Congenital Thrombophilia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activated Protein C Resistance: the Most Common Risk Factor for Venous Thromboembolism
J Am Board Fam Pract: first published as 10.3122/15572625-13-2-111 on 1 March 2000. Downloaded from CLINICAL REVIEW Activated Protein C Resistance: The Most Common Risk Factor for Venous Thromboembolism Dawn R. Sheppard, DO Background: Venous thromboembolism is a major cause of morbidity and mortality. Although activated protein C resistance (APC-R) is the most commonly recognized inherited risk factor for venous throm boembolism, little is known about its long-tenn implications on health. Methods: MEDLINE was searched from January 1989 through August 1999 using the key words ''thromboembolism," ''thrombosis," "activated protein C resistance," and "factor V Leiden." Results: One in 1000 people in the United States is affected by venous thromboembolism annually. APC-R is now understood to be responsible for up to 64% of these cases. APC-R, which occurs widely in some ethnic groups and is nearly absent in others, is due to a single point mutation in the gene for clot ting factor V. As a result, inactivation of factor V by activated protein C is impaired, leading to a hyper coagulable state. This condition creates a lifelong increased risk of thrombosis and, possibly, anticoag- ulant therapy.. Conclusion: Family physicians have a new tool for assessing risks for venous thromboembolism. Recognizing that up to 64% of patients with venous thromboembolism can have APe-R and treating this disorder with prophylactic and therapeutic anticoagulation might reduce patient morbidity and mortal ity from venous thromboembolism. Screening high-risk patients might now be indicated. (J Am Board Fam Pract 2000i13:111-5.) Venous thromboembolism, a serious health prob "thromboembolism," "thrombosis," "activated pro lem and an important cause of morbidity, affects tein C resistance," and "factor V Leiden." about 1 in 1000 persons annually. -
Protein C Deficiency
Protein C deficiency Description Protein C deficiency is a disorder that increases the risk of developing abnormal blood clots; the condition can be mild or severe. Individuals with mild protein C deficiency are at risk of a type of blood clot known as a deep vein thrombosis (DVT). These clots occur in the deep veins of the arms or legs, away from the surface of the skin. A DVT can travel through the bloodstream and lodge in the lungs, causing a life-threatening blockage of blood flow known as a pulmonary embolism (PE). While most people with mild protein C deficiency never develop abnormal blood clots, certain factors can add to the risk of their development. These factors include increased age, surgery, inactivity, or pregnancy. Having another inherited disorder of blood clotting in addition to protein C deficiency can also influence the risk of abnormal blood clotting. In severe cases of protein C deficiency, infants develop a life-threatening blood clotting disorder called purpura fulminans soon after birth. Purpura fulminans is characterized by the formation of blood clots in the small blood vessels throughout the body. These blood clots block normal blood flow and can lead to localized death of body tissue ( necrosis). Widespread blood clotting uses up all available blood clotting proteins. As a result, abnormal bleeding occurs in various parts of the body, which can cause large, purple patches on the skin. Individuals who survive the newborn period may experience recurrent episodes of purpura fulminans. Frequency Mild protein C deficiency affects approximately 1 in 500 individuals. Severe protein C deficiency is rare and occurs in an estimated 1 in 4 million newborns. -
Familial Multiple Coagulation Factor Deficiencies
Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al. -
Regulation of Coagulation by the Fibrinolytic System: Expecting the Unexpected
Bleeding disorders Regulation of coagulation by the fibrinolytic system: expecting the unexpected K.A. Hajjar ABSTRACT Department of Cell and Recent investigations into fibrinolysis and coagulation have yielded exciting and unexpected findings. Developmental Biology, Of note, deficiencies of the major components of the classical fibrinolytic system, namely plasminogen, Department of Pediatrics tissue plasminogen activator, and urokinase, are now recognized to be rare causes of macrovascular Department of Medicine, thrombosis. At the same time, both plasminogen activator excess and fibrinolytic inhibitor deficiencies Weill Cornell Medical College, are associated with clinically significant bleeding, while elevated inhibitor levels, particularly thrombin New York, New York, USA activatable fibrinolysis inhibitor, appear to confer clinically significant risk for thrombosis. Receptor- mediated cell surface fibrinolysis adds a new dimension to the regulation of fibrin balance. Exaggerated expression of the annexin A2 complex, for example, is associated with hemorrhage in acute promyelo- Hematology Education: cytic leukemia, whereas autoantibodies directed against A2 correlate with thrombotic disease in the education program for the patients with antiphospholipid syndrome. The contributions of the urokinase receptor and a diverse annual congress of the European array of plasminogen receptors to fibrin homeostasis remain to be defined. Future studies are likely to Hematology Association reveal novel mechanisms that co-regulate coagulation and -
