Pericarp Ultrastructure of Salvia Section Hemisphace (Mentheae; Nepetoideae; Lamiaceae) Ahmet KAHRAMAN1, *, Hatice Nurhan BÜYÜKKARTAL2, Musa DOĞAN3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Well-Known Plants in Each Angiosperm Order
Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales -
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Plant Macrofossils Analysis from Steregoiu NW Romania
Studia Universitatis Babeş-Bolyai, Geologia, 2008, 53 (1), 5 – 10 Plant macrofossils analysis from Steregoiu, NW Romania: taphonomy, representation, and comparison with pollen analysis Angelica FEURDEAN1* and Ole BENNIKE2 1 School of Geography, Centre for the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK Quaternary Research Group, Department of Geology, „Babeş-Bolyai” University, Kolgălniceanu 1, 400084, Cluj, Romania 2 Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen, DK, Denmark Received November 2007; accepted July 2008 Available online 25 August 2008 ABSTRACT. This paper presents the results of macrofossil analysis from Steregoiu sequence in the Gutâiului Mountains covering the last 8,000 cal BP. The studied peat deposit is characterized by abundant macrofossils. Their diversity is, however, low with most remains coming from plants that grew on the mire and in the forest surrounding the basin (Carex spp., Cyperus sp., Urtica dioica, Potentilla erecta, Filipendula ulmaria, Rubus idaeus, Lycopus europaeus). The concentration of Picea abies macrofossils correlates partially well with its pollen percentages, and only when it has apparently been present on the bog surface. The absence of macrofossils from deciduous trees, which were abundant in the surrounding vegetation according to the pollen data, suggests that these deciduous trees taxa were not growing on the bog or around its margins. The combined macrofossil and the pollen results assists in the understanding of the differences -
Medicinal, Nutritional and Industrial Applications of Salvia Species: a Revisit
Int. J. Pharm. Sci. Rev. Res., 43(2), March - April 2017; Article No. 06, Pages: 27-37 ISSN 0976 – 044X Review Article Medicinal, Nutritional and Industrial Applications of Salvia species: A Revisit Anita Yadav*1, Anuja Joshi1, S.L. Kothari2, Sumita Kachhwaha3, Smita Purohit1 1 The IIS University, 2Amity University Rajasthan, 3University of Rajasthan, Jaipur, India. *Corresponding author’s E-mail: [email protected] Received: 31-01-2017; Revised: 18-03-2017; Accepted: 05-04-2017. ABSTRACT Salvia species have been used for culinary, medicinal, nutritional and pharmacological purposes. In recent years, studies have highlighted the effect of Salvia plants in preventing and controlling various diseases naturally in a more safe manner. They have many biologically active compounds like essential oils and polyphenolics, which have been found to possess antimicrobial, anti- mutagenic, anticancer, anti-inflammatory, antioxidant and anti-cholinesterase properties. Currently, the demand for these plants and their derivatives has increased in food and pharmaceutical industries because they are recognized as safe products. This review summarizes the nutritional, medicinal and industrial applications of genus Salvia. Keywords: Salvia species, Essential oil, Polyphenolic compounds, Medicinal applications. INTRODUCTION flavonoids and phenolic acids3. Essential oils are mixture of several hundred constituents, which can be alvia, a member of the mint family ‘Lamiaceae’ categorized into monoterpene hydrocarbons, oxygenated comprises the largest genus -
Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever
