Advanced Welding Processes: Technologies and Process Control

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Welding Processes: Technologies and Process Control i Advanced welding processes ii Related titles: New developments in advanced welding (ISBN-13: 978-1 85573-970-3; ISBN-10: 1-85573-970-4) Recent developments in high-technology areas have significantly transformed the welding industry where automation, computers, process control, sophisticated scientific instruments and advanced processing methods are all common. Today’s engineers and technologists have to support complex systems and apply sophisticated welding technologies. This comprehensive book discusses the changes in advanced welding technologies, preparing the reader for the modern industry. MIG welding guide (ISBN-13: 978-1-85573-947-5; ISBN-10: 1-85573-947-X) Gas metal arc welding (GMAW), also referred to as MIG (metal inert gas) welding, is one of the key processes in industrial manufacturing. The MIG welding guide provides comprehensive, easy-to-understand coverage of this widely used process. The reader is presented with a variety of topics from the choice of shielding gases, filler materials, welding equipment and lots of practical advice. The book provides an overview of new developments in various processes such as: flux-cored arc welding; new high-productive methods; pulsed MIG welding; MIG-brazing; robotic welding applications and occupational health and safety. This will be essential reading for welding engineers, production engineers, designers and all those involved in industrial manufacturing. Cumulative damage of welded joints (ISBN-13: 978-85573-938-3; ISBN-10: 1-85573-938-0) Fatigue is a mechanism of failure that involves the formation of cracks under the action of different stresses. Fatigue cracks are exceedingly difficult to see, particularly in the early stages of crack growth. Cracks can progress to a significant extent before they are even discovered. To avoid fatigue it is essential to recognise at the design stage that the loading is such that fatigue may be a possibility and to design the structure with inherent fatigue strength. However, fatigue strength is not a constant material property. It may be assessed by fracture mechanics, but such characteristics are based on quantitative analysis and mere assumption. This book is primarily concerned with fatigue under variable amplitude loading, unlike most tests performed under constant loads. Details of these and other Woodhead Publishing materials books and journals, as well as materials books from Maney Publishing, can be obtained by: ∑ visiting our website at www.woodheadpublishing.com ∑ contacting Customer Services (e-mail: [email protected]; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358 ext. 30; address: Woodhead Publishing Ltd, Abington Hall, Abington, Cambridge CB1 6AH, England) Maney currently publishes 16 peer-reviewed materials science and engineering journals. For further information visit www.maney.co.uk/journals. iii Advanced welding processes Technologies and process control John Norrish Woodhead Publishing and Maney Publishing on behalf of The Institute of Materials, Minerals & Mining W OODHEAD PUBLISHING LIMITED Cambridge, England iv Woodhead Publishing Limited and Maney Publishing Limited on behalf of The Institute of Materials, Minerals & Mining Woodhead Publishing Limited, Abington Hall, Abington, Cambridge CB1 6AH, England www.woodheadpublishing.com First published 1992, IOP Publishing Ltd This edition 2006, Woodhead Publishing Limited © Institute of Materials, Minerals & Mining, 2006 The author has asserted his moral rights. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the author and the publishers cannot assume responsibility for the validity of all materials. Neither the author nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited. The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library. ISBN-13: 978-1-84569-130-1 (book) ISBN-10: 1-84569-130-X (book) ISBN-13: 978-1-84569-170-7 (e-book) ISBN-10: 1-84569-170-9 (e-book) The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp which is processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards. Typeset by Replika Press Pvt Ltd, India Printed by T J International Limited, Padstow, Cornwall, England v Contents Preface ix Acknowledgements xi 1 An introduction to welding processes 1 1.1 Introduction 1 1.2 Conventional welding processes 2 1.3 Summary 15 2 Advanced process development trends 16 2.1 Introduction 16 2.2 Safety and