TRANSCRIPTOME ANALYSIS in MAMMALIAN CELL CULTURE: APPLICATIONS in PROCESS DEVELOPMENT and CHARACTERIZATION Anne Kantardjieff We

Total Page:16

File Type:pdf, Size:1020Kb

TRANSCRIPTOME ANALYSIS in MAMMALIAN CELL CULTURE: APPLICATIONS in PROCESS DEVELOPMENT and CHARACTERIZATION Anne Kantardjieff We TRANSCRIPTOME ANALYSIS IN MAMMALIAN CELL CULTURE: APPLICATIONS IN PROCESS DEVELOPMENT AND CHARACTERIZATION A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Anne Kantardjieff IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Wei-Shou Hu August, 2009 © Anne Kantardjieff, August 2009 ACKNOWLEDGMENTS First and foremost, I would like to thank my advisor, Prof. Wei-Shou Hu. He is a consummate teacher, who always puts the best interests of his students first. I am eternally grateful for all the opportunities he has given me and all that I have learned from him. I can only hope to prove as inspriring to others as he has been to me. I would like to thank my thesis committee members, Prof. Kevin Dorfman, Prof. Scott Fahrenkrug, and Prof. Friedrich Srienc, for taking the time to serve on my committee. It goes without saying that what makes the Hu lab a wonderful place to work are the people. I consider myself lucky to have joined what could only be described as a family. Thank you to all the Hu group members, past and present: Jongchan Lee, Wei Lian, Mugdha Gadgil, Sarika Mehra, Marcela de Leon Gatti, Ziomara Gerdtzen, Patrick Hossler, Katie Wlaschin, Gargi Seth, Fernando Ulloa, Joon Chong Yee, C.M. Cameron, David Umulis, Karthik Jayapal, Salim Charaniya, Marlene Castro, Nitya Jacob, Bhanu Mulukutla, Siguang Sui, Kartik Subramanian, Cornelia Bengea, Huong Le, Anushree Chatterjee, Jason Owens, Shikha Sharma, Kathryn Johnson, Eyal Epstein, ze Germans, Kirsten Keefe, Kim Coffee, Katherine Mattews and Jessica Raines-Jones. This work was enabled by the great collaboration we have had with the Bioprocessing Technology Institute in Singapore. I would like to thank Prof. Miranda Yap, Peter Morin Nissom, Robin Philp, Kathy Wong, Song-Hui Chuah, Bernard Loo, Faraaz Yusufi, Eugene Koh and Eric Tan. I am happy to count you as friends. This work was also the result of a number of fruitful industrial collaborations, and I would like to take the opportunity to thank all of the wonderful people I had the chance to collaborate with. Thank you to Scott McIvor and the people of his lab, especially Paul Score, who first taught me how to clone (when I had no idea what cloning was!). I would also like to thank Prof. Jennifer Maynard, who was a great teacher to me in my first few years. I would like to thank all of the people at the Minnesota Supercomputing Institute who were i invaluable to our bioinformatics efforts, including Zheng Jin Tu and Wen Dong. I would also like to thank Kevin Silverstein, for always doing his best to answer my endless questions. I would like to thank all of the wonderful friends I have made during my time here. You are the reason grad school was so much fun. Thank you to Allison, Josh and Alex for a great way to spend Sunday nights! Finally, I would like to thank my family, on whose support I have always been able to count. Thank you for all your love and encouragement. ii ABSTRACT The advent of recombinant protein therapeutics more than two decades ago fundamentally transformed healthcare paradigms and has since improved the quality of life of millions of people. The production of these complex products is typically carried out in cultured mammalian cell lines, with a few cell lines accounting for the majority of production. Chief among these is the Chinese hamster ovary (CHO) cell line. Despite its importance, little genomic information is currently available in the public domain for this cell line. Consequently, our lab has devoted significant efforts to the development of genomic tools for CHO, including custom Affymetrix microarrays. These tools enable the global study of cellular gene expression. This thesis research has applied these transcriptome analysis tools to further understand the process of recombinant protein production. The course of bringing a recombinant protein product to production scale involves a series of complex and often lengthy steps. As demand for these products continues to increase, there is a need to streamline process development efforts. One approach to facilitate this process is to increase our fundamental understanding of cell culture processes. Microarrays are well-suited to this application, and in this work, transcriptome analysis has been use to characterize multiple facets of cell culture process development, including cell line development and modulation of process parameters in fed-batch cultures. We found significant variation amongst clonal gene expression profiles during cell line development, an observation which could be exploited to develop gene expression-based clone screening protocols. We also uncovered the widespread impact process parameters can have on cellular gene expression. In particular, we found that raw material source, namely different hydrolysate lots, has a profound effect on the transcriptional signatures of fed-batch cell culture processes. iii As next-generation sequencing technologies become increasingly mature and cost-effective, they are now being applied to the study of gene expression. We have used ultra high-throughput sequencing to investigate the deep transcriptome of CHO cells. We found that the technology correlated well with microarrays, and displayed a significantly broader detection range. Through this analysis, we also identified a number of transcriptionally-active regions in the CHO genome. The unprecedented depth achievable through next-generation sequencing now allows us to set genome sequencing firmly in our sights. iv TABLE OF CONTENTS ACKNOWLEDGMENTS ............................................................................................................................. I ABSTRACT ................................................................................................................................................ III TABLE OF CONTENTS ............................................................................................................................. V LIST OF TABLES .................................................................................................................................. VIII LIST OF FIGURES ................................................................................................................................... IX 1 INTRODUCTION ............................................................................................................................... 