Galactic Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Galactic Evolution Advanced Track, Epoch 2 Table of Contents • Cosmic Evolution Galactic Evolution • Temporal Sequence • Chance and Necessity • Galaxy-Formation Problem This Advanced Track provides a technical • Galaxy Evolution supplement to the introductory web site on cosmic • Φm for Galaxies evolution, produced by Eric Chaisson and based on • Galaxies in Perspective courses taught mainly at Harvard University for • Galaxy Complexity the past few decades: • In Sum http://www.cfa.harvard.edu/~ejchaisson/cosmic_evolution/docs/splash.html Cosmic Evolution Currently, this Advanced Track is abbreviated Galactic evolution is a subset of the larger category while addressing mainly the concept of energy of physical evolution, which is itself part of the grand rate density—a numerical quantity proposed as a scenario of cosmic evolution: useful complexity metric for an underlying, Cosmic evolution = physical evolution + biological unifying process that guides the origin, evolution, evolution + cultural evolution. and destiny of all organized systems across the During this second, galactic epoch, energy rate arrow of time, from big bang to humankind. In density, Φm ≈ 0.01 - 50 erg/s/g, as some of the first the summer of 2014, this supplement will grow organized structures began emerging in the Universe. dramatically, providing much more pertinent technical material at an advanced, quantitative Temporal Sequence level (suitable for colleague scientists and The proposed sequence of events in cosmic graduate students) well beyond that presented in evolution—mainly galaxies, stars, planets, and life— the above-linked introductory web site (which is holds as a general ordering of major activities across meant for non-scientists and beginning students). the arrow of time, from big bang to humankind. This temporal sequence pertains cleanly and clearly to those systems that gave rise specifically to us—namely, in A summary of this Advanced Track is here: http://www.cfa.harvard.edu/~ejchaisson/advanced_track_sitesum.pdf turn, the Milky Way, then the Sun, followed by Earth, and most recently humanity—and which is thus of Further material related to the subject of limited interest to “big historians.” More expansively and of general interest to “cosmic evolutionists,” this cosmic evolution is available at: sequencing displays some overlap in space and time http://www.cfa.harvard.edu/~ejchaisson including a collection of recent research papers throughout the Universe that is inherently messy. Galaxies and stars might have emerged easily accessed and downloadable at: simultaneously (“coevolved”); some of the oldest http://www.cfa.harvard.edu/~ejchaisson/current_research.pdf globular star clusters (“Population-II” and ~12 Gy old) are virtually as old as their parent galaxies. This material is ©2013, by Eric J. Chaisson Conceivably, some “first stars” (“Population-III”) might have preceded the galaxies, possibly becoming the building blocks of those galaxies. But in the main, since galaxies largely stopped originating (for reasons unknown) in the relatively early Universe, and since stars (“Population-I”) have continued to form ever since, the epoch of galaxy formation must have mostly preceded the epoch of star formation; the stars we see today almost surely originated only after the bulk of the galaxies had taken shape. Since the primordial “first stars” would have had pristine blends of H and He and no heavier elements, http:www.cfa.harvard.edu/~ejchaisson/cosmic_evolution/docs/splash.html Epoch 2 - 1 they must have been very much more massive than any reptiles, the cosmic epochs in this work contain a stars existing today, hence very much shorter lived variety of objects. The seven epochs delineated here than any stars now known. Such pure gas, lacking in C are meant to identify the dominantly complex objects and O that normally help clouds to cool and condense, likely originating at any given time. It is in that sense, would have needed more mass to contract than stars knowing that galaxy origins came forth during the first typically now, >10 Gy after the bang. Without those few Gy in the history of the Universe and then star heavy-element cooling agents, the earliest protostars formation peaked a few Gy thereafter, that we take would have retained much of their heat from the Galactic Epoch to precede the Stellar Epoch. contraction, thus been unable to continue becoming Think of it as chronological bookkeeping—an attempt to genuine stars unless they accumulated more mass than impart some order and organization to the meandering stars typically do today. How much more is unknown, sequence of events that brought forth, in turn, every but if Pop-III stars really did exist, they must have known type of complex object in Nature writ large. contained hundreds of solar masses. No such colossal stars are seen today, the most massive star ever Chance and Necessity definitively “weighed” being ~76 M. (Repeated claims Chance is surely a factor throughout all aspects of of discoveries