environmental factors 21 2.3 Skill and training requirements 21 2.4 Areas for development 21 2.5 Process application trends 22 2.6 Summary 25 3Welding power source technology 26 3.1 Introduction 26 3.2 Basic power source requirements 26 3.3 Conventional power source designs 27 3.4 Electronic power regulation systems 31 3.5 Output level, sequence and function control 39 3.6 Practical implications of electronic power regulation and control 42 3.7 Summary 43 4 Filler materials for arc welding 44 4.1 Introduction 44 4.2 MMAW consumables 44 4.3 Submerged arc welding consumables 46 vi Contents 4.4 Filler wires for GMAW and FCAW 47 4.5 Summary 57 5 Gases for advanced welding processes 58 5.1 Introduction 58 5.2 Shielding gases for arc welding processes 58 5.3 Gases for laser welding 71 5.4 Summary 72 6 Advanced gas tungsten arc welding 74 6.1 Introduction 74 6.2 Process developments 74 6.3 Process variants 79 6.4 Control of GTAW and related processes 91 6.5 Summary 98 7 Gas metal arc welding 100 7.1 Introduction 100 7.2 Metal transfer in GMAW 100 7.3 The physics of metal transfer 110 7.4 Summary: metal transfer phenomena 113 7.5 Control of conventional GMAW 113 7.6 Summary: process control 120 7.7 Recent developments in the GMAW process 120 7.8 Summary 134 8 High-energy density processes 136 8.1 Introduction 136 8.2 Plasma keyhole welding 138 8.3 Laser welding 144 8.4 Electron beam welding 157 8.5 Summary 164 9 Narrow-gap welding techniques 165 9.1 Introduction 165 9.2 Principles and features of narrow-gap welding 165 9.3 Narrow-gap welding processes 166 9.4 Summary and implications 177 10 Monitoring and control of welding processes 179 10.1 Introduction 179 10.2 Manual control techniques 180 10.3 Monitoring 188 Contents vii 10.4 Automated control techniques 203 10.5 Summary and implications 216 11 Welding automation and robotics 218 11.1 Introduction 218 11.2 Automation options 219 11.3 Simple mechanization 219 11.4 Dedicated and special-purpose automation 223 11.5 Robotic welding 225 11.6 Modular automation 236 11.7 Programmable control 236 11.8 Remote-control slave and automated systems 237 11.9 Advances in welding automation 238 11.10 Evaluation of and justification for automated welding 242 11.11 Summary 246 Appendices 247 Appendix 1: Welding processes classification 249 Appendix 2: Shielded metal arc welding (SMAW) electrode classification 250 Appendix 3: Burn-off characteristics 254 Appendix 4: American, Australian and European FCAW classification systems 257 Appendix 5: Flux-cored wire for surfacing and wear resistance 260 Appendix 6: Plasma keyhole welding parameters 262 Appendix 7: Plasma keyhole welding of titanium 263 References 265 Index 279 This page intentionally left blank ix Preface Welding has traditionally been regarded as a craft rather than a technological manufacturing process. This reputation has not been helped by the dependence of conventional joining techniques on highly skilled manual operators and the relatively high cost and poor reproducibility associated with many welding processes. These attributes led to the ‘Special Process’ classification of welding in international quality standards. In fact, although it may be a complex multi- disciplinary subject, a great deal of high-quality research has been conducted into the fundamentals of welding processes and the basic principles are now well understood. This research has provided a scientific basis for significant developments in the technology. Early developments in welding technology were focused largely on weldability and metallurgical research, which enabled a wide range of materials to be joined, adequate joint properties to be maintained and the integrity of welded joints to be controlled. Whilst further work is still required in the materials research area, in particular to enable advanced materials to be joined effectively, much of the recent effort has been devoted to improved understanding of the basic processes, consumable and equipment development and control and automation. John Norrish University of Wollongong This page intentionally left blank xi Acknowledgements I would like to acknowledge the continued help, advice, encouragement and goading which have been generously provided by many friends and colleagues in the welding industry around the world, also my students, who have taught me much and whose work is reported widely in the following pages. Last, but by no means least, I would like to thank my long-suffering family for their forbearance during the protracted gestation of this work.
