Friction Stir Welding of EH46 Steel Grade at Dwell Stage: Microstructure Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MTI Friction Welding Technology Brochure
Friction Welding Manufacturing Technology, Inc. All of us at MTI… would like to extend our thanks for your interest in our company. Manufacturing Technology, Inc. has been a leading manufacturer of inertia, direct drive and hybrid friction welders since 1976. We hope that the following pages will further spark your interest by detailing a number of our products, services and capabilities. We at MTI share a common goal…to help you solve your manufacturing problems in the most Table of Contents efficient way possible. Combining friction welding Introduction to Friction Welding 2 with custom designed automation, we have Advantages of MTI’s Process 3 demonstrated dramatic savings in labor and Inertia Friction Welding 4 material with no sacrifice to quality. Contact us Direct Drive & Hybrid Friction Welding 5 today to find out what we can do for you. Machine Monitors & Controllers 6 Safety Features 7 Flash Removal 7 MTI Welding Services 8 Weldable Combinations 9 Applications Aircraft/Aerospace 10 Oil Field Pieces 14 Military 16 Bimetallic & Special 20 Agricultural & Trucking 22 Automotive 28 General 38 Special Welders & Automated Machines 46 Machine Models & Capabilities 48 Friction Welding 4 What It Is Friction welding is a solid-state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanically induced rubbing motion and Information applied load. The resulting joint is of forged quality. Under normal conditions, the faying surfaces do not melt. Filler metal, flux and shielding gas are not required with this process. Dissimilar Materials Even metal combinations not normally considered compatible can be joined by friction welding, such as aluminum to steel, copper to aluminum, titanium to copper and nickel alloys to steel. -
Friction Stir Welding of Aluminium Alloy AA5754 to Steel DX54
Aalto University School of Engineering Department of Engineering Design and Production Hao Wang Friction Stir Welding of Aluminium Al- loy AA5754 to Steel DX54: Lap Joints with Conventional and New Solu- tion Thesis submitted as a partial fulfilment of the requirements for the degree of Master of Science in Technology. Espoo, October 27, 2015 Supervisor: Prof. Pedro Vila¸ca Advisors: Tatiana Minav Ph.D. Aalto University School of Engineering ABSTRACT OF Department of Engineering Design and Production MASTER'S THESIS Author: Hao Wang Title: Friction Stir Welding of Aluminium Alloy AA5754 to Steel DX54: Lap Joints with Conventional and New Solution Date: October 27, 2015 Pages: 100 Major: Mechanical Engineering Code: IA3027 Supervisor: Professor Pedro Vila¸ca Advisors: Tatiana Minav Ph.D. The demand for joining of aluminum to steel is increasing in the automotive industry. There are solutions based on Friction Stir Welding (FSW) implemented to join these two dissimilar metals but these have not yet resulted in a reliable joint for the automotive industrial applications. The main reason is the brittle intermetallic compounds (IMCs) that are prone to form in the weld region. The objective of this thesis was to develop and test an innovative overlap joint concept, which may improve the quality of the FSW between aluminum alloy AA5754-H22 (2 mm) and steel DX54 (1.5 mm) for automotive applications. The innovative overlap joint concept consists of an interface with a wave shape produced on the steel side. The protrusion part of the shape will be directly processed by the tip of the probe with the intention of improving the mechanical resistance of the joint due to localized heat generation, extensive chemically active surfaces and extra mechanical interlocking. -
A Study on the Acicular Ferrite Formation in Steel Weld Metals for Gas Metal Arc Welding*