Staminal Evolution In The Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence For Multiple Origins Of The Staminal Lever Jay B. Walker & Kenneth J. Sytsma (Dept. of Botany, University of Wisconsin, Madison) Annals of Botany (in press) Abstract • Background and Aims - The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, we characterize the staminal morphology of the various lineages of Salvia and related genera and present an evolutionary interpretation of staminal variation within the tribe Mentheae. • Methods. Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. • Key Results. These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. We characterize a monophyletic lineage within the Mentheae consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia, and Rosmarinus. • Conclusions. -
Palynological Evolutionary Trends Within the Tribe Mentheae with Special Emphasis on Subtribe Menthinae (Nepetoideae: Lamiaceae)
Plant Syst Evol (2008) 275:93–108 DOI 10.1007/s00606-008-0042-y ORIGINAL ARTICLE Palynological evolutionary trends within the tribe Mentheae with special emphasis on subtribe Menthinae (Nepetoideae: Lamiaceae) Hye-Kyoung Moon Æ Stefan Vinckier Æ Erik Smets Æ Suzy Huysmans Received: 13 December 2007 / Accepted: 28 March 2008 / Published online: 10 September 2008 Ó Springer-Verlag 2008 Abstract The pollen morphology of subtribe Menthinae Keywords Bireticulum Á Mentheae Á Menthinae Á sensu Harley et al. [In: The families and genera of vascular Nepetoideae Á Palynology Á Phylogeny Á plants VII. Flowering plantsÁdicotyledons: Lamiales (except Exine ornamentation Acanthaceae including Avicenniaceae). Springer, Berlin, pp 167–275, 2004] and two genera of uncertain subtribal affinities (Heterolamium and Melissa) are documented in Introduction order to complete our palynological overview of the tribe Mentheae. Menthinae pollen is small to medium in size The pollen morphology of Lamiaceae has proven to be (13–43 lm), oblate to prolate in shape and mostly hexacol- systematically valuable since Erdtman (1945) used the pate (sometimes pentacolpate). Perforate, microreticulate or number of nuclei and the aperture number to divide the bireticulate exine ornamentation types were observed. The family into two subfamilies (i.e. Lamioideae: bi-nucleate exine ornamentation of Menthinae is systematically highly and tricolpate pollen, Nepetoideae: tri-nucleate and hexa- informative particularly at generic level. The exine stratifi- colpate pollen). While the -
The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from Laminated Eifel Maar Sediments of the Last 60,000 Years
Global and Planetary Change 142 (2016) 108–135 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60,000 years F. Sirocko a,⁎,H.Knappa, F. Dreher a, M.W. Förster a, J. Albert a, H. Brunck a, D. Veres d, S. Dietrich b,M.Zechc, U. Hambach c,M.Röhnera, S. Rudert a, K. Schwibus a,C.Adamsa,P.Sigla a Institute for Geosciences, Johannes Gutenberg-University, J.-J. Becherweg 21, D-55128 Mainz, Germany b Bundesanstalt für Gewässerkunde, Am Mainzer Tor 1, D-56068 Koblenz, Germany c BayCEER & LS Geomorphologie Universität Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany d Institute of Speleology, Romanian Academy, Clinicilor 5, RO-400006 Cluj Napoca, Romania article info abstract Article history: Laminated sediment records from several maar lakes and dry maar lakes of the Eifel (Germany) reveal the history of Received 2 February 2015 climate, weather, environment, vegetation, and land use in central Europe during the last 60,000 years. The time se- Received in revised form 3 March 2016 ries of the last 30,000 years is based on a continuous varve counted chronology, the MIS3 section is tuned to the Accepted 7 March 2016 Greenland ice — both with independent age control from 14C dates. Total carbon, pollen and plant macrofossils Available online 7 April 2016 are used to synthesize a vegetation-stack, which is used together with the stacks from seasonal varve formation, flood layers, eolian dust content and volcanic tephra layers to define Landscape Evolution Zones (LEZ). -
