Free Energy Rate Density and Self-organization in Complex Systems Article published in the Lecture Notes in Computer Science Springer Proceedings of the European Conference on Complex Systems, Lucca, Italy, September, 2014. Georgi Yordanov Georgiev 1,2,3* , Erin Gombos 1,4 , Timothy Bates 1, Kaitlin Henry 1, Alexander Casey 1,5 , Michael Daly 1,6 , 1Physics Department, Assumption College, 500 Salisbury St, Worcester, MA, 01609, USA 2Physics Department, Tufts University, 4 Colby St, Medford, MA, 02155, USA 3Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA 4Current address: National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD 20814 5Current address: University of Notre Dame, Notre Dame, IN 46556, USA 6Current address: Meditech, 550 Cochituate Rd, Framingham, MA 01701, USA *Corresponding author. Emails:
[email protected] ;
[email protected] Abstract. One of the most important tasks in science is to understand the self- organization’s arrow of time. To attempt this we utilize the connection between self-organization and non-equilibrium thermodynamics. Eric Chaisson calculated an exponential increase of Free Energy Rate Density (FERD) in Cosmic Evolution, from the Big Bang until now, paralleling the increase of systems’ structure. We term these studies “Devology”. We connect FERD to the principle of least action for complex systems, driving their increase of action efficiency. We study CPUs as a specific system in which the organization, the total amount of action and FERD are connected in a positive feedback loop, providing exponential growth of all three and power law relations between them. This is a deep connection, reaching to the first principles of physics: the least action principle and the second law of thermodynamics.