Alpha-Dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth

Total Page:16

File Type:pdf, Size:1020Kb

Alpha-Dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth Alpha-dystroglycan plays functional roles in platelet aggregation and thrombus growth by Reid Gallant A thesis submitted in conformity with the requirements For the degree of Master of Science Graduate Department of Laboratory Medicine and Pathobiology University of Toronto © Copyright by Reid Gallant 2017 i Alpha-dystroglycan Plays Functional Roles in Platelet Aggregation and Thrombus Growth Reid Gallant Master of Science Department of Laboratory Medicine and Pathobiology University of Toronto 2017 ABSTRACT Fibrinogen (Fg) and von Willebrand factor (VWF) have been considered essential for platelet adhesion and aggregation. However, platelet aggregation still occurs in mice lacking Fg and/or VWF but not β3 integrin, suggesting other, unidentified αIIbβ3 integrin ligand(s) mediate platelet aggregation. Through screening published platelet proteomics data, we identified a candidate, alpha-dystroglycan (α-DG). Using Western blot and flow cytometry, I found α-DG is expressed on platelets. Using aggregometry, I observed that antibodies against α-DG or its N- terminal Laminin-binding site, decreased platelet aggregation induced by various platelet agonists in both platelet-rich plasma and gel-filtered platelets. These antibodies also decreased platelet adhesion/aggregation in perfusion chambers independent of α-DG-Laminin interaction. Using laser injury intravital microscopy and carotid artery thrombosis models, we further found that these anti-α-DG antibodies decreased thrombus growth in vivo. Our results showed that α- DG may form an α-DG-fibronectin complex that binds to αIIbβ3 integrin, contributing to platelet adhesion/aggregation, and thrombosis growth. ii Acknowledgements ―It helps a man immensely to be a bit of a hero-worshipper, and the stories of the lives of the masters of medicine do much to stimulate our ambition and rouse our sympathies‖ – Sir William Osler I will always be grateful to my MSc supervisor, Dr. Heyu Ni, for providing me with an exciting two years of challenge and opportunity. When I look back at my time in this lab it has far exceeded my expectations. You encouraged me not only to think critically, but to always ask thoughtful questions about the work of myself and others. As a mentor you have truly set an example of hard work and dedication to every student that becomes a part of your lab. The way in which I approach challenges and goals in my own life has been changed by this example alone. To my thesis committee members, Dr. Margaret Rand and Dr. Walter Kahr, thank you for your insightful guidance, this has helped to shape my work as a graduate student. I genuinely appreciate the time you have taken to discuss and revise my work. I would especially like to thank all of the members of the Ni Lab who I have had the great good fortune of working with. Dr. Yiming Wang, you have been an incredible friend and mentor since the day I started, your contributions to this project are so great I don’t even know where to begin to thank you. Dr. Guangheng Zhu and Dr. Pingguo Chen, with the numerous questions I have asked you both over the past two years I will always appreciate your incredible patience and knowledge. To Dr. Miguel Neves, I would like to thank you for your very kind encouragement to persevere in science. Your deep understanding of chemistry, among many other things, was always very helpful. Xiaohong Ruby Xu, thank you for the endless help in reviewing my work iii your support has humbled me. To my colleagues that I have the privilege of calling friends Elaine Oswald, June Li, Tyler Stratton, Jade Sullivan, Miao Xu, Rebekah Yu, and Si-Yang Yu thank you for the great memories, even outside the lab. Mark Twain once said that, ―…the really great people make you believe that you too can become great.‖ I have always felt this way about working with such an intelligent group of people. To my family, I certainly would not be where I am today without your love and support. In particularly difficult times you have helped me to move forward. Lastly, I would like to thank Andrea, who has been a great friend to me for many years I will always look up to you. iv Table of Contents Section Title Page Acknowledgements iii Table of Contents v List of Figures and Tables vii Abbreviations ix Chapter 1 – Introduction 1 1.1 Introduction to Hemostasis and Thrombosis 1 1.1.1 Hemostasis 1 1.1.2 Thrombosis 3 1.1.3 The Vessel Wall 5 1.1.4 Platelets 7 1.1.5 Coagulation Cascade and Fibrinolysis 12 1.2 Platelets in Hemostasis and Thrombosis 16 1.2.1 Platelet Versatility 16 1.2.2 Platelets Linking the Protein Wave, First Wave, and Second Wave of Hemostasis 18 1.2.3 Disorders of Platelet Number and Function 19 1.2.4 Platelet Integrin Receptors 24 1.2.5 Agonist-induced Signaling 29 1.2.6 Targeting Platelets in Thrombosis 29 1.2.7 