Alpha-Dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth
Alpha-dystroglycan plays functional roles in platelet aggregation and thrombus growth by Reid Gallant A thesis submitted in conformity with the requirements For the degree of Master of Science Graduate Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Reid Gallant 2017 i Alpha-dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth Reid Gallant Master of Science Department of Laboratory Medicine and Pathobiology University of Toronto 2017 ABSTRACT Fibrinogen (Fg) and von Willebrand factor (VWF) have been considered essential for platelet adhesion and aggregation. However, platelet aggregation still occurs in mice lacking Fg and/or VWF but not β3 integrin, suggesting other, unidentified αIIbβ3 integrin ligand(s) mediate platelet aggregation. Through screening published platelet proteomics data, we identified a candidate, alpha-dystroglycan (α-DG). Using Western blot and flow cytometry, I found α-DG is expressed on platelets. Using aggregometry, I observed that antibodies against α-DG or its N- terminal Laminin-binding site, decreased platelet aggregation induced by various platelet agonists in both platelet-rich plasma and gel-filtered platelets. These antibodies also decreased platelet adhesion/aggregation in perfusion chambers independent of α-DG-Laminin interaction. Using laser injury intravital microscopy and carotid artery thrombosis models, we further found that these anti-α-DG antibodies decreased thrombus growth in vivo. Our results showed that α- DG may form an α-DG-fibronectin complex that binds to αIIbβ3 integrin, contributing to platelet adhesion/aggregation, and thrombosis growth. ii Acknowledgements ―It helps a man immensely to be a bit of a hero-worshipper, and the stories of the lives of the masters of medicine do much to stimulate our ambition and rouse our sympathies‖ – Sir William Osler I will always be grateful to my MSc supervisor, Dr. -
The Approach to Thrombosis Prevention Across the Spectrum of Philadelphia-Negative Classic Myeloproliferative Neoplasms
Review The Approach to Thrombosis Prevention across the Spectrum of Philadelphia-Negative Classic Myeloproliferative Neoplasms Steffen Koschmieder Department of Medicine (Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation), Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany; [email protected]; Tel.: +49-241-8080981; Fax: +49-241-8082449 Abstract: Patients with myeloproliferative neoplasm (MPN) are potentially facing diminished life expectancy and decreased quality of life, due to thromboembolic and hemorrhagic complications, progression to myelofibrosis or acute leukemia with ensuing signs of hematopoietic insufficiency, and disturbing symptoms such as pruritus, night sweats, and bone pain. In patients with essential thrombocythemia (ET) or polycythemia vera (PV), current guidelines recommend both primary and secondary measures to prevent thrombosis. These include acetylsalicylic acid (ASA) for patients with intermediate- or high-risk ET and all patients with PV, unless they have contraindications for ASA use, and phlebotomy for all PV patients. A target hematocrit level below 45% is demonstrated to be associated with decreased cardiovascular events in PV. In addition, cytoreductive therapy is shown to reduce the rate of thrombotic complications in high-risk ET and high-risk PV patients. In patients with prefibrotic primary myelofibrosis (pre-PMF), similar measures are recommended as in those with ET. Patients with overt PMF may be at increased risk of bleeding and thus require a more individualized approach to thrombosis prevention. This review summarizes the thrombotic Citation: Koschmieder, S. The risk factors and primary and secondary preventive measures against thrombosis in MPN. Approach to Thrombosis Prevention across the Spectrum of Keywords: myeloproliferative neoplasms (MPN); polycythemia vera (PV); essential thrombocythemia Philadelphia-Negative Classic (ET); primary myelofibrosis (PMF); thrombosis; prevention; antiplatelet agents; anticoagulation; cy- Myeloproliferative Neoplasms. -
Cutaneous Findings in Patients on Anticoagulants Caleb Creswell, MD Dermatology Specialists Disclosure Information