[溶接学会論文集 第 38 巻 第 2 号 p. 6s-10s (2020)] A study on the acicular ferrite formation in steel weld metals for gas metal arc welding* by Kyohei Uto**, Koyo Nakayama**, Yuji Kisaka***, Fumiaki Kimura***, Hidenori Terasaki**** Characteristics of oxide inclusions in steel weld metals with varying acicular ferrite (AF) fractions, which were produced by gas metal arc welding using controlled CO2 (10%, 30%, and 50%) and titanium contents (by placing ultra-fine Ti wire), were statistically investigated. The correlation between identified phases in the oxide inclusions and AF formation was discussed from the viewpoint of AF formation mechanism. For high AF fraction samples, we confirmed that all oxide inclusions include Mn-Si-Al-Ti-O amorphous phases. By contrast, an amorphous phase was never observed for low AF fraction samples. Additionally, we confirmed that a few of the amorphous oxides created a Mn-depleted zone (MDZ), which suggested that the MDZ formed by Mn-Si-Al-Ti-O amorphous phase stimulates AF formation. Key Words: acicular ferrite, gas metal arc welding, inclusion, amorphous, manganese depleted zone, spinel oxides 1. Introduction around inclusions are believed to enhance the transformation driving force to ferrite and promote AF nucleation. However, Acicular ferrite (AF) in low-carbon steel weld metals is contradictory findings have been reported, in which MDZs were regarded as the most desirable microstructure with respect to not observed around Ti2O3 and MnTi2O4 which are generally strength and toughness. Hence, research on the mechanism of AF believed to form MDZs.7, 8) Although Ti-containing oxides are formation is required to further improve the mechanical properties expected to play an important role in AF formation, discrepancies of steel weld metals. -
Advanced Welding Processes: Technologies and Process Control
i Advanced welding processes ii Related titles: New developments in advanced welding (ISBN-13: 978-1 85573-970-3; ISBN-10: 1-85573-970-4) Recent developments in high-technology areas have significantly transformed the welding industry where automation, computers, process control, sophisticated scientific instruments and advanced processing methods are all common. Today’s engineers and technologists have to support complex systems and apply sophisticated welding technologies. This comprehensive book discusses the changes in advanced welding technologies, preparing the reader for the modern industry. MIG welding guide (ISBN-13: 978-1-85573-947-5; ISBN-10: 1-85573-947-X) Gas metal arc welding (GMAW), also referred to as MIG (metal inert gas) welding, is one of the key processes in industrial manufacturing. The MIG welding guide provides comprehensive, easy-to-understand coverage of this widely used process. The reader is presented with a variety of topics from the choice of shielding gases, filler materials, welding equipment and lots of practical advice. The book provides an overview of new developments in various processes such as: flux-cored arc welding; new high-productive methods; pulsed MIG welding; MIG-brazing; robotic welding applications and occupational health and safety. This will be essential reading for welding engineers, production engineers, designers and all those involved in industrial manufacturing. Cumulative damage of welded joints (ISBN-13: 978-85573-938-3; ISBN-10: 1-85573-938-0) Fatigue is a mechanism of failure that involves the formation of cracks under the action of different stresses. Fatigue cracks are exceedingly difficult to see, particularly in the early stages of crack growth. -
In-Situ Measurement and Numerical Simulation of Linear
IN-SITU MEASUREMENT AND NUMERICAL SIMULATION OF LINEAR FRICTION WELDING OF Ti-6Al-4V Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kaiwen Zhang Graduate Program in Welding Engineering The Ohio State University 2020 Dissertation Committee Dr. Wei Zhang, advisor Dr. David H. Phillips Dr. Avraham Benatar Dr. Vadim Utkin Copyrighted by Kaiwen Zhang 2020 1 Abstract Traditional fusion welding of advanced structural alloys typically involves several concerns associated with melting and solidification. For example, defects from molten metal solidification may act as crack initiation sites. Segregation of alloying elements during solidification may change weld metal’s local chemistry, making it prone to corrosion. Moreover, the high heat input required to generate the molten weld pool can introduce distortion on cooling. Linear friction welding (LFW) is a solid-state joining process which can produce high-integrity welds between either similar or dissimilar materials, while eliminating solidification defects and reducing distortion. Currently the linear friction welding process is most widely used in the aerospace industry for the fabrication of integrated compressor blades to disks (BLISKs) made of titanium alloys. In addition, there is an interest in applying LFW to manufacture low-cost titanium alloy hardware in other applications. In particular, LFW has been shown capable of producing net-shape titanium pre-forms, which could lead to significant cost reduction in machining and raw material usage. Applications of LFW beyond manufacturing of BLISKs are still limited as developing and quantifying robust processing parameters for high-quality joints can be costly and time consuming. -