Fibrinogen and Von Willebrand Factor Independent Platelet Aggregation 30 1.3 The Dystroglycan Complex 31 1.4 Rationale and Hypothesis 34 Chapter 2 – Methods 37 2.1 Reagents and Animals 37 2.2 Preparation of Mouse Platelets for In Vitro Models 37 2.2.1 Western Blotting 38 2.2.2 Flow Cytometry 39 2.2.3 Light Transmission Aggregometry 39 2.2.4 Protein Co-Immunoprecipitation 40 2.3 Ex Vivo Perfusion Chamber 40 2.4 In vivo Thrombosis Models 41 2.4.1 Carotid Artery Thrombosis Model 41 2.4.2 Cremaster Arterial Thrombosis Model 42 2.5 Statistical Analysis 42 Chapter 3 – Results 43 43 3.1 α-DG was expressed on the platelet surface 3.2 Anti- α-DG antibodies decreased platelet aggregation 45 3.3 Anti- α-DG antibodies decreased thrombus formation in ex vivo perfusion chambers 48 3.4 Anti- α-DG antibodies decreased thrombus formation in small but not large vessels 51 3.5 Platelet α-DG interacted with integrin αIIbβ3, likely through fibronectin 54 Chapter 4 – Discussion 58 v Chapter 5 – Future Directions 64 References 67 vi List of Figures and Tables List of Figures Figure 1 Platelets play important roles in thrombosis and hemostasis Figure 2 The Coagulation Cascade Figure 3 Structure of the platelet integrin αIIbβ3. Schematic representation of the dystroglycan Figure 4 complex. α-DG is expressed in human and mouse Figure 5 platelets Figure 6 α-DG is present on the surface of mouse and human platelets Figure 7 Anti-α-DG antibody decreases mouse platelet aggregation in PRP and gel-filtered platelets Figure 8 Anti-α-DG antibody decreases human platelet aggregation in PRP and gel-filtered platelets Figure 9 Anti-α-DG antibody decreases thrombus formation in mouse whole blood ex vivo Anti-α-DG antibody did not alter adhesion to Figure 10 laminin ex vivo Figure 11 Anti-α-DG antibody decreases laser-induced thrombus formation in small vessels in vivo Figure 12 Anti-α-DG antibody does not inhibit thrombus formation in large vessels in vivo Figure 14 The Dystroglycan Complex interacts with integrin αIIbβ3 in the absence of VWF and Fg vii List of Tables Table 1 Platelet Integrin-Ligand Interactions Table 2 Antiplatelet Drugs viii List of Abbreviations α-DG Alpha-dystroglycan µL Microliter µM Micrometer Ab Antibody ADAMTS13 A disintegrin and metalloproteinase with a thrombospondin type 1 motif 13 BSA Bovine serum albumin CD40L Cluster of differentiation 40 ligand Co-IP Co-immunoprecipitation DAG Diacylglycerol DGC Dystroglycan complex DIT Drug-induced thrombocytopenia ECM Extracellular matrix Fg Fibrinogen FITC Fluorescein isothiocyanate FNAIT Fetal and neonatal alloimmune thrombocytopenia GP Glycoprotein GPCR G protein-coupled receptor HPA Human platelet antigens IP3 Inositol-1,4,5-triphosphate ITP Immune thrombocytopenia Min Minute mL Milliliter mM Millimolar NO Nitric oxide ix PAR Protease-activated receptor PBS Phosphate-buffered saline pFn Plasma fibronectin PDGF Platelet derived growth factor PRP Platelet-rich plasma PSI Plexin semaphorin integrin RGD Arginine-glycine-aspartic acid SD Standard deviation TGF-β Transforming growth factor beta t-PA Tissue plasminogen activator TTP Thrombotic thrombocytopenia purpura VWF Von Willebrand factor W/V Concentration percent weight by volume x 1. Introduction Blood is essential for the metabolic function of humans and other complex multicellular organisms. It is a medium of transport for a variety of cells and biomolecules that are required for the maintenance of homeostasis. It is composed of both a plasma and cellular component. On average, plasma accounts for 55% of blood volume and contains dissolved gases, ions, proteins and nutrients (glucose, amino acids, and lipids)1. On the other hand the cellular fraction of blood is composed of erythrocytes, leukocytes, and platelets accounts for roughly 45% of the blood volume2. Oxygen, hormones, and biological macromolecules are delivered to tissues through the blood, while carbon dioxide, urea, and other metabolic by-products are simultaneously cleared3, 4. In concert with the respiratory, renal and cardiovascular systems, the blood helps maintain complex concentration gradients of gasses and metabolites between the internal and external environment as well as the extracellular and intracellular space5, 6. Effective gas exchange in the blood requires proper maintenance of both intravascular volume and oxygen carrying capacity. Therefore, significant blood loss can lead to insufficient tissue perfusion, ischemia, tissue damage, and possibly death7, 8. 1.1 Hemostasis and Thrombosis 1.1.1 Hemostasis In vertebrates, the process of hemostasis minimizes blood loss after an injury and initiates wound repair. In 1905 the classic theory of coagulation was introduced and laid the foundation for further hemostasis research. This theory proposed that a ―prothrombin 1 activator‖ performed the conversion of prothrombin to thrombin in the presence of calcium; thrombin subsequently catalyzes the formation of fibrin from fibrinogen9.