Cutaneous findings in patients on Anticoagulants Caleb Creswell, MD Dermatology Specialists Disclosure Information • I have no financial relationships to disclose Objectives 1) Identify underlying causes of actinic or senile purpura 2) Recognize coumadin skin necrosis and understand proper treatment 3) Recognize heparin skin necrosis and understand that underlying HIT is often present Actinic (Senile) Purpura • Common on forearms of elderly individuals • Most important factor is chronic sun exposure – Thins dermal collagen and blood vessel walls • Anticoagulants may exacerbate but are rarely the main culprit Actinic Purpura Actinic Purpura Leukocytoclastic Vasculitis • Don’t mistake LCV for actinic purpura Ecchymoses • No topical agents have been shown to speed resorption of RBCs and hemosiderin • Pulsed-dye Laser can help Coumadin Induced Skin Necrosis • Coumadin: Occurs between 3-5 days after initiating therapy – Due to transient protein C deficiency – Increased risk with intrinsic protein C deficiency – Occurs in areas with significant adipose tissue – Treatment: Heparinize and continue coumadin Coumadin Induced Skin Necrosis Other Coumadin Skin Reactions • Extremely rare cause of morbilliform drug rash • Can cause leukocytoclastic vasculitis – Can occur weeks to months after starting medication Photo of Morbilliform CADR Leukocytoclastic Vasculitis Heparin Induced Skin Necrosis • Heparin: Occurs 1-14 days after starting – Often starts at injection site and spreads – Due to HIT Type II (Thrombocytopenia will be present) Heparin Induced -
Factor V Leiden Thrombophilia
Factor V Leiden thrombophilia Description Factor V Leiden thrombophilia is an inherited disorder of blood clotting. Factor V Leiden is the name of a specific gene mutation that results in thrombophilia, which is an increased tendency to form abnormal blood clots that can block blood vessels. People with factor V Leiden thrombophilia have a higher than average risk of developing a type of blood clot called a deep venous thrombosis (DVT). DVTs occur most often in the legs, although they can also occur in other parts of the body, including the brain, eyes, liver, and kidneys. Factor V Leiden thrombophilia also increases the risk that clots will break away from their original site and travel through the bloodstream. These clots can lodge in the lungs, where they are known as pulmonary emboli. Although factor V Leiden thrombophilia increases the risk of blood clots, only about 10 percent of individuals with the factor V Leiden mutation ever develop abnormal clots. The factor V Leiden mutation is associated with a slightly increased risk of pregnancy loss (miscarriage). Women with this mutation are two to three times more likely to have multiple (recurrent) miscarriages or a pregnancy loss during the second or third trimester. Some research suggests that the factor V Leiden mutation may also increase the risk of other complications during pregnancy, including pregnancy-induced high blood pressure (preeclampsia), slow fetal growth, and early separation of the placenta from the uterine wall (placental abruption). However, the association between the factor V Leiden mutation and these complications has not been confirmed. Most women with factor V Leiden thrombophilia have normal pregnancies. -
Factor V Leiden Thrombophilia Jody Lynn Kujovich, MD
GENETEST REVIEW Genetics in Medicine Factor V Leiden thrombophilia Jody Lynn Kujovich, MD TABLE OF CONTENTS Pathogenic mechanisms and molecular basis.................................................2 Obesity ...........................................................................................................8 Prevalence..............................................................................................................2 Surgery...........................................................................................................8 Diagnosis................................................................................................................2 Thrombosis not convincingly associated with Factor V Leiden....................8 Clinical diagnosis..............................................................................................2 Arterial thrombosis...........................................................................................8 Testing................................................................................................................2 Myocardial infarction.......................................................................................8 Indications for testing......................................................................................3 Stroke .................................................................................................................8 Natural history and clinical manifestations......................................................3 Genotype-phenotype -
Digestive Hemorrhaging in a Patient Being Treated with Anticoagulants