for stars >100 M have in all cases been cosmic evolution. Although we now know that chance shown, under higher angular resolution, to be clusters cannot be the sole instrument of change in the of smaller stars.) Universe, chance does play an integral role across the Modern cosmology contends that the dark matter arrow of time. Even as long ago as 1692, Newton dominating galactic halos, which is typically ~6X more reasoned that a uniform, static cloud of gas will, massive than the combination of stars, gas, and dust naturally and of its own accord, randomly develop within the luminous parts of galaxies, is non-baryonic. inhomogeneities here and there. Einstein’s relativity Furthermore, roughly spherical accumulations of dark supports this tendency of a uniform gas to fragment, matter likely helped initiate galaxy formation by even if expanding. (Einstein also though that chance gravitationally trapping H gas, which is then further played little role in Nature, but we simply think he was concentrated by dissipative interactions and angular- wrong.) momentum conservation into flattened, spinning disks Solely by chance, a cloud’s matter will spawn where most star formation has occurred during the gravitational fluctuations that become the seeds for past ~10 Gy. Both Pop-II and Pop-III stars likely bigger things; in the early primordial gas clouds, this formed before most galaxies had developed into less type of change likely led to the galaxies themselves. spherical and more elongated disks where nearly all Such random fluctuations obey well-understood Pop-I stars form today (though all three of these statistical laws, one of which states that the stellar populations may well have had some coterminous magnitude of fluctuations goes like N1/2, where N is the overlap). Thus far, there is no observational evidence average number of gas particles in a system. Thus, if for any stars forming earlier than the protogalaxies of the system in question is a galaxy, wherein the member 6-8 68 mass ~ 10 M; in fact, no evidence yet for any Pop- atoms typically number 10 , then random fluctuations III stars containing zero heavy elements. On the house, at any given time or place, ~1034 atoms. And the whole, observational evidence supports the contention fractional fluctuation, N1/2/N, equals a minute 10-34, that the bulk of most galaxies formed prior to the which is far too small for density inhomogeneities to formation of most (perhaps all) stars—in other words, have grown into full-fledged galaxies within the age of the bulk of most galaxies had originated within the the Universe. Alternatively stated, if the total number first 1-2 Gy, well before star formation began in of atoms (~1068) required to fashion a typical galaxy is earnest ~4-5 Gy after the big bang. to be accumulated exclusively by random encounters of Consequently, some stars (the very earliest ones gas particles, then we face a serious problem: A chance formed) likely existed during the early galaxy epoch, gathering of such a vast quantity of atoms would take just as galaxies exist in the following stellar epoch; the several tens of billions of years, implying that few, if grand epochs of the cosmos do not have hard-and-fast any, such galaxies should now exist in a Universe ~14 Gy stops and well-defined starts. Some overlap is old. The observational evidence that galaxies do in inevitable. Much as the later natural-history periods fact exist, and richly so in every direction sampled, known as the “age of reptiles” contained mammals and strongly implies that chance could not have been the the subsequent “age of mammals” also contained http:www.cfa.harvard.edu/~ejchaisson/cosmic_evolution/docs/splash.html Epoch 2 - 2 only factor governing the origin of these magnificent indeed that they are now mostly still forming; cosmic systems. hierarchical-merger scenarios became popular over the In addition to random chance that initially triggered past 20 years, whereby normal galaxies were then matter fluctuations within primordial clouds, theorized to assemble when smaller building blocks 6-9 deterministic gravity also played a role in their (~10 M typical of dwarf galaxies) collided and subsequent fragmentation. Furthermore, other agents, merged frequently (Searle and Zinn, Ap J, v225, p357, including turbulence and shocks, and especially dark 1978; Blumenthal, et al, Nature, v311, p517, 1984) while matter, likely accelerated the growth of the also perhaps accreting globular clusters and cold inhomogeneities so that myriad galaxies could have intergalactic gas (Dekel, et al, Nature, v457, p451, formed within a time scale shorter than the age of the 2009). Current observations are generally consistent Universe. In fact, the enhancement process (which is with this hierarchical model, as young galactic now thought to have been caused mostly by dark fragments at great distances often appear smaller in matter) must have been highly efficient since size and more irregular in shape than nearby, present- observations strongly imply that the bulk of all galaxies day counterparts.