Recommended publications
  • The Ligands for Human Igg and Their Effector Functions
    antibodies Review The Ligands for Human IgG and Their Effector Functions Steven W. de Taeye 1,2,*, Theo Rispens 1 and Gestur Vidarsson 2 1 Sanquin Research, Dept Immunopathology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] 2 Sanquin Research, Dept Experimental Immunohematology and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected] Received: 26 March 2019; Accepted: 18 April 2019; Published: 25 April 2019 Abstract: Activation of the humoral immune system is initiated when antibodies recognize an antigen and trigger effector functions through the interaction with Fc engaging molecules. The most abundant immunoglobulin isotype in serum is Immunoglobulin G (IgG), which is involved in many humoral immune responses, strongly interacting with effector molecules. The IgG subclass, allotype, and glycosylation pattern, among other factors, determine the interaction strength of the IgG-Fc domain with these Fc engaging molecules, and thereby the potential strength of their effector potential. The molecules responsible for the effector phase include the classical IgG-Fc receptors (FcγR), the neonatal Fc-receptor (FcRn), the Tripartite motif-containing protein 21 (TRIM21), the first component of the classical complement cascade (C1), and possibly, the Fc-receptor-like receptors (FcRL4/5). Here we provide an overview of the interactions of IgG with effector molecules and discuss how natural variation on the antibody and effector molecule side shapes the biological activities of antibodies. The increasing knowledge on the Fc-mediated effector functions of antibodies drives the development of better therapeutic antibodies for cancer immunotherapy or treatment of autoimmune diseases.
    [Show full text]
  • Exome Sequencing and Clot Lysis Experiments Demonstrate the R458C Mutation of the Alpha Chain of Fibrinogen to Be Associated
    Journal of Atherosclerosis and Thrombosis Vol.23, No.4 431 Original Article Exome Sequencing and Clot Lysis Experiments Demonstrate the R458C Mutation of the Alpha Chain of Fibrinogen to be Associated with Impaired Fibrinolysis in a Family with Thrombophilia Israel Fernández-Cadenas1, 2, Anna Penalba2, Cristina Boada2, Caty Carrerra MsC2, Santiago Rodriguez Bueno3, Adoración Quiroga4, Jasone Monasterio4, Pilar Delgado2, Eduardo Anglés-Cano5 and Joan Montaner2 1Stroke pharmacogenomics and genetics laboratory, Fundació Docencia i Recerca MutuaTerrassa, Hospital Mutua de Terrassa, Terrassa, Spain 2Neurovascular Research Laboratory and Neurovascular Unit. Neurology and Medicine Departments-Universitat Autònoma de Barcelona. Vall d’Hebrón Hospital, Barcelona, Spain 3Servicio de Hematología. Hospitals “Vall d’Hebron”, Barcelona, Spain 4Vascular Biology and Haemostasis Research Unit, Vall d’Hebrón Hospital, Barcelona, Spain 5Inserm UMRS 1140, Therapeutic Innovations in Haemostasis, Université Paris Descartes, Paris, France Aim: We report the study of a familial rare disease with recurrent venous thromboembolic events that remained undiagnosed for many years using standard coagulation and hemostasis techniques. Methods: Exome sequencing was performed in three familial cases with venous thromboembolic dis- ease and one familial control using NimbleGen exome array. Clot lysis experiments were performed to analyze the reasons of the altered fibrinolytic activity caused by the mutation found. Results: We found a mutation that consists of a R458C substitution on the fibrinogen alpha chain (FGA) gene confirmed in 13 new familial subjects that causes a rare subtype of dysfibrinogenemia characterized by venous thromboembolic events. The mutation was already reported to be associated with a fibrinogen variant called fibrinogen Bordeaux. Clot-lysis experiments showed a decreased and slower fibrinolytic activity in carriers of this mutation as compared to normal subjects, thus demon- strating an impaired fibrinolysis of fibrinogen Bordeaux.