Rotational Friction Welding Flyer
ROTATIONAL FRICTION WELDING MANUFACTURINGMANUFACTURING TECHNOLOGY,TECHNOLOGY, INC MTI is a world leader in designing and manufacturing friction welders, and offers a full line of all three TOP TEN ADVANTAGES: main types of Rotational Friction Welding machines — . 1 The machine-controlled process Inertia, Direct Drive, and Hybrid. eliminates human error—weld quality is independent of operator skill. 2 Dissimilar metals can be joined— even some considered incompatible WHAT IS ROTATIONAL FRICTION WELDING? or unweldable. Rotational Friction Welding is a solid-state joining process that produces coalescence . 3 Consumables are not required— in metals, or non-metals using the heat developed between two surfaces by a no flux, filler material, or shielding combination of mechanically-induced rotational rubbing motion and applied load. gases are needed. Under normal conditions, the fraying surfaces do not melt. 4 Only creates a narrow heat-affected zone, which results in more uniform There are three basic types of Rotational Friction Welding: Inertia Welding, Direct properties throughout the part, higher joint efficiencies, and stronger welds. Drive Welding, and Hybrid. Other variations include: Radial, Orbital, Linear or Reciprocating Welding and Friction Stir Welding. 5 The 100% bond of the contact area creates joints of forged quality. WHY ROTATIONAL FRICTION WELDING? . 6 Reduces raw material and machining costs when replacing forgings. Rotational Friction Welding does not compromise the integrity of the parent materials during welding – resulting in stronger welds, more uniform part properties, and . 7 Environmentally friendly, producing higher joint efficiencies. Even materials and geometries deemed unweldable are able to no smoke, fumes, or slag. be joined using Rotational Friction Welding. -
The Use of Friction Welding for Corrosion Control in the Offshore Oil and Gas Industry Proserv UK To: Icorr, Aberdeen Branch 27.01.2015
The Use of Friction Welding for Corrosion Control in the Offshore Oil and Gas Industry Proserv UK To: Icorr, Aberdeen Branch 27.01.2015 Dave Gibson - Technical Authority, Friction Welding [email protected] Our Evolution What We Do: Life of Field Services Business Division What We Offer Solutions & Services • BOP Services Drilling Control Products and services • Drilling Control Systems Assurance & Performance Systems (DCS) focussed on operational • After-market & Lifecycle Management assurance Production Equipment Products and services • Flow Assurance & Sampling Solutions Systems (PES) focussed on production • Production Control & Safety Solutions optimisation • Asset Performance & Operational Integrity Products, services and • Subsea Marginal Field Development Subsea Production system design focused on • Subsea Brownfield Extension, Upgrade & Optimisation Systems (SPS) production enhancement • Obsolescence Management • Subsea Life of Field Services & Support • Subsea Infrastructure, Repair & Maintenance Products and services • Emergency Pipeline Repair Marine Technology focused on intervention and • Diverless Intervention Services (MTS) remediation to assure asset • Wellhead Abandonment & Decommissioning integrity • Friction Welding Summary 1. Why use Friction Welding Chosen for Corrosion Control ? 2. The Portable Friction Welding Process 3. Fatigue Strength of Friction Welds 4. Subsea Friction Welding Tooling 5. Subsea applications of Friction Welding for Cathodic Protection 6. Topside friction welding tooling 7. Topside applications of Friction welding for corrosion control 8. Corrosion Sensor Attachment Why is Friction Welding Chosen for Corrosion Control? Subsea • Welded, low electrical resistance, low maintenance connection • Suitable for large flat surfaces where clamps can’t be used (e.g. FPSO hulls, large diameter jacket legs and wind farm piles) • Better fatigue strength than arc welds in the “as welded” condition • When used with an ROV lower vessel costs and rapid installation. -