1 1.1 THESIS ORGANIZATION ................................................................................................................. 3 2 BACKGROUND .................................................................................................................................. 4 2.1 RECOMBINANT PROTEIN PRODUCTION IN CULTURED MAMMALIAN CELLS .................................. 4 2.1.1 Host Cell Lines for Recombinant Protein Production ............................................................. 5 2.1.2 Developing Production Cell Lines........................................................................................... 6 2.1.3 Typical Culture Process for Recombinant Protein Production ............................................... 9 2.2 MICROARRAYS FOR TRANSCRIPTOME ANALYSIS ........................................................................ 10 2.2.1 Developing Genomic Tools for Chinese Hamster Ovary Cells ............................................. 14 2.3 NEXT-GENERATION TECHNOLOGIES FOR TRANSCRIPTOME ANALYSIS ....................................... 22 3 TRANSCRIPTOME ANALYSIS OF DHFR AMPLIFICATION ................................................ 24 3.1 SUMMARY ................................................................................................................................... 24 3.2 INTRODUCTION ........................................................................................................................... 25 3.3 MATERIALS AND METHODS ........................................................................................................ 26 3.3.1 Plasmid and Transfection ...................................................................................................... 27 3.3.2 Gene Amplification, Sample Preparation and Array Hybridization ...................................... 27 3.3.3 Microarray Data Processing and Analysis ........................................................................... 28 3.3.4 Functional Analysis ............................................................................................................... 29 3.4 RESULTS ..................................................................................................................................... 29 3.4.1 Experimental Design and Gene Amplification ...................................................................... 29 3.4.2 Global Analysis of Transcriptional Response ....................................................................... 31 3.4.3 Comparison to Host Cell Line ............................................................................................... 32 3.4.4 Transcriptional Response to Amplification ........................................................................... 34 3.4.5 Comparison between Control Population and IgG-Producing Clones ................................. 36 3.5 DISCUSSION ................................................................................................................................ 39 3.6 CONCLUSIONS ............................................................................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
    Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • In Silico Structural and Functional Characterization of the RSUME Splice Variants
    In Silico Structural and Functional Characterization of the RSUME Splice Variants Juan Gerez1., Mariana Fuertes1., Lucas Tedesco1, Susana Silberstein1,2, Gustavo Sevlever3, Marcelo Paez-Pereda4, Florian Holsboer4, Adria´n G. Turjanski5, Eduardo Arzt1,2,4* 1 Instituto de Investigacio´n en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina, 2 Departamento de Fisiologı´a y Biologı´a Molecular, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina, 3 Departamento de Neuropatologı´a y Biologı´a Molecular, FLENI, Buenos Aires, Argentina, 4 Max Planck Institute of Psychiatry, Munich, Germany, 5 Laboratorio de Bioinforma´tica Estructural, Departamento de Quı´mica Biolo´gica, INQUIMAE-CONICET, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina Abstract RSUME (RWD-containing SUMO Enhancer) is a small protein that increases SUMO conjugation to proteins. To date, four splice variants that codify three RSUME isoforms have been described, which differ in their C-terminal end. Comparing the structure of the RSUME isoforms we found that, in addition to the previously described RWD domain in the N-terminal, all these RSUME variants also contain an intermediate domain. Only the longest RSUME isoform presents a C-terminal domain that is absent in the others. Given these differences, we used the shortest and longest RSUME variants for comparative studies. We found that the C-terminal domain is dispensable for the SUMO-conjugation enhancer properties of RSUME. We also demonstrate that these two RSUME variants are equally induced by hypoxia. The NF-kB signaling pathway is inhibited and the HIF-1 pathway is increased more efficiently by the longest RSUME, by means of a greater physical interaction of RSUME267 with the target proteins.
