medellín-Azuara, Ellen Hanak, Richard Howitt, and Jay Lund with research support from Molly Ferrell, Katherine Kramer, Michelle Lent, Davin Reed, and Elizabeth Stryjewski Supported with funding from the Watershed Sciences Center, University of California, Davis Summary The Sacramento-San Joaquin Delta consists of some 737,000 acres of low-lying lands and channels at the confluence of the Sacramento and San Joaquin Rivers (Figure S1). This region lies at the very heart of California’s water policy debates, transporting vast flows of water from northern and eastern California to farming and population centers in the western and southern parts of the state. This critical water supply system is threatened by the likelihood that a large earthquake or other natural disaster could inflict catastrophic damage on its fragile levees, sending salt water toward the pumps at its southern edge. In another area of concern, water exports are currently under restriction while regulators and the courts seek to improve conditions for imperiled native fish. Leading policy proposals to address these issues include improvements in land and water management to benefit native species, and the development of a “dual conveyance” system for water exports, in which a new seismically resistant canal or tunnel would convey a portion of water supplies under or around the Delta instead of through the Delta’s channels. This focus on the Delta has caused considerable concern within the Delta itself, where residents and local governments have worried that changes in water supply and environmental management could harm the region’s economy and residents. -
Northern San Francisco Bay Ecological Risk Assessment: Potential Crude by Rail Incident Meagan Bowis University of San Francisco, [email protected]
The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-20-2016 Northern San Francisco Bay Ecological Risk Assessment: Potential Crude by Rail Incident Meagan Bowis University of San Francisco, [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, Natural Resource Economics Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Bowis, Meagan, "Northern San Francisco Bay Ecological Risk Assessment: Potential Crude by Rail Incident" (2016). Master's Projects and Capstones. 340. https://repository.usfca.edu/capstone/340 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master’s Project Northern San Francisco Bay Ecological Risk Assessment: Potential Crude by Rail Incident By Meagan Kane Bowis is submitted in partial fulfillment of the requirements -
Workshop Report—Earthquakes and High Water As Levee Hazards in the Sacramento-San Joaquin Delta
Workshop report—Earthquakes and High Water as Levee Hazards in the Sacramento-San Joaquin Delta Delta Independent Science Board September 30, 2016 Summary ......................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Workshop ........................................................................................................................................ 1 Scope ........................................................................................................................................... 1 Structure ...................................................................................................................................... 2 Participants and affiliations ........................................................................................................ 2 Highlights .................................................................................................................................... 3 Earthquakes ............................................................................................................................. 3 High water ............................................................................................................................... 4 Perspectives.................................................................................................................................... -
Comparing Futures for the Sacramento-San Joaquin Delta