Recommended publications
  • Tube Welding MIAB Welding Machines for Pipes MIAB Machines for Welding ://Weld.Hit.Edu.Cn/~Arc , , Lin Sanbao,Dr
    ⴞᖅ ✺ᣔ✺ z A-TIG؍ㅜ1ㄐ˖儈᭸䶎⟄ॆᶱ≄փ z ✝эTIG✺ (IILFLHQW7,*ZHOGLQJWHFKQLTXHV z TOPTIG✺ z ৼ䫘ᶱTIG✺ z MIAB✺ z ਈᶱᙗㅹ⿫ᆀᕗ✺ z TIPTIG✺᧕ Dr. Sanbao LIN ----------------------------------- Department of Welding For HarbinHIT students Institute of Technology use only For HIT students use only China ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /1 ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /2 1. Limitation of conventional TIG welding z limited thickness of material which can be welded in a single pass 1.1 A-TIG✺ Weld penetration achievable in single pass TIG welding of stainless steel is limited to 3 mm when using argon as 1.1 Activating Flux Assisted TIG Welding shielding gas. z poor tolerance to some material composition (cast to cast variations) z the low productivity Poor productivity in TIG welding results from a combination of low welding speeds and in thicker material the high number of passes required to fill the joint. For HIT students use only For HIT students use only ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /3 ¤Dr. Lin Sanbao, http://weld.hit.edu.cn/~arc , /4 2. Advantages of A-TIG welding Penetration increase z The new process enables single pass welding of higher thickness plates with higher welding speed and hence reduced heat input. к˖A-TIG઼TIG✺Ⲵ⭥ᕗ z Enhanced productivity and reduced consumption of filler л˖6mmн䬸䫒ᶯˈᨀ儈⟄␡1.5-2.5ؽ wire z Residual stresses are reduced significantly (more than 70%) in A-TIG weld joints compare to conventional TIG weld joints and the weld joints are distortion free.
    [Show full text]
  • Influence of Welding Speeds on the Morphology, Mechanical Properties
    materials Article Influence of Welding Speeds on the Morphology, Mechanical Properties, and Microstructure of 2205 DSS Welded Joint by K-TIG Welding Shuwan Cui 1,*, Shuwen Pang 1, Dangqing Pang 2 and Zhiqing Zhang 1 1 School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; [email protected] (S.P.); [email protected] (Z.Z.) 2 Guangxi Zhuang Autonomous Region Tobacco Company Liuzhou Tobacco Company, Liuzhou 545006, China; [email protected] * Correspondence: [email protected]; Tel.: +86-13597-0666-15 Abstract: In this paper, 8.0 mm thickness 2205 duplex stainless steel (DSS) workpieces were welded with a keyhole tungsten inert gas (K-TIG) welding system under different welding speeds. After welding, the morphologies of the welds under different welding speed conditions were compared and analyzed. The microstructure, two-phase ratio of austenite/ferrite, and grain boundary characteristics of the welded joints were studied, and the microhardness and tensile properties of the welded joints were tested. The results show that the welding speed has a significant effect on the weld morphology, the two-phase ratio, grain boundary misorientation angle (GBMA), and mechanical properties of the welded joint. When the welding speed increased from 280 mm/min to 340 mm/min, the austenite content and the two-phase ratio in the weld metal zone (WMZ) decreased. However, the ferrite Citation: Cui, S.; Pang, S.; Pang, D.; content in the WMZ increased. The proportion of the S3 coincident site lattice grain boundary Zhang, Z. Influence of Welding (CSLGB) decreased as the welding speed increased, which has no significant effect on the tensile Speeds on the Morphology, strength of welded joints.