Recommended publications
  • Energy Rate Density As a Complexity Metric and Evolutionary Driver
    Energy Rate Density as a Complexity Metric and Evolutionary Driver E. J. CHAISSON Wright Center and Physics Department, Tufts University, Medford, Massachusetts and Harvard College Observatory, Harvard University, Cambridge, Massachusetts Received March 8, 2010; revised April 1, 2010; accepted April 5, 2010 The proposition that complexity generally increases with evolution seems indisputable. Both developmental and generational changes often display a rise in the number and diversity of properties describing a wide spectrum of ordered systems, whether physical, biological, or cultural. This article explores a quantitative metric that can help to explain the emergence and evolution of galaxies, stars, planets, and life throughout the history of the Universe. Energy rate density is a single, measurable, and unambiguous quantity uniformly characterizing Nature’s many varied complex systems, potentially dictating their natural selection on vast spatial and temporal scales. Ó 2010 Wiley Periodicals, Inc. Complexity 16: 27–40, 2011 Key Words: energy; complexity; evolution; thermodynamics; universe 1. PRE` CIS OF COSMIC EVOLUTION philosopher Heraclitus, who arguably made the best ob- or nearly three decades, I have endeavored to servation ever while noting that ‘‘everything flows and F strengthen our modern understanding of the scientific nothing stays.’’ This remarkably simple idea is now essen- interdiscipline of cosmic evolution. This is an inclu- tially confirmed by modern scientific reasoning and much sive worldview that chronicles the origin and evolution of supporting data. As recently summarized [1, 2], I have galaxies, stars, planets, and life, especially as pertains to sought to undergird this broad, integrated subject with humanity on Earth and our place in the Universe.
    [Show full text]
  • Big History: a Working Bibliography of References, Films & Internet Sites
    Big History: A Working Bibliography of References, Films & Internet Sites Assembled by Barry Rodrigue & Daniel Stasko University of Southern Maine (USA) Index Books & Articles on Big History…………………………………………...2–9 Works that Anticipated Big History……………………………………....10–11 Works on Aspects of Big History…………………………………………12–36 Cosmology & Planetary Studies…………. 12–14 Physical Sciences………………………… 14–15 Earth & Atmospheric Sciences…………… 15–16 Life Sciences…………………………….. 16–20 Ecology…………………………………... 20–21 Human Social Sciences…………………… 21–33 Economics, Technology & Energy……….. 33–34 Historiography……………………………. 34–36 Philosophy……………………………….... 36 Popular Journalism………………………... 36 Creative Writing………………………….. 36 Internet & Fim Resources on Big History………………………………… 37–38 1 Books & Articles about Big History Adams, Fred; Greg Laughlin. 1999. The Five Ages of the Universe: Inside the Physics of Eternity. New York: The Free Press. Alvarez, Walter; P. Claeys, and A. Montanari. 2009. “Time-Scale Construction and Periodizing in Big History: From the Eocene-Oligocene Boundary to All of the Past.” Geological Society of America, Special Paper # 452: 1–15. Ashrafi, Babak. 2007. “Big History?” Positioning the History of Science, pp. 7–11, Kostas Gavroglu and Jürgen Renn (editors). Dordrecht: Springer. Asimov, Isaac. 1987. Beginnings: The Story of Origins of Mankind, Life, the Earth, the Universe. New York, Berkeley Books. Aunger, Robert. 2007. “Major Transitions in “Big’ History.” Technological Forecasting and Social Change 74 (8): 1137–1163. —2007. “A Rigorous Periodization of ‘Big’ History.” Technological Forecasting and Social Change 74 (8): 1164–1178. Benjamin, Craig. 2004. “Beginnings and Endings” (Chapter 5). Palgrave Advances: World History, pp. 90–111, M. Hughes-Warrington (editor). London and New York: Palgrave/Macmillan. —2009. “The Convergence of Logic, Faith and Values in the Modern Creation Myth.” Evolutionary Epic: Science’s Story and Humanity’s Response, C.