Formation of Fine Microstructure in Weld Metal Containing Mn-Ti Based Oxides Hidenori NAKO*1, Yoshitomi OKAZAKI*1, Dr
Formation of Fine Microstructure in Weld Metal Containing Mn-Ti based Oxides Hidenori NAKO*1, Yoshitomi OKAZAKI*1, Dr. Hitoshi HATANO*1, Ken YAMASHITA*2, Hideaki TAKAUCHI*2 *1 Materials Research Laboratory, Technical Development Group *2 Welding Process Dept., Technical Center, Welding Business The formation of fine acicular ferrite microstructure and the inclusion. This is a concept focusing on the toughness improvement have been observed in a welding structural energy component of the interface energy metal in which inclusion particles containing Mn-Ti and has been studied for a long time.8), 11) In recent based oxide are dispersed. The inclusion particles are years, researches based on chemical energy have also 12) composed of MnTi2O4 , TiO2 , amorphous and MnS phases, been conducted. while the acicular ferrite has been nucleated from the (2) A compositional change of austenite phase MnTi2O4 phase. The Baker-Nutting crystal orientation around inclusions: This is the theory that the relationship has been found between MnTi2O4 phase and composition of the austenite phase around acicular ferrite, whereas the Kurdjumov-Sachs orientation inclusions changes before the AF is generated such relationship has been found between the prior austenite that the driving force for AF generation increases. phase and acicular ferrite. It has been discovered that The Mn-depleted zone is cited as an example.13) the favorable lattice matching at the interface between the It has been shown that, when Mn, an austenite prior austenite phase and acicular ferrite may possibly stabilizing element, is absorbed by inclusions, have promoted the nucleation and growth of acicular a Mn-depleted zone is formed in the vicinity of ferrite, as well as the lattice matching at the MnTi2O4 / the inclusions, raising the Ae3 temperature. -
MSL Engineering Limited Platinum Blue House 1St Floor, 18 the Avenue Egham, Surrey, TW20 9AB
SMR Final Report 121404 Purpose of Issue Rev Date of Issue Author Agreed Approved Issued for information 0 Aug 2004 SM Issued for internal comment 1 November 2004 AFD DJM JB Issued as Final Report 2 December 2004 AFD DJM JB This Final report has been reviewed and approved by the Mineral Management Service. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This study was funded by the Mineral Management Service, U.S. Department of the Interior, Washington, D.C., under Contract Number 1435-01-04-CT-35320 ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES Project #502 DOC REF C357R001 Rev 1 NOV 2004 MSL Engineering Limited Platinum Blue House 1st Floor, 18 The Avenue Egham, Surrey, TW20 9AB Tel: +44 (0)1784 439194 Fax: +44 (0)1784 439198 E-mail: [email protected] C357R001Rev 2, December 2004 MMS Project #502 NUMBER DETAILS OF REVISION 0 Issued for information, August 2004 1 Issued for comment, November 2004. Extensive revisions throughout, including restructuring of report. 2 Issued as Final Report, December 2004. Conversion table added, Figure showing clamp details to avoid added, and general editorial revisions. C357R001Rev 2, December 2004 MMS Project #502 Assessment of Repair Techniques for Ageing or Damaged Structures By Dr. Adrian F Dier MSL Services Corporation Final Project Report: ASSESSMENT OF REPAIR TECHNIQUES FOR AGEING OR DAMAGED STRUCTURES MMS Project Number 502 November 2004 C357R001Rev 2, December 2004 i This Final report has been reviewed a nd approved by the Mineral Management Service. -
INVESTIGATION of LOW OXYGEN HSLA STEEL WELD METAL By