    [Show full text]
  • A Study on the Acicular Ferrite Formation in Steel Weld Metals for Gas Metal Arc Welding*
    [溶接学会論文集 第 38 巻 第 2 号 p. 6s-10s (2020)] A study on the acicular ferrite formation in steel weld metals for gas metal arc welding* by Kyohei Uto**, Koyo Nakayama**, Yuji Kisaka***, Fumiaki Kimura***, Hidenori Terasaki**** Characteristics of oxide inclusions in steel weld metals with varying acicular ferrite (AF) fractions, which were produced by gas metal arc welding using controlled CO2 (10%, 30%, and 50%) and titanium contents (by placing ultra-fine Ti wire), were statistically investigated. The correlation between identified phases in the oxide inclusions and AF formation was discussed from the viewpoint of AF formation mechanism. For high AF fraction samples, we confirmed that all oxide inclusions include Mn-Si-Al-Ti-O amorphous phases. By contrast, an amorphous phase was never observed for low AF fraction samples. Additionally, we confirmed that a few of the amorphous oxides created a Mn-depleted zone (MDZ), which suggested that the MDZ formed by Mn-Si-Al-Ti-O amorphous phase stimulates AF formation. Key Words: acicular ferrite, gas metal arc welding, inclusion, amorphous, manganese depleted zone, spinel oxides 1. Introduction around inclusions are believed to enhance the transformation driving force to ferrite and promote AF nucleation. However, Acicular ferrite (AF) in low-carbon steel weld metals is contradictory findings have been reported, in which MDZs were regarded as the most desirable microstructure with respect to not observed around Ti2O3 and MnTi2O4 which are generally strength and toughness. Hence, research on the mechanism of AF believed to form MDZs.7, 8) Although Ti-containing oxides are formation is required to further improve the mechanical properties expected to play an important role in AF formation, discrepancies of steel weld metals.
    [Show full text]
  • Artigo RIOPIPELINE (English Version)
    IBP2161_17 ADVANCES IN THE GTAW PROCESS - CONTRIBUTION OF DYNAMIC FEEDING IN THE ROBUSTNESS OF WELDING OUT-OF-POSITION 1 2 3 Riffel. K.C , Silva. R. G. N , Direne Filho. H , Schwedersky, M. B4, Silva, R. H. G 5 Copyright 2017, Brazilian Petroleum, Gas and Biofuels Institute - IBP This Technical Paper was prepared for presentation at the Rio Pipeline Conference & Exhibition 2017, held between October, 24- 26, 2017, in Rio de Janeiro. This Technical Paper was selected for presentation by the Technical Committee of the event. The material as it is presented, does not necessarily represent Brazilian Petroleum, Gas and Biofuels Institute’ opinion or that of its Members or Representatives. Authors consent to the publication of this Technical Paper in the Rio Pipeline Conference & Exhibition 2017. Abstract The national energetic development is strongly linked to pipeline’s construction sites, which became strongly dependent of welding processes and its automation. For this purpose, is required research and development focusing in new processes with higher robustness which ensure great quality to welding joints. One of the biggest problems on orbital welding applications is the variation on forces direction over the weld pool, which changes depending on welding position. That is evidenced by the necessity to change welding parameters according to weld position, which requires great ability and control of the welder in mechanized welding process. That represents greater tendency to occur welding defects along the weld bead. So, this also involves a reduction in robustness and process repeatability. To this purpose, dynamic wire feeding appears in order to eliminate or mitigate the problems related to emergence of welding defects, leading to improvements like porosity reduction and great weld bead wettability.
    [Show full text]
  • Comparison of Penetration Profiles of Different TIG Process Variations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Comparison of penetration profiles of different TIG process variations Presenter: Tamás Sándor 1977: I was born. 2003: Graduated at the Budapest University of Technology and Eco- nomics on the faculty of mechanical engineers from the department of material sciences and energetic. 2006: Graduated as International Welding Engineer (IWE) at the Budapest University of Technology and Economics. Since 2005: Product Consumables Manager at ESAB, in Hungary. 2007: Doctorate studies have been started parallel with my activities at ESAB. The special field of my recent research is the productivity in- creasing of the TIG welding procedure with special focus at the ATIG welding. 2007: Oral presentation at the Duplex Stainless Steel Conference in Grado. 2008: Poster presentation at the 6th European Stainless Steel Confer- ence in Helsinki. 2005-2009: More than 20 other publications both in Hungary and abroad. Invited lecturer at the Budapest University of Technology and Economics in the subject of Welding Technologies. 2009: Co-operate expert of the Welding Expert and Advisory Cen- trum. Comparison of penetration profiles of different TIG process variations Tamás Sándor Product Consumables Manager, ESAB Kft., Budapest, Hungary, [email protected], phone: +36 20 944 5854 János Dobránszky Senior research fellow Research Group for Metals Technology of the Hungarian Academy of Sciences [email protected], phone: +36 1 463 1934 Keywords: TIG welding, ATIG welding, arc constriction, weld penetration depth, TIG welding penetration profile, TIG welding variations / versions / variants. 1.