    [Show full text]
  • Anti-FIBRINOGEN (Human Plasma) (GOAT) Antibody Peroxidase Conjugated - 200-103-240S
    Anti-FIBRINOGEN (Human Plasma) (GOAT) Antibody Peroxidase Conjugated - 200-103-240S Code: 200-103-240S Size: 25 µL Product Description: Anti-FIBRINOGEN (Human Plasma) (GOAT) Antibody Peroxidase Conjugated - 200-103-240S Concentration: 1.0 mg/mL by UV absorbance at 280 nm PhysicalState: Liquid (sterile filtered) Label Peroxidase (Horseradish) Host Goat Species Reactivity human Buffer 0.02 M Potassium Phosphate, 0.15 M Sodium Chloride, pH 7.2 Stabilizer 10 mg/mL Bovine Serum Albumin (BSA) - Immunoglobulin and Protease free Preservative 0.01% (w/v) Gentamicin Sulfate. Do NOT add Sodium Azide! Storage Condition Store vial at -20° C or below prior to opening. This vial contains a relatively low volume of reagent (25 µL). To minimize loss of volume dilute 1:10 by adding 225 µL of the buffer stated above directly to the vial. Recap, mix thoroughly and briefly centrifuge to collect the volume at the bottom of the vial. Use this intermediate dilution when calculating final dilutions as recommended below. Store the vial at -20°C or below after dilution. Avoid cycles of freezing and thawing. Synonyms FGA antibody, FGA protein antibody, FGB antibody, FGG antibody, Fib2 antibody, Fibrinogen A alpha polypeptide antibody, Fibrinogen A alpha polypeptide chain antibody, Fibrinogen alpha chain antibody Application Note Anti-FIBRINOGEN Antibody (peroxidase coniugated) antibody is functional in ELISA, western blot, and immunohistochemical assays. Concentrations should be optimized by researcher. Background Peroxidase Conjugated Anti-FIBRINOGEN Antibody is specific of fibrinogen protein. Fibrinogen is a soluble plasma glycoprotein synthesised by the liver that is converted by thrombin into fibrin during blood coagulation.
    [Show full text]
  • Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
    antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution.
    [Show full text]
  • Activated Protein C Resistance: the Most Common Risk Factor for Venous Thromboembolism
    J Am Board Fam Pract: first published as 10.3122/15572625-13-2-111 on 1 March 2000. Downloaded from CLINICAL REVIEW Activated Protein C Resistance: The Most Common Risk Factor for Venous Thromboembolism Dawn R. Sheppard, DO Background: Venous thromboembolism is a major cause of morbidity and mortality. Although activated protein C resistance (APC-R) is the most commonly recognized inherited risk factor for venous throm­ boembolism, little is known about its long-tenn implications on health. Methods: MEDLINE was searched from January 1989 through August 1999 using the key words ''thromboembolism," ''thrombosis," "activated protein C resistance," and "factor V Leiden." Results: One in 1000 people in the United States is affected by venous thromboembolism annually. APC-R is now understood to be responsible for up to 64% of these cases. APC-R, which occurs widely in some ethnic groups and is nearly absent in others, is due to a single point mutation in the gene for clot­ ting factor V. As a result, inactivation of factor V by activated protein C is impaired, leading to a hyper­ coagulable state. This condition creates a lifelong increased risk of thrombosis and, possibly, anticoag- ulant therapy.. Conclusion: Family physicians have a new tool for assessing risks for venous thromboembolism. Recognizing that up to 64% of patients with venous thromboembolism can have APe-R and treating this disorder with prophylactic and therapeutic anticoagulation might reduce patient morbidity and mortal­ ity from venous thromboembolism. Screening high-risk patients might now be indicated. (J Am Board Fam Pract 2000i13:111-5.) Venous thromboembolism, a serious health prob­ "thromboembolism," "thrombosis," "activated pro­ lem and an important cause of morbidity, affects tein C resistance," and "factor V Leiden." about 1 in 1000 persons annually.