Taperleaf Water-Horehound, Lycopus Rubellus
Natural Heritage Taperleaf Water-horehound & Endangered Species Lycopus rubellus Moench Program www.mass.gov/nhesp State Status: Endangered Federal Status: None Massachusetts Division of Fisheries & Wildlife DESCRIPTION: The perennial herb Taperleaf Water- horehound is a non-aromatic member of the mint family reaching a height of 18 in. (1/2 meter) but more often only 1 ft. high in Massachusetts. The slender, erect, sparsely branching stems bear simple, opposite leaves arranged in vertical ranks of pairs which are relatively widely spaced on the stem. The stem bases send out many slender and long, freely branching runners that form tubers at their ends. The broadly lance-shaped to oval leaves are 4-12 cm long and 1-4 cm wide and the basal part of each leaf is distinctly straight or slightly concave as it tapers to the petiole. The leaf margins are coarsely shallow-toothed above the elongated bases and smooth below. The small, white, faintly purple-spotted flowers are densely clustered at the junction of the stem and leaves and form doughnut-shaped whorls around the stem. The five-lobed, tubular corolla is composed of petals which flare abruptly outwards and extend 2-3 mm beyond (twice as long as) the surrounding calyx tube. The lobes of the calyx tube are narrowly triangular and long Robert H. Mohlenbrock @ USDA-NRCS PLANTS Database / USDA SCS. 1989. Midwest wetland flora: Field office illustrated guide to plant species. Midwest National Technical Center, Lincoln pointed. The mature fruits of Taperleaf Water-horehound consist of a set of four nutlets per flower, each roughly triangular-shaped with narrow bases and broad tops. -
Nepeta Wuana (Nepetinae, Nepetoideae, Lamiaceae), a New Species from Shanxi, China
NEPETA WUANA (NEPETINAE, NEPETOIDEAE, LAMIACEAE), A NEW SPECIES FROM SHANXI, CHINA H. J. Dong, Z. Jamzad & C. L. Xiang Received 2014. 06. 10; accepted for publication 2014.11.09 Dong, H. J., Jamzad, Z. & Xiang, C. L. 2015. 06. 30: Nepeta wuana (Nepetinae, Nepetoideae, Lamiaceae), a new species from Shanxi, China.- Iran. J. Bot.21(1): 13-18. Tehran. Nepeta wuana H. J. Dong, C. L. Xiang & Z. Jamzad, (Lamiaceae), a new species found in Shanxi Province, China, is described and illustrated. The closest relative of the new species is the Chinese endemic N. sungpanensis C.Y. Wu but it clearly differs from it in the prolonged middle lobe of the lower corolla lip, as well as the much larger leaves, and sharper calyx lobes. Microfeatures of leaf epidermis, pollen grains, and nutlets of the new species are also explained. Hong-Jin Dong & Chun-Lei Xiang (Correspondence<[email protected]>), Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China. -Ziba Jamzad, Research Institute of Forests and Rangelands, 13185-116, Tehran, Iran. Key words: Nepeta wuana; new species; micromorphology; Shanxi China ﮔﻮﻧﻪ Nepeta wuana ﮔﻮﻧﻪ اي ﺟﺪﻳﺪ از ﺧﺎﻧﻮاده ﻧﻌﻨﺎ، زﻳﺮ ﺧﺎﻧﻮاده Nepetoideae زﻳﺮﻗﺒﻴﻠﻪ Nepetinae از ﭼﻴﻦ ﻫﻮﻧﮓ ﺟﻴﻦ دوﻧﮓ، داﻧﺸﻴﺎر ﻣﺆﺳﺴﻪ ﮔﻴﺎه ﺷﻨﺎﺳﻲ ﻛﻮﻣﻴﻨﮓ، آﻛﺎدﻣﻲ ﻋﻠﻮم ﭼﻴﻦ، آزﻣﺎﻳﺸﮕﺎه ﺗﻨﻮع وﺑﻴﻮ ﺟﻐﺮاﻓﻴﺎي ﺷﺮق آﺳﻴﺎ ﭼﻮﻧﻠﻲ ﻛﺰﻳﺎﻧﮓ، داﻧﺸﻴﺎر ﻣﺆﺳﺴﻪ ﮔﻴﺎهﺷﻨﺎﺳﻲ ﻛﻮﻣﻴﻨﮓ، آﻛﺎدﻣﻲ ﻋﻠﻮم ﭼﻴﻦ، آزﻣﺎﻳﺸﮕﺎه ﺗﻨﻮع وﺑﻴﻮ ﺟﻐﺮاﻓﻴﺎي ﺷﺮق آﺳﻴﺎ زﻳﺒﺎ ﺟﻢ زاد، اﺳﺘﺎد ﭘﮋوﻫﺶ، ﻣﻮﺳﺴﻪ ﺗﺤﻘﻴﻘﺎت ﺟﻨﮕﻠﻬﺎ و ﻣﺮاﺗﻊ ﻛﺸﻮر ﮔﻮﻧﻪ ﺟﺪﻳﺪ Nepeta wuana از اﺳﺘﺎن ﺷﺎﻧﻜﻬﺎي ﭼﻴﻦ ﺷﺮح داده ﻣﻲﺷﻮد و ﺗﺼﻮﻳﺮ آن اراﻳﻪ ﻣﻲ ﮔﺮدد. -