comparing futures for the sacramento–san joaquin delta jay lund | ellen hanak | william fleenor william bennett | richard howitt jeffrey mount | peter moyle 2008 Public Policy Institute of California Supported with funding from Stephen D. Bechtel Jr. and the David and Lucile Packard Foundation ISBN: 978-1-58213-130-6 Copyright © 2008 by Public Policy Institute of California All rights reserved San Francisco, CA Short sections of text, not to exceed three paragraphs, may be quoted without written permission provided that full attribution is given to the source and the above copyright notice is included. PPIC does not take or support positions on any ballot measure or on any local, state, or federal legislation, nor does it endorse, support, or oppose any political parties or candidates for public office. Research publications reflect the views of the authors and do not necessarily reflect the views of the staff, officers, or Board of Directors of the Public Policy Institute of California. Summary “Once a landscape has been established, its origins are repressed from memory. It takes on the appearance of an ‘object’ which has been there, outside us, from the start.” Karatani Kojin (1993), Origins of Japanese Literature The Sacramento–San Joaquin Delta is the hub of California’s water supply system and the home of numerous native fish species, five of which already are listed as threatened or endangered. The recent rapid decline of populations of many of these fish species has been followed by court rulings restricting water exports from the Delta, focusing public and political attention on one of California’s most important and iconic water controversies. -
Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA
UC Davis San Francisco Estuary and Watershed Science Title Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA Permalink https://escholarship.org/uc/item/7xd4x0xw Journal San Francisco Estuary and Watershed Science, 8(2) ISSN 1546-2366 Authors Deverel, Steven J Leighton, David A Publication Date 2010 DOI https://doi.org/10.15447/sfews.2010v8iss2art1 Supplemental Material https://escholarship.org/uc/item/7xd4x0xw#supplemental License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California august 2010 Historic, Recent, and Future Subsidence, Sacramento-San Joaquin Delta, California, USA Steven J. Deverel1 and David A. Leighton Hydrofocus, Inc., 2827 Spafford Street, Davis, CA 95618 AbStRACt will range from a few cm to over 1.3 m (4.3 ft). The largest elevation declines will occur in the central To estimate and understand recent subsidence, we col- Sacramento–San Joaquin Delta. From 2007 to 2050, lected elevation and soils data on Bacon and Sherman the most probable estimated increase in volume below islands in 2006 at locations of previous elevation sea level is 346,956,000 million m3 (281,300 ac-ft). measurements. Measured subsidence rates on Sherman Consequences of this continuing subsidence include Island from 1988 to 2006 averaged 1.23 cm year-1 increased drainage loads of water quality constitu- (0.5 in yr-1) and ranged from 0.7 to 1.7 cm year-1 (0.3 ents of concern, seepage onto islands, and decreased to 0.7 in yr-1). Subsidence rates on Bacon Island from arability. -
Subsidence Reversal for Tidal Reconnection
PERFORMANCE MEASURE 4.12: SUBSIDENCE REVERSAL FOR TIDAL RECONNECTION Performance Measure 4.12: Subsidence Reversal for Tidal Reconnection Performance Measure (PM) Component Attributes Type: Output Performance Measure Description 1 Subsidence reversal 0F activities are located at shallow subtidal elevations to prevent net loss of future opportunities to restore tidal wetlands in the Delta and Suisun Marsh. Expectations Preventing long-term net loss of land at intertidal elevations in the Delta and Suisun Marsh from impacts of sea level rise and land subsidence. Metric 1. Acres of Delta and Suisun Marsh land with subsidence reversal activity located on islands with large areas at shallow subtidal elevations. This metric will be reported annually. 2. Average elevation accretion at each project site presented in centimeters per year. This metric will be reported every five years. Baseline 1. In 2019, zero acres of subsidence reversal on islands with large areas at shallow subtidal elevations. 2. Short-term elevation accretion in the Delta at 4 centimeters per year. 1 Subsidence reversal is a process that halts soil oxidation and accumulates new soil material in order to increase land elevations. Examples of subsidence reversal activities are rice cultivation, managed wetlands, and tidal marsh restoration. DELTA PLAN, AMENDED – PRELIMINARY DRAFT NOVEMBER 2019 1 PERFORMANCE MEASURE 4.12: SUBSIDENCE REVERSAL FOR TIDAL RECONNECTION Target 1. By 2030, 3,500 acres in the Delta and 3,000 acres in Suisun Marsh with subsidence reversal activities on islands, with at least 50 percent of the area or with at least 1,235 acres at shallow subtidal elevations. 2. An average elevation accretion of subsidence reversal is at least 4 centimeters per year up to 2050. -
On the Formation of Fluvial Islands