    [Show full text]
  • TIP TIG TECHNICAL MANUAL V4.6 155 E 9Th Ave Suite A, Runnemede, NJ 08078
    TIP TIG TECHNICAL MANUAL V4.6 www.tiptigusa.com 155 E 9th Ave Suite A, Runnemede, NJ 08078 Preface We are very pleased that you have chosen to place your trust in our product. We place great value in ensuring that you draw great pleasure, benefit and work enhancement from your use of the TIPTIG Hot Wire Unit. For that reason, we would like you to read through the Technical Manual thoroughly before installing and starting to use the TIPTIG Hot Wire Unit. It will help you to familiarize yourself with your new product as rapidly as possible and to use it more efficiently. This Technical Manual details the TIPTIG Hot Wire Unit, providing you with assistance and support in installing it and getting started, as well as demonstrating how to use it safely and effectively The Manual is structured as follows: TABLE OF CONTENTS SECTION I − SAFETY PRECAUTIONS - READ BEFORE USING Pg I-I Symbol Usage 1 I-II Arc Welding Hazards 1 I-III Additional Symbols For Installation, Operation and Maintenance 2 I-IV California Safety Standards 3 I-V Principal Safety Standards 3 I-VI EMF Information 3 SECTION II − Labels+symbols,Safety instruction especially TIPTIG II-I Labelling+Symbols 4 II-II Safety instructions (CE) 5 II-III Safety instructions (CE) 6 II-IV Safety instructions (CE) 7 SECTION III − Installation-Getting Started III-I Installation/Getting Started 8 III-II Getting Started 9 III-III Getting Started 10 III-IV What is the TIP TIG Process, How is it operated and Benefits 11 III-V Wire Selection 12 III-VI Tungsten Selection and Angles 13-14 III-VII Teflon
    [Show full text]
  • Formation of Fine Microstructure in Weld Metal Containing Mn-Ti Based Oxides Hidenori NAKO*1, Yoshitomi OKAZAKI*1, Dr
    Formation of Fine Microstructure in Weld Metal Containing Mn-Ti based Oxides Hidenori NAKO*1, Yoshitomi OKAZAKI*1, Dr. Hitoshi HATANO*1, Ken YAMASHITA*2, Hideaki TAKAUCHI*2 *1 Materials Research Laboratory, Technical Development Group *2 Welding Process Dept., Technical Center, Welding Business The formation of fine acicular ferrite microstructure and the inclusion. This is a concept focusing on the toughness improvement have been observed in a welding structural energy component of the interface energy metal in which inclusion particles containing Mn-Ti and has been studied for a long time.8), 11) In recent based oxide are dispersed. The inclusion particles are years, researches based on chemical energy have also 12) composed of MnTi2O4 , TiO2 , amorphous and MnS phases, been conducted. while the acicular ferrite has been nucleated from the (2) A compositional change of austenite phase MnTi2O4 phase. The Baker-Nutting crystal orientation around inclusions: This is the theory that the relationship has been found between MnTi2O4 phase and composition of the austenite phase around acicular ferrite, whereas the Kurdjumov-Sachs orientation inclusions changes before the AF is generated such relationship has been found between the prior austenite that the driving force for AF generation increases. phase and acicular ferrite. It has been discovered that The Mn-depleted zone is cited as an example.13) the favorable lattice matching at the interface between the It has been shown that, when Mn, an austenite prior austenite phase and acicular ferrite may possibly stabilizing element, is absorbed by inclusions, have promoted the nucleation and growth of acicular a Mn-depleted zone is formed in the vicinity of ferrite, as well as the lattice matching at the MnTi2O4 / the inclusions, raising the Ae3 temperature.