Seed Mucilage Components in 11 Alyssum Taxa Brassicaceae from Turkey and Their Taxonomical and Ecological Significance
www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 11/2 (2018) 60-64 Research article/Araştırma makalesi Seed mucilage components in 11 Alyssum taxa (Brassicaceae) from Turkey and their taxonomical and ecological significance Mehmet Cengiz KARAİSMAİLOĞLU *1 1 Istanbul University, Faculty of Science, Department of Biology, Istanbul, Turkey Abstract In this work, mucilage characterization and their taxonomical and ecological significance in the seeds of 11 Alyssum taxa (A. dasycarpum var. dasycarpum, A. desertorum, A. filiforme, A. hirsutum var. hirsutum, A. linifolium var. linifolium, A. minutum, Alyssum murale var. murale, A. parviflorum, A. sibiricum, A. strictum and A. strigosum subsp. strigosum) were investigated. The mucilage producing cells were seen on the seed surface of the all studied taxa when hydrated in water. The seed mucilage was comprised of cellulose or pectin in the all examined taxa. There were differences in columella lines such as flattened, prominent or reduced forms. Besides, soil adhesion capacities of the seeds of the examined taxa ranged from 29 mg to 106 mg. The mucilage production in examined taxa can provide advantages in seed dispersion and colonization. Key words: Alyssum, colonization, morphology, pectin, mucilage ---------- ---------- Türkiye’den 11 Alyssum taksonundaki tohum musilaj bileşenleri ve onların taksonomik ve ekolojik önemi Özet Bu çalışmada, 11 Alyssum taksonunun (A. dasycarpum var. dasycarpum, A. desertorum, A. filiforme, A. hirsutum var. hirsutum, A. linifolium var. linifolium, A. minutum, Alyssum murale var. murale, A. parviflorum, A. sibiricum, A. strictum ve A. strigosum subsp. strigosum) tohumlarındaki musilaj karakterizasyonu ve onların taksonomik ve ekolojik önemi çalışılmıştır. Musilaj hücreleri su ile temas halinde çalışılan taksonların tohum yüzeylerinde görülmüştür. -
933 the Field of Molecular Phylogenetics Has Progressed Tremen
American Journal of Botany 99(5): 933–953. 2012. P HYLOGENETICS, BIOGEOGRAPHY, AND STAMINAL EVOLUTION IN 1 THE TRIBE MENTHEAE (LAMIACEAE) B RYAN T . D REW 2,3 , AND K ENNETH J. SYTSMA 2 2 Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 USA • Premise of the study: The mint family (Lamiaceae) is the sixth largest family of fl owering plants, with the tribe Mentheae containing about a third of the species. We present a detailed perspective on the evolution of the tribe Mentheae based on a phylogenetic analysis of cpDNA and nrDNA that is the most comprehensive to date, a biogeographic set of analyses using a fossil-calibrated chronogram, and an examination of staminal evolution. • Methods: Data from four cpDNA and two nrDNA markers representing all extant genera within the tribe Mentheae were ana- lyzed using the programs BEAST, Lagrange, S-DIVA, and BayesTraits. BEAST was used to simultaneously estimate phylog- eny and divergence times, Lagrange and S-DIVA were used for biogeographical reconstruction, and BayesTraits was used to infer staminal evolution within the tribe. • Key results: Currently accepted subtribal delimitations are shown to be invalid and are updated. The Mentheae and all fi ve of its subtribes have a Mediterranean origin and have dispersed to the New World multiple times. The vast majority of New World species of subtribe Menthinae are the product of a single dispersal event in the mid-late Miocene. At least four transitions from four stamens to two stamens have occurred within Mentheae, once in the subtribe Salviinae, once in the subtribe Lycopinae, and at least twice in the subtribe Menthinae.