    [Show full text]
  • Supplementary Table S2
    1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA.
    [Show full text]
  • Human Genome Center Laboratory of Genome Database Laboratory of Sequence Analysis ゲノムデータベース分野 シークエンスデータ情報処理分野
    136 Human Genome Center Laboratory of Genome Database Laboratory of Sequence Analysis ゲノムデータベース分野 シークエンスデータ情報処理分野 Professor Minoru Kanehisa, Ph.D. 教授(委嘱) 理学博士 金 久 實 Research Associate Toshiaki Katayama, M.Sc. 助 手 理学修士 片山俊明 Research Associate Shuichi Kawashima, M.Sc. 助 手 理学修士 川島秀一 Lecturer Tetsuo Shibuya, Ph.D. 講 師 理学博士 渋谷哲朗 Research Associate Michihiro Araki, Ph.D. 助 手 薬学博士 荒木通啓 Owing to continuous developments of high-throughput experimental technologies, ever-increasing amounts of data are being generated in functional genomics and proteomics. We are developing a new generation of databases and computational technologies, beyond the traditional genome databases and sequence analysis tools, for making full use of such large-scale data in biomedical applications, espe- cially for elucidating cellular functions as behaviors of complex interaction systems. 1. Comprehensive repository for community We have been developing the server based on genome annotation open source software including BioRuby, BioPerl, BioDAS and GMOD/GBrowse to make Toshiaki Katayama, Mari Watanabe and Mi- the system consistent with the existing open noru Kanehisa standards. The contents of the KEGG DAS data- base can be accessed graphically in a web KEGG DAS is an advanced genome database browser using GBrowse GUI (graphical user in- system providing DAS (Distributed Annotation terface) and also programatically by the DAS System) service for all organisms in the protocol. The DAS, which is an XML over HTTP GENOME and GENES databases in KEGG data retrieving protocol, enables the user to (Kyoto Encyclopedia of Genes and Genomes). write various kinds of automated programs for Currently, KEGG DAS contains 6,943,951 anno- analyzing genome sequences and annotations.
    [Show full text]
  • Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations
    Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations by Jelena Perovanovic M.S. in Molecular Biology and Physiology, September 2009, University of Belgrade M.Phil. in Molecular Medicine, August 2013, The George Washington University A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation directed by Eric P. Hoffman Professor of Integrative Systems Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Jelena Perovanovic has passed the Final Examination for the degree of Doctor of Philosophy as of May 5, 2015. This is the final and approved form of the dissertation. Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations Jelena Perovanovic Dissertation Research Committee: Eric P. Hoffman, Professor of Integrative Systems Biology, Dissertation Director Anamaris Colberg-Poley, Professor of Integrative Systems Biology, Committee Member Robert J. Freishtat, Associate Professor of Pediatrics, Committee Member Vittorio Sartorelli, Senior Investigator, National Institutes of Health, Committee Member ii © Copyright 2015 by Jelena Perovanovic All rights reserved iii Acknowledgments I am deeply indebted to countless individuals for their support and encouragement during the past five years of graduate studies. First and foremost, I would like to express my gratitude to my mentor, Dr. Eric P. Hoffman, for his unwavering support and guidance, and keen attention to my professional development. This Dissertation would not have been possible without the critical input he provided and the engaging environment he created.