    [Show full text]
  • INVESTIGATION of LOW OXYGEN HSLA STEEL WELD METAL By
    INVESTIGATION OF LOW OXYGEN HSLA STEEL WELD METAL by Drew White A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Metallurgical and Materials Engineering). Golden, Colorado Date: _____________ Signed: _______________________ Drew White Signed: _______________________ Dr. Stephen Liu Thesis Advisor Golden, Colorado Date: _____________ Signed: _______________________ Dr. Angus Rockett Professor and Head of George S. Ansell Department of Metallurgical and Materials Engineering ii ABSTRACT Hot-wire gas tungsten arc welding is a process gaining more popularity in industry today due to increased deposition rate, from the resistively heated filler metal introduced by an external wire feed system. A modified version of this system, which incorporates an oscillation mechanism to modify the frequency with which the filler metal enters the molten weld pool was utilized in this work and the effect of varying process parameters on microstructure, weld bead morphology, and inclusion size and distribution are characterized. Hot-wire amperage, wire feed speed, frequency of wire oscillation and heat input were varied on seven wire consumables to determine their effects on acicular ferrite. Optimal microstructural development in high strength low alloy steel weldments is mainly dependent on acicular ferrite, which nucleates on oxide inclusions. However, with the gas tungsten arc process, it is difficult to manipulate weld pool oxygen content to achieve the needed level for optimal acicular ferrite formation. The oxide inclusion population is investigated to determine the morphology, size and spatial distribution and whether they served as nucleation sites for ferrite formation.
    [Show full text]
  • Analysis of Inclusions in Submerged Arc Welds in Microalloyed Steels
    Analysis of Inclusions in Submerged Arc Welds in Microalloyed Steels The level of weld bead acicular ferrite is found to be less in Ca-treated vs. Ca-free base metal of the same composition BY A. R. BHATTI, M. E. SAGGESE, D. N. HAWKINS, J. A. WHITEMAN, AND M. S. GOLDING Introduction ered the importance of inclusion crystal­ In this study, a range of weld beads lography. Others (Refs. 8, 9) do not share made on API 5LX65 base material have Toughness requirements for arctic this view and have instead concentrated been investigated to simulate the high grade line pipe have become increasingly on the indirect effect that inclusion chem­ dilution situation in practical pipe manu­ more stringent with the advent of tech­ istry may have on hardenability. ln their facture. Two base metals were selected nological demanding applications. This view, acicular ferrite is apparently devel­ with similar composition and low sulphur has led to developments in steel technol­ oped when the threshold value of 1.1 content, with one plate having under­ ogy giving increased through-thickness wt-% Mn is exceeded in the weld metal gone inclusion modification by calcium properties, with a move to low sulphur matrix. treatment. Three welding wires were steels and inclusion control by the use of selected; they were Oerlikon Welding rare earth treatments (e.g., Ca). Industries' S2, SD3Mo and Tibor 22 (con­ It has been shown (Ref. 1) that these taining microalloyed additions of Ti and B, Table 1—Base Metal Composition, wt-% types of steels provide excellent resis­ and identified as no.
    [Show full text]
  • Friction Stir Welding of EH46 Steel Grade at Dwell Stage: Microstructure Evolution
    Friction Stir Welding of EH46 Steel Grade at Dwell Stage: Microstructure Evolution M. Al-moussawi, J. Smith and M. Faraji Accepted author manuscript deposited in Coventry University Repository Original citation: Al-moussawi, M; Smith, J. and Faraji, M. (2017) Friction Stir Welding of EH46 Steel Grade at Dwell Stage: Microstructure Evolution Metallography, Microstructure, and Analysis (6) 6, 489-501. DOI: 10.1007/s13632-017-0390-5 http://dx.doi.org/10.1007/s13632-017-0390-5 Springer US This is a post-peer-review, pre-copyedit version of an article published in Metallography, Microstructure, and Analysis. The final authenticated version is available online at: http://dx.doi.org/10.1007/s13632-017-0390-5 Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. Friction Stir Welding of EH46 steel grade at Dwell Stage: Microstructure Evolution *1 M. Al-moussawi, *2 A.J Smith, 3M. Faraji *1,2Sheffield Hallam University/MERI/UK, 3Coventry University *[email protected] +447462954845 *2 [email protected] Abstract This work investigated the effect of changes in Friction Stir Welding (FSW) process parameters on the resulting microstructure. In particular the effect of the plunge depth and tool rotational speed, during the "dwell" period was investigated in this work.