    [Show full text]
  • Transfer of Igg in the Female Genital Tract by MHC Class I-Related Neonatal Fc Receptor (Fcrn) Confers Protective Immunity to Vaginal Infection
    Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection Zili Lia,b, Senthilkumar Palaniyandia,b, Rongyu Zenga,b, Wenbin Tuoc, Derry C. Roopeniand, and Xiaoping Zhua,b,1 aLaboratory of Immunology, Virginia-Maryland Regional College of Veterinary Medicine, College Park, MD 20742; bMaryland Pathogen Research Institute, University of Maryland, College Park, MD 20742; cAnimal Parasitic Diseases Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705; and dThe Jackson Laboratory, Bar Harbor, ME 04609 Edited by Roy Curtiss, Arizona State University, Tempe, AZ, and approved February 1, 2011 (received for review August 30, 2010) IgG is a major Ig subclass in mucosal secretions of the human and viral load. Therefore, HIV-specific IgG may be much more female genital tract, where it predominates over the IgA isotype. important in mucosal protection than previously thought. Unlike Despite the abundance of IgG, surprisingly little is known about S-IgA, the mechanism(s) by which the IgG antibody is transported where and how IgG enters the lumen of the genital tract and the across the genital epithelium and the role of IgG in genital mu- exact role local IgG plays in preventing sexually transmitted dis- cosal protection have not been investigated. Incomplete un- eases. We demonstrate here that the neonatal Fc receptor, FcRn, is derstanding of IgG transport in the genital tract and of its role in expressed in female genital tract epithelial cells of humans and mice combating genital infections has hampered the design and de- and binds IgG in a pH-dependent manner.
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF MEDICINE School of Medicine Department of Cancer Sciences Manipulation of immunotherapy by targeting the inhibitory Fcγ receptor. by Emily Louisa Williams, BSc. (Hons) Thesis for the degree of Doctor of Philosophy June 2011 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF MEDICINE, SCHOOL OF MEDICINE, DEPARTMENT OF CANCER SCIENCES Doctor of Philosophy Manipulation of immunotherapy by targeting the inhibitory Fcγ receptor. Emily Louisa Williams BSc. (Hons) The inhibitory Fc receptor for IgG, FcγRII (CD32), has been shown to modulate in vivo cytotoxicity against tumour targets. Usually expressed on monocytes, macrophages and B lymphocytes, CD32 deficiency enhances the efficacy of some therapeutic mAb. Unfortunately, suitable reagents capable of specifically and exclusively binding mouse CD32 have been lacking, leading to an ignorance of how CD32 might be manipulated for therapeutic benefit in vivo.
    [Show full text]
  • Regulation of Coagulation by the Fibrinolytic System: Expecting the Unexpected
    Bleeding disorders Regulation of coagulation by the fibrinolytic system: expecting the unexpected K.A. Hajjar ABSTRACT Department of Cell and Recent investigations into fibrinolysis and coagulation have yielded exciting and unexpected findings. Developmental Biology, Of note, deficiencies of the major components of the classical fibrinolytic system, namely plasminogen, Department of Pediatrics tissue plasminogen activator, and urokinase, are now recognized to be rare causes of macrovascular Department of Medicine, thrombosis. At the same time, both plasminogen activator excess and fibrinolytic inhibitor deficiencies Weill Cornell Medical College, are associated with clinically significant bleeding, while elevated inhibitor levels, particularly thrombin New York, New York, USA activatable fibrinolysis inhibitor, appear to confer clinically significant risk for thrombosis. Receptor- mediated cell surface fibrinolysis adds a new dimension to the regulation of fibrin balance. Exaggerated expression of the annexin A2 complex, for example, is associated with hemorrhage in acute promyelo- Hematology Education: cytic leukemia, whereas autoantibodies directed against A2 correlate with thrombotic disease in the education program for the patients with antiphospholipid syndrome. The contributions of the urokinase receptor and a diverse annual congress of the European array of plasminogen receptors to fibrin homeostasis remain to be defined. Future studies are likely to Hematology Association reveal novel mechanisms that co-regulate coagulation and
    [Show full text]
  • Ncounter® Mouse Autoimmune Profiling Panel - Gene and Probe Details