    [Show full text]
  • The Metabolomic Paradigm of Pharmacogenomics in Complex
    ics: O om pe ol n b A a c t c e e M s s Cacabelos, Metabolomics 2012, 2:5 Metabolomics: Open Access DOI: 10.4172/2153-0769.1000e119 ISSN: 2153-0769 Editorial Open Access The Metabolomic Paradigm of Pharmacogenomics in Complex Disorders Ramón Cacabelos1,2* 1EuroEspes Biomedical Research Center, Institute for CNS Disorders and Genomic Medicine, EuroEspes Chair of Biotechnology and Genomics, 15165-Bergondo, Corunna, Spain 2President, World Association of Genomic Medicine, Spain Metabolomics represents the networking organization of multiple pathogenic genes usually converge in metabolomic networks leading biochemical pathways leading to a physiological function in living to specific pathogenic cascades responsible for disease phenotypes. organisms. The frontier between health and disease is likely to be the The genomics of the mechanism of action of drugs has so far been result of a fine-tuning equilibrium or disequilibrium, respectively, neglected by the scientific community, and consequently less than 5% between the genomic-transcriptomic-proteomic-metabolomic cascade of FDA-approved drugs, with a pharmacologically-defined mechanism and environmental factors and/or epigenetic phenomena. In recent of action, have been studied in order to evaluate whether mutations times, diverse metabolomic studies have emerged in medical science in the genes encoding receptors or enzymes may affect efficacy and to explain physiological and pathogenic events in several disciplines, safety issues. Pleiotropic genes, involved in multiple pathogenic events,
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth
    UCSF UC San Francisco Previously Published Works Title Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth. Permalink https://escholarship.org/uc/item/96v8r4d9 Journal Frontiers in immunology, 9(MAY) ISSN 1664-3224 Authors Vora, Bianca Wang, Aolin Kosti, Idit et al. Publication Date 2018 DOI 10.3389/fimmu.2018.00993 Peer reviewed eScholarship.org Powered by the California Digital Library University of California SYSTEMATIC REVIEW published: 09 May 2018 doi: 10.3389/fimmu.2018.00993 Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth Bianca Vora1,2, Aolin Wang1,3, Idit Kosti1,4, Hongtai Huang1,3, Ishan Paranjpe1, Tracey J. Woodruff3, Tippi MacKenzie4,5,6 and Marina Sirota1,4* 1 Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States, 2 Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States, 3 Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, United States, 4 Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States, 5 Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, CA, United States, 6 Department of Surgery, University of California Edited by: San Francisco, San Francisco, CA, United States Nandor Gabor Than, Hungarian Academy of Sciences (MTA), Hungary Preterm birth (PTB) is the leading cause of newborn deaths around the world. Reviewed by: Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there Kang Chen, remains an unmet need of detecting and preventing sPTB.
    [Show full text]
  • Peptide Vaccines for Cancers Expressing MPHOSPH1 Or DEPDC1 Polypeptides
    (19) & (11) EP 2 476 698 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 18.07.2012 Bulletin 2012/29 C07K 14/435 (2006.01) A61K 38/00 (2006.01) A61K 39/00 (2006.01) A61P 35/00 (2006.01) (2006.01) (2006.01) (21) Application number: 12155446.3 C07K 7/00 C12N 15/09 (22) Date of filing: 16.10.2007 (84) Designated Contracting States: • Nakamura, Yusuke AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Tokyo 113-8654 (JP) HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE • Tsunoda, Takuya SI SK TR Tokyo 113-8654 (JP) • Osawa, Ryuji (30) Priority: 17.10.2006 US 852575 P Kawasaki-shi Kanagawa 213-0012 (JP) (62) Document number(s) of the earlier application(s) in • Shida, Midori accordance with Art. 76 EPC: Kawasaki-shi 07827901.5 / 2 091 965 Kanagawa 213-0012 (JP) (71) Applicant: Oncotherapy Science, Inc. (74) Representative: Vossius & Partner Kawasaki-shi Siebertstrasse 4 Kanagawa 213-0012 (JP) 81675 München (DE) (72) Inventors: Remarks: • Fujioka, Tomoaki This application was filed on 14-02-2012 as a Morioka-shi divisional application to the application mentioned Iwate 020-8505 (JP) under INID code 62. (54) Peptide vaccines for cancers expressing MPHOSPH1 or DEPDC1 polypeptides (57) The present invention provides peptides having cytotoxic T cell inducibility. The present invention also an amino acid sequence as set forth in SEQ ID NO: 7, provides drugs for treating or preventing a disease as- 8, 9, 10, 11, 12, 192, 195, 197, 209, 225, 226, 228, 230, sociated with the over- expression of MPHOSPH1 and/or 240, 241, 243, 244, 249, 253, 254 or 255, as well as DEPDC1, e.g.
    [Show full text]
  • Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
    ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15).
    [Show full text]