    [Show full text]
  • Edited by Steven J. Dick and Mark L. Lupisella
    Edited by Steven J. Dick and Mark L. Lupisella NASA SP-2009-4802 Library of Congress Cataloging-in-Publication Data Cosmos and Culture : Cultural Evolution in a Cosmic Context / Steven J. Dick and Mark Lupisella, editors. p. cm. -- (NASA SP ; 4802) Includes bibliographical references and index. 1. Cosmology--History. 2. Astronomy--History. 3. Culture--Origin. 4. Social evolution. 5. Human evolution. I. Dick, Steven J. II. Lupisella, Mark. QB981.C8263 2009 523.109--dc22 2009004348 ISBN 978-0-16-083119-5 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 9 0 0 0 0 Fax: (202) 512-2104 Mail: Stop IDCC, Washington, DC 20402-0001 ISBN 978-0-16-083119-5 9 780160 831195 ISBN 978-0-16-083119-5 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 9 0 0 0 0 Fax: (202) 512-2104 Mail: Stop IDCC, Washington, DC 20402-0001 ISBN 978-0-16-083119-5 9 780160 831195 Table of Contents Introduction – Steven J. Dick and Mark L. Lupisella v Part 1: The Cosmic Context Chapter 1 – Eric J. Chaisson Cosmic Evolution State of the Science 3 Chapter 2 – Steven J. Dick Cosmic Evolution History, Culture, and Human Destiny 25 Part 2: Cultural Evolution Chapter 3 – Kathryn Denning Social Evolution State of the Field 63 Chapter 4 – Daniel C. Dennett The Evolution of Culture 125 Chapter 5 – Howard Bloom The Big Burp and the Multiplanetary Mandate 145 Chapter 6 – John M.
    [Show full text]
  • Introduction Big History's Big Potential
    Introduction Big History’s Big Potential Leonid E. Grinin, David Baker, Esther Quaedackers, and Andrey V. Korotayev Big History has been developing very fast indeed. We are currently ob- serving a ‘Cambrian explosion’ in terms of its popularity and diffusion. Big History courses are taught in the schools and universities of several dozen countries, including China, Korea, the Netherlands, the USA, In- dia, Russia, Japan, Australia, Great Britain, Germany, and many more. The International Big History Association (IBHA) is gaining momentum in its projects and membership. Conferences are beginning to be held regularly (this edited volume has been prepared on the basis of the pro- ceedings of the International Big History Association Inaugural Confer- ence [see below for details]). Hundreds of researchers are involved in studying and teaching Big History. What is Big History? And why is it becoming so popular? Accord- ing to the working definition of the IBHA, ‘Big History seeks to under- stand the integrated history of the Cosmos, Earth, Life and Humanity, using the best available empirical evidence and scholarly methods’. The need to see this process of development holistically, in its origins and growing complexity, is fundamental to what drives not only science but also the human imagination. This shared vision of the grand narrative is one of the most effective ways to conceptualize and integrate our growing knowledge of the Universe, society, and human thought. Moreover, without using ‘mega-paradigms’ like Big History, scientists working in different fields may run the risk of losing sight of how each other's tireless work connects and contributes to their own.