AN ABSTRACT OF THE DISSERTATION OF Joshua R. Wyrick for the degree of Doctor of Philosophy in Civil Engineering presented on March 31, 2005. Title: On the Formation of Fluvial Islands Abstract approved: Signature redacted for privacy. Peter C. Klingeman This research analyzes the effects of islands on river process and the effects river processes have on island formation. A fluvial island is defined herein as a land mass within a river channel that is separated from the floodplain by water on all sides, exhibits some stability, and remains exposed during bankfull flow. Fluvial islands are present in nearly all major rivers. They must therefore have some impact on the fluid mechanics of the system, and yet there has never been a detailed study on fluvial islands.Islands represent a more natural state of a river system and have been shown to provide hydrologic variability and biotic diversity for the river. This research describes the formation of fluvial islands, investigates the formation of fluvial islands experimentally, determines the main relations between fluvial islands and river processes, compares and describes relationships between fluvial islands and residual islands found in megaflood outwash plains, and reaches conclusions regarding island shape evolution and flow energy loss optimization. Fluvial islands are known to form by at least nine separate processes: avulsion, gradual degradation of channel branches, lateral shifts in channel position, stabilization of a bar or riffle, isolation of structural features, rapid incision of flood deposits, sediment deposition in the lee of an obstacle, isolation of material deposited by mass movement, and isolation of riparian topography after the installation of a dam. -
Updated-Maps-1-22-2020
January 22, 2020 MAP REVISIONS Several Siting Drivers maps presented at the December Stakeholder Engagement Committee meeting are being reissued to include the potential facility corridor boundary from the Notice of Preparation (NOP) and a revised basemap that includes Delta island names. The following maps are being reissued and are provided in this packet: Map 1: Study Area Map 2: Soil Compressibility Map 3: Oil and Gas Wells Map 4: Potential Railroad Access Routes Map 5: Potential Barge Access Routes Map 6: Existing Above Ground Power Lines Map 9: Sandhill Crane Habitat Maps 7 and 8, Land Use and Sensitive Receptors, respectively, are being updated to incorporate stakeholder feedback and revised maps will be provided at a future Stakeholder Engagement Committee meeting. Map 10, 2010 River Morphology, has no changes and was not reissued. 01/22/2020 Map 1 CR E3 Bell Ave River Rd 80 Winding Way 50 Legend ¨¦§ Fair Oaks Blvd ¤£ Potential Intake Site (Only Two of Three Sites Required) San Juan Rd El CentroEl Rd Garden Hwy NorwoodAve Rio Linda Blvd El Camino Ave Coloma Rd Boundary of Potential Facility Corridors 5 AveWalnut ¨¦§ Ave Eastern Northgate Blvd Northgate Sunrise Blvd Horizontal Lines are in 10 Mile IntervalsCR 29 Arden Way West White Rock Rd Watt Ave Watt American River Sacramento Sacramento Ave Fulton Folsom Blvd 50 N St HoweAve ABH113 £ 7th St ¤ J St H St CR 98 CR 89 CR 95 American River Dr CR 105 CR 31 F St Union Pacific Railroad Pacific Union CR 32b 5th St T St Light Rail La Riviera Dr Douglas Rd L St L Y St Russell Blvd 21st -
Draft Initial Study and Mitigated Negative Declaration
Initial Study and Mitigated Negative Declaration Recoat Mokelumne Aqueducts Phase 8 - Slough Crossings Project East Bay Municipal Utility District May 2010 Initial Study and Mitigated Negative Declaration Recoat Mokelumne Aqueducts Phase 8 - Slough Crossings Project East Bay Municipal Utility District May 2010 TABLE OF CONTENTS Recoat Mokelumne Aqueducts Phase 8 - Slough Crossings Project Initial Study/Mitigated Negative Declaration Acronyms and Abbreviations ..............................................................................................A-1 Executive Summary ............................................................................................................. E-1 1. Introduction Purpose/Legal Authority .............................................................................................1-1 Scope and Content .......................................................................................................1-2 Federal Review Process ..............................................................................................1-2 Public Review Process.................................................................................................1-2 2. Project Description Project Background .....................................................................................................2-1 Proposed Sequencing of Work.....................................................................................2-2 Description of Sites......................................................................................................2-3