    nCounter® Mouse AutoImmune Profiling Panel - Gene and Probe Details Official Symbol Accession Alias / Previous Symbol Official Full Name Other targets or Isoform Information AW208573,CD143,expressed sequence AW208573,MGD-MRK- Ace NM_009598.1 1032,MGI:2144508 angiotensin I converting enzyme (peptidyl-dipeptidase A) 1 2610036I19Rik,2610510L13Rik,Acinus,apoptotic chromatin condensation inducer in the nucleus,C79325,expressed sequence C79325,MGI:1913562,MGI:1919776,MGI:2145862,mKIAA0670,RIKEN cDNA Acin1 NM_001085472.2 2610036I19 gene,RIKEN cDNA 2610510L13 gene apoptotic chromatin condensation inducer 1 Acp5 NM_001102405.1 MGD-MRK-1052,TRACP,TRAP acid phosphatase 5, tartrate resistant 2310066K23Rik,AA960180,AI851923,Arp1b,expressed sequence AA960180,expressed sequence AI851923,MGI:2138136,MGI:2138359,RIKEN Actr1b NM_146107.2 cDNA 2310066K23 gene ARP1 actin-related protein 1B, centractin beta Adam17 NM_001277266.1 CD156b,Tace,tumor necrosis factor-alpha converting enzyme a disintegrin and metallopeptidase domain 17 ADAR1,Adar1p110,Adar1p150,AV242451,expressed sequence Adar NM_001038587.3 AV242451,MGI:2139942,mZaADAR adenosine deaminase, RNA-specific Adora2a NM_009630.2 A2AAR,A2aR,A2a, Rs,AA2AR,MGD-MRK-16163 adenosine A2a receptor Ager NM_007425.2 RAGE advanced glycosylation end product-specific receptor AI265500,angiotensin precursor,Aogen,expressed sequence AI265500,MGD- Agt NM_007428.3 MRK-1192,MGI:2142488,Serpina8 angiotensinogen (serpin peptidase inhibitor, clade A, member 8) Ah,Ahh,Ahre,aromatic hydrocarbon responsiveness,aryl hydrocarbon
    [Show full text]
  • Characterisation of Cellular Fibrinogen Phosphorylation and Its Functional Implications in Clot Formation
    Characterisation of Cellular Fibrinogen Phosphorylation and its Functional Implications in Clot Formation Esther J. Cooke Submitted in accordance with the requirements for the Degree of Doctor of Philosophy The University of Leeds School of Medicine February 2015 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapters 2 and 3 of the thesis has appeared in publication as follows: Smith, K.A., Pease, R.J., Avery, C.A., Brown, J.M., Adamson, P.J., Cooke, E.J., Neergaard-Petersen, S., Cordell, P.A., Ariëns, R.A., Fishwick, C.W., Philippou, H., Grant, P.J. 2013. The activation peptide cleft exposed by thrombin cleavage of FXIII- A(2) contains a recognition site for the fibrinogen α chain. Blood, 121 (11), 2117-2126. The candidate was responsible for the expression and purification of recombinant fibrinogen. The other authors contributed to study design, laboratory work, data analysis and writing of the manuscript. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2015 The University of Leeds and Esther J. Cooke The right of Esther J. Cooke to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Factor V Leiden Thrombophilia
    Factor V Leiden thrombophilia Description Factor V Leiden thrombophilia is an inherited disorder of blood clotting. Factor V Leiden is the name of a specific gene mutation that results in thrombophilia, which is an increased tendency to form abnormal blood clots that can block blood vessels. People with factor V Leiden thrombophilia have a higher than average risk of developing a type of blood clot called a deep venous thrombosis (DVT). DVTs occur most often in the legs, although they can also occur in other parts of the body, including the brain, eyes, liver, and kidneys. Factor V Leiden thrombophilia also increases the risk that clots will break away from their original site and travel through the bloodstream. These clots can lodge in the lungs, where they are known as pulmonary emboli. Although factor V Leiden thrombophilia increases the risk of blood clots, only about 10 percent of individuals with the factor V Leiden mutation ever develop abnormal clots. The factor V Leiden mutation is associated with a slightly increased risk of pregnancy loss (miscarriage). Women with this mutation are two to three times more likely to have multiple (recurrent) miscarriages or a pregnancy loss during the second or third trimester. Some research suggests that the factor V Leiden mutation may also increase the risk of other complications during pregnancy, including pregnancy-induced high blood pressure (preeclampsia), slow fetal growth, and early separation of the placenta from the uterine wall (placental abruption). However, the association between the factor V Leiden mutation and these complications has not been confirmed. Most women with factor V Leiden thrombophilia have normal pregnancies.
    [Show full text]