    [Show full text]
  • Site Summary
    Advanced Track, Overview Further material related to the subject of cosmic evolution is available at: Site Summary http://www.cfa.harvard.edu/~ejchaisson including a collection of recent research papers easily accessed and downloadable at: This Advanced Track provides a technical http://www.cfa.harvard.edu/~ejchaisson/current_research.pdf supplement to the introductory web site on cosmic evolution, produced by Eric Chaisson and based on Some representative, relevant publications: Chaisson, E.J., Cosmic Evolution: Rise of Complexity in Nature, courses taught mainly at Harvard University for Harvard University Press, Cambridge, 2001. the past few decades: Chaisson, E.J., “Unifying Concept for Astrobiology,” Int. J. http://www.cfa.harvard.edu/~ejchaisson/cosmic_evolution/docs/splash.html Astrobio, v2, p91, 2003; DOI:10.1017/S1473550403001484 Chaisson, E.J., “Cosmic Evolution: State of the Science,” in Cosmos & Culture, Dick & Lupisella (eds), NASA Press, 2009. Currently, this Advanced Track is abbreviated Chaisson, E.J., “Exobiology and Complexity,” in Encyclopedia of Complexity & Systems Science, Meyers (ed.), Springer, 2009. while addressing mainly the concept of energy Chaisson, E.J., “Energy Rate Density as a Complexity Metric and rate density—a numerical quantity proposed as a Evolutionary Driver,” Complexity, v16, p27, 2011; DOI:10.1002/cplx.20323 useful complexity metric for an underlying, Chaisson, E.J., “Energy Rate Density. II. Probing Further a New unifying process that guides the origin, evolution, Complexity Metric,” Complexity, v17, p44, 2011; DOI:10.1002/cplx.20373 and destiny of all organized systems across the Chaisson, E.J., “Using Complexity Science to Search for Unity in arrow of time, from big bang to humankind.
    [Show full text]
  • HARVARD COLLEGE OBSERVATORY Astro E-8 COSMIC
    HARVARD COLLEGE OBSERVATORY Cambridge, Massachusetts 02138 Astro E-8 COSMIC EVOLUTION: The Origins of Matter and Life Instructor: Dr. Eric J. Chaisson, Harvard-Smithsonian Center for Astrophysics Meets Wednesdays, 7:45 - 9:45 pm, Harvard College Observatory, 60 Garden St., Phillips Auditorium, Bldg. D, across from Radcliffe Quad. Course Abstract: Evolution of the Universe, from its beginning in a cosmic expansion to the emergence of life on Earth and possibly other planets. Big-bang cosmology, origin and evolution of galaxies, stars, planets, life, and society. Scientific discussion of Nature writ large, from quarks to quasars, microbes to minds. Materials largely descriptive, based on insights from physics, astronomy, geology, chemistry, biology, and anthropology. Course Description: This broad survey course combines the essential ingredients of astrophysics and biochemistry to create an interdisciplinary synthesis called “cosmic evolution." Directed mainly toward non-science students, the course addresses, from a scientific viewpoint, some of the time-honored philosophical issues including who we are, whence we've come, and how we fit into cosmic scheme things. Our primary objective is to gain an appreciation for the origin of matter and the origin of life, while seeking unification throughout the natural sciences. The course divides into three segments: • Part I (~10% of the course) introduces some basic concepts, notably those scientific principles needed for the remainder of the course. • Part II (~40% the course) is heavily astronomical, using the concept of space to describe the many varied objects populating the Universe, from nearby planets to distant galaxies; this spatial theme serves as an inventory, explicating known material systems throughout the cosmos.