Clinical problem Digestive hemorrhaging in a patient being treated with anticoagulants Alberto Rodríguez Varón, MD,1 Edward A. Cáceres-Méndez, MD.2 1 Professor of Internal Medicine and Gastroenterology. CliniCal Case Pontificia Universidad Javeriana. Hospital Universitario San Ignacio. Bogotá 2 Medical Intern, Pontificia Universidad Javeriana. Hospital Universitario San Ignacio. Bogotá The patient was a sixty-five-year-old male with continuous abdominal pain on the left side which had been developing for 12 hours. Towards the end of that period, the ......................................... Received: 09-02-11 patient showed melanemesis, rectal bleeding, hematuria, whimpering, and rectal and Accepted: 22-02-11 bladder tenesmus. An important event in this patient’s background was ischemic heart disease with myocardial revascularization. A coronary stent had been placed six months before. His condition was being dealt with through dual antiplatelet therapy. He had also presented a deep vein thrombosis with pulmonary embolism three months before. Since then, he had been anticoagulated with low molecular weight heparin and warfarin with irregular monitoring. He was also taking metoprolol, enalapril, and lovastatin. He presented chronic alcohol consumption. At the time he was admitted to the hospital, his blood pressure was 130/80 mm Hg and his heart rate was 54 beats per minute. He was sleepy but did not have any other neurological symptoms. There were no cirrhotic or portal hypertension stigmas. His jugular venous distension was level II and his heart beat and respiratory sounds were normal. The abdomen was soft, without pain, and his intestinal sounds were normal. His symmetrical peripheral pulses were also normal. The patient was hospitalized with a diagnosis of over coagulation, upper and lower gastrointestinal bleeding, and possible urolithiasis. -
Prevalence of Genetic Thrombophilia in Primary Antiphospholipid Syndrome
European Review for Medical and Pharmacological Sciences 2021; 25: 3645-3646 Prevalence of genetic thrombophilia in primary antiphospholipid syndrome Dear Editor, Primary antiphospholipid syndrome (pAPS) is characterized by thrombotic events and preg- nancy losses associated with the presence of antiphospholipid antibodies. The combination of two or more thrombophilic factors increases the risk of thrombosis1-5. The present study aimed to assess the prevalence of other genetic or acquired thrombophilic factors in pAPS and verify whether there is a relevant clinical association. We investigated a cohort of 62 patients (88.9% women; mean age: 39.3 years) diagnosed with pAPS (Sapporo criteria), the presence of other thrombophilic factors, namely: hyperhomocysteinemia (HH) by chemiluminescence method; protein S deficiency (DPS) through functional quantification by chronometric method; protein C (DPC) and antithrombin III (ATIII) deficiencies through functional quantification by the chromo- genic substrate; and the search for the G20210A mutation of the prothrombin gene (MGP) by polymerase chain reaction (PCR), followed by digestion with Hind III restriction enzyme and the search for the Q506 mutation of the factor V gene (Leiden factor V - LFV), by PCR followed by digestion with restriction enzyme Mnl I. Three (19%) patients with LFVL in heterozygous form were found in 16 surveyed. HH was found in 2/40 (5%); 1/31 FVDATIII (3.2%); DPC at 7/33 (21%); and DPS at 8/32 (32%). No MGP was found in the 14 patients in which it was searched. It was also found that when comparing the groups of isolated APS with those of combined APS with thrombophilia factors, it was found that the age of the first presentation of thrombosis or pregnancy loss was significantly lower in the isolated APS group (30.4 vs. -
Protein C Product Monograph 1995 COAMATIC® Protein C Protein C
Protein C Product Monograph 1995 COAMATIC® Protein C Protein C Protein C, Product Monograph 1995 Frank Axelsson, Product Information Manager Copyright © 1995 Chromogenix AB. Version 1.1 Taljegårdsgatan 3, S-431 53 Mölndal, Sweden. Tel: +46 31 706 20 00, Fax: +46 31 86 46 26, E-mail: [email protected], Internet: www.chromogenix.se COAMATIC® Protein C Protein C Contents Page Preface 2 Introduction 4 Determination of protein C activity with 4 snake venom and S-2366 Biochemistry 6 Protein C biochemistry 6 Clinical Aspects 10 Protein C deficiency 10 Assay Methods 13 Protein C assays 13 Laboratory aspects 16 Products 17 Diagnostic kits from Chromogenix 17 General assay procedure 18 COAMATIC® Protein C 19 References 20 Glossary 23 3 Protein C, version 1.1 Preface The blood coagulation system is carefully controlled in vivo by several anticoagulant mechanisms, which ensure that clot propagation does not lead to occlusion of the vasculature. The protein C pathway is one of these anticoagulant systems. During the last few years it has been found that inherited defects of the protein C system are underlying risk factors in a majority of cases with familial thrombophilia. The factor V gene mutation recently identified in conjunction with APC resistance is such a defect which, in combination with protein C deficiency, increases the thrombosis risk considerably. The Chromogenix Monographs [Protein C and APC-resistance] give a didactic and illustrated picture of the protein C environment by presenting a general view of medical as well as technical matters. They serve as an excellent introduction and survey to everyone who wishes to learn quickly about this field of medicine.