INVESTIGATION OF LOW OXYGEN HSLA STEEL WELD METAL by Drew White A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Metallurgical and Materials Engineering). Golden, Colorado Date: _____________ Signed: _______________________ Drew White Signed: _______________________ Dr. Stephen Liu Thesis Advisor Golden, Colorado Date: _____________ Signed: _______________________ Dr. Angus Rockett Professor and Head of George S. Ansell Department of Metallurgical and Materials Engineering ii ABSTRACT Hot-wire gas tungsten arc welding is a process gaining more popularity in industry today due to increased deposition rate, from the resistively heated filler metal introduced by an external wire feed system. A modified version of this system, which incorporates an oscillation mechanism to modify the frequency with which the filler metal enters the molten weld pool was utilized in this work and the effect of varying process parameters on microstructure, weld bead morphology, and inclusion size and distribution are characterized. Hot-wire amperage, wire feed speed, frequency of wire oscillation and heat input were varied on seven wire consumables to determine their effects on acicular ferrite. Optimal microstructural development in high strength low alloy steel weldments is mainly dependent on acicular ferrite, which nucleates on oxide inclusions. However, with the gas tungsten arc process, it is difficult to manipulate weld pool oxygen content to achieve the needed level for optimal acicular ferrite formation. The oxide inclusion population is investigated to determine the morphology, size and spatial distribution and whether they served as nucleation sites for ferrite formation. -
Friction Stir Processing of Aluminum Alloys
University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2004 FRICTION STIR PROCESSING OF ALUMINUM ALLOYS RAJESWARI R. ITHARAJU University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation ITHARAJU, RAJESWARI R., "FRICTION STIR PROCESSING OF ALUMINUM ALLOYS" (2004). University of Kentucky Master's Theses. 322. https://uknowledge.uky.edu/gradschool_theses/322 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS FRICTION STIR PROCESSING OF ALUMINUM ALLOYS Friction stir processing (FSP) is one of the new and promising thermomechanical processing techniques that alters the microstructural and mechanical properties of the material in single pass to achieve maximum performance with low production cost in less time using a simple and inexpensive tool. Preliminary studies of different FS processed alloys report the processed zone to contain fine grained, homogeneous and equiaxed microstructure. Several studies have been conducted to optimize the process and relate various process parameters like rotational and translational speeds to resulting microstructure. But there is only a little data reported on the effect of the process parameters on the forces generated during processing, and the resulting microstructure of aluminum alloys especially AA5052 which is a potential superplastic alloy. In the present work, sheets of aluminum alloys were friction stir processed under various combinations of rotational and translational speeds. -
Rotary Friction Welding of Inconel 718 to Inconel 600
metals Article Rotary Friction Welding of Inconel 718 to Inconel 600 Ateekh Ur Rehman * , Yusuf Usmani, Ali M. Al-Samhan and Saqib Anwar Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (Y.U.); [email protected] (A.M.A.-S.); [email protected] (S.A.) * Correspondence: [email protected]; Tel.: +966-1-1469-7177 Abstract: Nickel-based superalloys exhibit excellent high temperature strength, high temperature corrosion and oxidation resistance and creep resistance. They are widely used in high temperature applications in aerospace, power and petrochemical industries. The need for economical and efficient usage of materials often necessitates the joining of dissimilar metals. In this study, dissimilar welding between two different nickel-based superalloys, Inconel 718 and Inconel 600, was attempted using rotary friction welding. Sound metallurgical joints were produced without any unwanted Laves or delta phases at the weld region, which invariably appear in fusion welds. The weld thermal cycle was found to result in significant grain coarsening in the heat effected zone (HAZ) on either side of the dissimilar weld interface due to the prevailing thermal cycles during the welding. However, fine equiaxed grains were observed at the weld interface due to dynamic recrystallization caused by severe plastic deformation at high temperatures. In room temperature tensile tests, the joints were found to fail in the HAZ of Inconel 718 exhibiting good ultimate tensile strength (759 MPa) without a significant loss of tensile ductility (21%). A scanning electron microscopic examination of the fracture surfaces revealed fine dimpled rupture features, suggesting a fracture in a ductile mode.