    [Show full text]
  • Eric Chaisson Tufts University
    A01_CHAI0067_07_SE_NASTAFM.qxd 6/3/10 3:04 PM Page i ASTRONOMY TRONOASTRONOMYTODAY TODAYTODAY A01_CHAI0067_07_SE_NASTAFM.qxd 6/3/10 3:04 PM Page ii A01_CHAI0067_07_SE_NASTAFM.qxd 6/3/10 3:04 PM Page iii ASTRONOMY TODAY SEVENTH EDITION ERIC CHAISSON TUFTS UNIVERSITY STEVE MCMILLAN DREXEL UNIVERSITY A01_CHAI0067_07_SE_NASTAFM.qxd 6/14/10 1:18 PM Page iv Publisher: Jim Smith Manufacturing Buyer: Jeffrey Sargent Executive Editor: Nancy Whilton Manager, Rights and Permissions: Zina Arabia Director of Development: Michael Gillespie Image Permissions Coordinator: Elaine Soares Editorial Manager: Laura Kenney Manager, Cover Visual Research & Permissions: Karen Project Editor: Tema Goodwin Sanatar Media Producer: Kelly Reed Photo Research: Kristin Piljay Director of Marketing: Christy Lawrence Cover Printer: Phoenix Color Senior Marketing Manager: Kerry Chapman Printer and Binder: Worldcolor, Dubuque Associate Director of Publishing: Erin Gregg Cover Images: Managing Editor: Corinne Benson Main Edition: Carina Nebula, NASA, ESA, and M. Livio Production Supervisor: Mary O’Connell and the Hubble 20th Anniversary Team (STScI) Compositor: Progressive Information Technologies The Solar System: Solar flares, SOHO (ESA & NASA) Production Service: Progressive Publishing Alternatives Stars and Galaxies: NGC 6302, NASA, ESA, and the Illustrations: Dartmouth Publishing, Inc. Hubble SM4 ERO Team Interior and Cover Design: Derek Bacchus Copyright © 2011, 2008, 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley, 1301 Sansome St., San Francisco, CA 94111. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
    [Show full text]
  • Not Yet Imagined: a Study of Hubble Space Telescope Operations
    NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.
    [Show full text]
  • Astronomy Today 8E
    Astronomy Today 8e CHAI_1675_NASTA_FM_ppi-xxxiii.indd 1 18/07/13 12:23 PM CHAI_1675_NASTA_FM_ppi-xxxiii.indd 2 18/07/13 12:23 PM Astronomy Today 8e Eric Chaisson Harvard University Steve McMillan Drexel University Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo CHAI_1675_NASTA_FM_ppi-xxxiii.indd 3 18/07/13 12:23 PM Publisher: Jim Smith Design Manager: Mark Ong Executive Editor: Nancy Whilton Interior and Cover Design: Jeanne Calabrese Editorial Manager: Laura Kenney Manufacturing Buyer: Jeffrey Sargent Project Editor: Tema Goodwin Specialist, Rights and Permissions: Joseph Croscup Content Producers: Kate Brayton, Ziki Dekel Image Permissions Coordinator: Maya Melunchuk Development Editor: Barbara Price Photo Research: Stefanie Ramsay Director of Marketing: Christy Lesko Cover Printer: Lehigh-Phoenix Marketing Manager: Will Moore Printer and Binder: R. R. Donnelley Director of Product Management Services: Erin Gregg Cover Images: Team Lead, Program and Project Management: Corinne Benson Main Edition: ESO/S. Guisard (www.eso.org/~sguisard) Compositor: Cenveo® Publisher Services Vol. 1: The Solar System: NASA, JPL-Caltech, MSSS, Mastcam Production Service: Thistle Hill Publishing Services Vol. 2: Stars and Galaxies: ESO/F. Comeron Illustrations: Rolin Graphics Inc. Copyright © 2014, 2011, 2008, 2005 Pearson Education, Inc., 1301 Sansome St., San Francisco, CA 94111. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
    [Show full text]
  • What Is Big History?