    [Show full text]
  • Scott Maceachern, David A. Scott, Molly O'guinness Carlson & Jean
    IRON ARTEF A CTS FROM THE DGB-1 SI TE , NORTHERN CA MEROON : CONSERV A T I ON , MET A LLUR gi C A L AN A LYS I S A N D ETHNO A RCH A EOLO gi C A L AN A LO gi ES Scott MacEachern, David A. Scott, Molly O'Guinness Carlson & Jean-Marie Datouang Djoussou Abstract Résumé In 2008, a number of iron artefacts were recovered from En 2008, des objets en fer ont été mis au jour dans une an interior courtyard on the DGB-1 site during fieldwork cour intérieure de DGB-1, un très grand site multifon- in 2008. DGB-1 is a large multi-function site located in the ctionnel se trouvant dans le nord des monts Mandara northeastern Mandara Mountains of Cameroon, and dat- camerounais et datant du milieu du deuxième millénaire ing to the mid-second millennium AD. The iron artefacts après J-C. Ces objets comprenaient un ensemble de poin- recovered included a cache of spear/arrow points found tes de lance/flèche constituant un dépôt enterré sous un buried under a living floor, as well as a local hoe and a niveau d’occupation, ainsi qu’une chaîne à maillons et chain and a ‘barrette’ probably not of local provenance. une barrette, probablement allochtone ainsi qu’une houe This discovery has a number of points of interest: (1) de provenance locale. Cette découverte présente plu- ethnoarchaeological reenactments of iron smelts in the sieurs intérêts : (1) l’occasion rare de comparer, sur cinq 1980s in the same region provide a rare opportunity for siècles environ, des techniques sidérurgiques en Afrique comparison of iron-working techniques over about five sub-saharienne grâce aux réactivations de la réduction centuries in sub-Saharan Africa; (2) the variability in de fer réalisées en contexte ethnoarchéologique dans les different forms of iron (including eutectoid steel) used in années 1980 dans la même région, (2) la variabilité des these artefacts; and (3) the welding of different forms of différentes qualités de fer (y compris l’acier eutectoïde) iron to produce composite artefacts.
    [Show full text]
  • On the Formation Potential of Acicular Ferrite Microstructure in Different Steel Grades Focusing on the Influence of Carbon Content
    On the Formation Potential of Acicular Ferrite Microstructure in Different Steel Grades Focusing on the Influence of Carbon Content Denise Loder1, Alexander Mayerhofer2, Susanne Katharina Michelic3 1Montanuniversitaet Leoben Franz-Josef-Strasse 18, 8700 Leoben, Austria Phone: +43 3842 402-2205 Email: [email protected] 1Montanuniversitaet Leoben Franz-Josef-Strasse 18, 8700 Leoben, Austria Phone: +43 3842 402-2228 Email: [email protected] 1Montanuniversitaet Leoben Franz-Josef-Strasse 18, 8700 Leoben, Austria Phone: +43 3842 402-2214 Email: [email protected] Keywords: Acicular ferrite, Microstructure, Non-metallic inclusions, Carbon content, High temperature laser scanning confocal microscopy (HT-LSCM) INTRODUCTION Since the 1970s comprehensive effort was spent on the explanation of the acicular ferrite formation. Acicular ferrite (AF) nucleates intragranularly on non-metallic inclusions. The needle or lenticular shaped plates radiate in various directions and create a chaotic, interlocking microstructure. The growth of acicular ferrite grains is diffusionless, but excess carbon is rejected to the remaining austenite shortly after transition. The carbon enriched austenite transforms during the ongoing cooling process to perlite, bainite or martensite, or remains as retained austenite in the final structure. The created multiphase microstructure provides excellent mechanical properties, most notably toughness, so that acicular ferrite steels are of increasing interest for steel producers. In literature four main nucleation mechanisms are described: destruction of the crystal structure, creation of dislocation arrays, reduction of lattice mismatch and chemical changes in the local matrix. Literature suggests that a combination of at least two effects is responsible for the nucleation of acicular ferrite, but the exact impact of the mechanisms is not completely understood yet.1–8 Acicular ferrite formation is mainly influenced by the steel composition, cooling rate, non-metallic inclusions and austenite grain size.
    [Show full text]