    What is Big History? David Christian Distinguished Professor and Director of the Big History Institute Macquarie University As they err who study the maps of that includes the pasts studied by biologists, regions before they have learned paleontologists, geologists and cosmologists. By accurately the relation of the whole linking different perspectives and scales, and universe and the separate parts of it to many different scholarly disciplines, all of which each other and to the whole, so they are try to understand the deep roots of today’s world, not less mistaken who think they can big history can transform our understanding of understand particular histories before “history.” they have judged the order and sequence of universal history and of all times, set However, to fully capture the richness and range of forth as it were in a table.1 teaching, we will eventually need the perspectives Big history represents an attempt at what E.O. ofthis big vibrant historians new trainedfield of research,in many other scholarship disciplines. and Wilson has called “consilience,” a return to the I hope this essay may encourage such scholars to offer their distinctive perspectives on big history. of the fragmented visions that dominate modern educationgoal of a unified and scholarship. understanding2 Though of reality, it may in seemplace The evolution of historical scholarship in the new, the goal of consilience is very old. And twentieth century even in its modern forms, big history has been around for at least a quarter of a century. So the Historians will recognize that my title comes Journal of Big from a classic essay on history, studied by most History provides the ideal opportunity for a stock Anglophone history graduates.
    [Show full text]
  • Free Energy Rate Density and Self-Organization in Complex Systems
    Free Energy Rate Density and Self-organization in Complex Systems Article published in the Lecture Notes in Computer Science Springer Proceedings of the European Conference on Complex Systems, Lucca, Italy, September, 2014. Georgi Yordanov Georgiev 1,2,3* , Erin Gombos 1,4 , Timothy Bates 1, Kaitlin Henry 1, Alexander Casey 1,5 , Michael Daly 1,6 , 1Physics Department, Assumption College, 500 Salisbury St, Worcester, MA, 01609, USA 2Physics Department, Tufts University, 4 Colby St, Medford, MA, 02155, USA 3Department of Physics, Worcester Polytechnic Institute, Worcester, MA, 01609, USA 4Current address: National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD 20814 5Current address: University of Notre Dame, Notre Dame, IN 46556, USA 6Current address: Meditech, 550 Cochituate Rd, Framingham, MA 01701, USA *Corresponding author. Emails: [email protected] ; [email protected] Abstract. One of the most important tasks in science is to understand the self- organization’s arrow of time. To attempt this we utilize the connection between self-organization and non-equilibrium thermodynamics. Eric Chaisson calculated an exponential increase of Free Energy Rate Density (FERD) in Cosmic Evolution, from the Big Bang until now, paralleling the increase of systems’ structure. We term these studies “Devology”. We connect FERD to the principle of least action for complex systems, driving their increase of action efficiency. We study CPUs as a specific system in which the organization, the total amount of action and FERD are connected in a positive feedback loop, providing exponential growth of all three and power law relations between them. This is a deep connection, reaching to the first principles of physics: the least action principle and the second law of thermodynamics.
    [Show full text]
  • Complexity: an Energetics Agenda
    Complexity: An Energetics Agenda Energy as the Motor of Evolution 1. INTRODUCTION rom galaxies to snowflakes, from stars and planets to life itself, modern science is weaving an intricate pattern describing all of natural history—a sweepingly F inclusive view of the order and structure of every known class of object in our richly endowed Universe. Cosmic evolution—the heart of this broad scenario—is the study of the sum total of the many varied developmental and generational changes in the assembly and composition of radiation, matter, and life throughout all space and across all time. These are the physical, biological, and cultural changes that have produced, in turn and among other systems, our Galaxy, our Sun, our Earth, and ourselves. The result is a grand evolutionary synthesis bridging a wide variety of scientific specialties—physics, astronomy, geology, chemistry, biology, and anthro- pology, among others—a genuine narrative of epic proportions extending from the beginning of time to the present, from big bang to humankind. ERIC J. CHAISSON Our appreciation for evolution now extends well beyond the subject of biology; the concept of evolution, generally considered, has become a powerful unifying factor in all of science. Yet questions remain: How valid are the interdisciplinary continuities among Nature’s many historical epochs, and how realistic is our quest Eric J. Chaisson is at the Wright Center, for unification among them? Can we reconcile the observed constructiveness of Tufts University, 4 Colby Street, cosmic evolution with the inherent destructiveness of thermodynamics? Is there a Medford, Massachusetts; e-mail: single driver of fundamental change writ large? We especially want to know more [email protected]; Website: about the origins of the richly ordered and diverse structures spanning both the www.tufts.edu/as/wright_center.
    [Show full text]